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Spatial correlations of Rydberg excitations in optically driven atomic ensembles
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We study many-body correlations in the stationary state of a continuously driven, strongly interacting dissipative
system. Specifically, we examine resonant optical excitations of Rydberg states of atoms interacting via long-range
dipole-dipole and van der Waals potentials employing numerical and analytical techniques. Collection of atoms
within a blockade distance form a “superatom” that can accommodate at most one Rydberg excitation. The
superatom excitation probability saturates to 1

2 for coherently driven atoms but is significantly higher in the
presence of dephasing, approaching unity as the number of atoms increases. Using the exact numerical solution
of the density-matrix equations for a small system, we demonstrate that strong dephasing of the optically driven
dipoles renders the many-body problem amenable to semiclassical Monte Carlo simulations. We employ the
Monte Carlo algorithm for a large number of atoms and find that in the steady state of a uniformly driven, extended
one-dimensional system, the saturation of superatoms leads to quasicrystallization of Rydberg excitations whose
correlations exhibit damped spatial oscillations. We show that the behavior of the system under the van der Waals
interaction potential can be approximated by a rate-equations model based on a “hard-rod” interatomic potential,
and by solving it we obtain the period and correlation length for the density wave of Rydberg excitations.
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I. INTRODUCTION

Strong, long-range dipole-dipole (DD) or van der Waals
(vdW) interactions between atoms in highly excited Rydberg
states [1] can suppress multiple Rydberg excitations within
a certain interaction (blockade) volume, while enhancing the
rate of single collective excitation [2–10]. The resulting dipole
blockade constitutes the basis for a number of promising
quantum information schemes [11] and interesting many-body
effects involving long-range correlations and crystallization of
Rydberg excitations [12–31].

Much of the research on strongly interacting Rydberg atoms
is focused on the unitary dynamics or ground state of the
many-body system. In coherently driven ensembles of atoms,
depending on the strength and detuning of the driving lasers,
different ground-state phases with crystalline order emerge
[12–17]. Yet adiabatically attaining the ground state of a large
system requires exceeding preparation times [18,19] during
which the decoherence and dissipation associated with the
optical excitation cannot be neglected. This necessitates the
consideration of open systems and their stationary states [31],
which is the main purpose of this paper.

We study theoretically resonant optical excitations of
Rydberg states of atoms interacting with each other via
DD and vdW potentials. Atoms within a blockade distance
form a “superatom” which can accommodate at most one
collective Rydberg excitation [2,8,10,32–34]. We show that the
steady-state excitation probability of the superatom saturates to
a value of 1

2 for coherently driven atoms but can be significantly
higher in the presence of strong dephasing [34]. We then
consider extended one-dimensional (1D) atomic ensembles
and explore both the low-density (lattice) regime [25,31] with
one or few atoms per blockade distance and the high-density
(continuous) regime [27–30] with many atoms per blockade
distance.

The theoretical treatment of the open many-body systems
is a challenging task. Whereas 1D lattice systems of moderate
size can be treated exactly using generalized time-dependent
density-matrix renormalization group (t-DMRG) algorithms
[31], the absence of a fundamental length scale (lattice con-
stant) prevents such treatment for continuous (high-density)
systems. Recently, different semiclassical Monte Carlo (MC)
algorithms have been proposed and applied [30,35,36], but
there has been no proof of their validity for driven many-
body systems, and the accuracy of their predictions under
various conditions has not been assessed. Here we present
exact solutions for N � 11 atoms within a few blockade
distances and show that under strong dephasing a semiclassical
iterative MC sampling algorithm can accurately and efficiently
simulate the stationary state of the system. We apply this
algorithm to larger 1D systems of N � 103 atoms within
10–15 blockade distances. For the vdW interacting atoms at
high densities, corresponding to the excitation probability of
superatoms approaching unity, we predict a quasicrystalliza-
tion of Rydberg excitations, i.e., the formation of a density
wave with correlation length exceeding the blockade distance.
We interpret this result as a tight packing of superatoms
having rather “hard” boundaries. In contrast, the DD potential
appears to be much “softer,” resulting in a shorter correlation
length.

To obtain analytical results for the vdW interacting atoms,
we introduce a rate-equations model based on a “hard-rod”
(HR) interatomic potential, similar to that used in Ref. [23].
Different from the thermodynamic treatment of unitary system
of Ref. [23], our approach to the dissipative system is a
dynamical one allowing us to connect the unknown parameters
of the classical HR model [37] to the physical parameters of
the system, such as the excitation rate of the atoms and their
density. We derive the period and correlation length of the
density wave and discuss the limitations of the HR model.
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We also find that the DD potential is too “soft” for assigning a
well-defined interaction range compatible with an approximate
HR model.

This paper is organized as follows. In Sec. II we introduce
the Hamiltonian and dissipative terms of the master equation
for the density matrix of the many-body system and examine
the properties of strongly driven superatoms in the presence
or absence of dephasing. In Sec. III we study extended 1D
systems; we employ the exact solution of the master equation
for several atoms to determine the validity conditions of
semiclassical Monte Carlo simulations which are then used to
study continuous systems of hundreds of atoms. A model based
on the HR interatomic potential is derived and analytically
solved in Sec. IV and compared with the results of numerical
simulations for the vdW interacting atoms. Experimental
considerations and conclusions are summarized in Sec. V.

II. THE MANY-BODY SYSTEM

We consider an ensemble of N atoms irradiated by a
uniform driving field that couples nearly resonantly the atomic
ground state |g〉 to the highly excited Rydberg state |r〉 with
Rabi frequency � [Fig. 1(a)]. A pair of atoms i and j at
positions xi and xj excited to states |r〉 interact either via
the DD (p = 3) [38] or vdW (p = 6) [39] potential h̄�(xi −
xj ) = h̄Cp|xi − xj |−p. In the frame rotating with the driving
field frequency ω, the system Hamiltonian H = Vaf + Vaa is

Vaa
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FIG. 1. (Color online) (a) Level scheme of atoms interacting
with the driving field � on transition |g〉 → |r〉 with detuning δ,
while Vaa denotes the DD or vdW interaction between the atoms in
Rydberg state |r〉 having the (population) decay rate �r . (b) Atoms
within the blockade distance db form a superatom with at most one
Rydberg excitation. (c) Mean number of Rydberg excitations nR

of a superatom containing Nsa � 10 atoms within L = 0.7db (vdW
interaction), obtained from the exact steady-state solutions of Eq. (1)
for δ = 0, �r = 0.1�, and �z = 0 (blue diamonds) and �z = � (solid
red circles). Also shown is the Rydberg excitation probability 〈�̂RR〉
of the superatom (open red circles) as per Eq. (4).

composed of the atom-field and atom-atom interactions, Vaf =
−h̄

∑N
j [δσ̂ j

rr + �(σ̂ j
rg + σ̂

j
gr )] and Vaa = h̄

∑N
i<j σ̂ i

rr�(xi −
xj )σ̂ j

rr , where σ̂
j
μν ≡ |μ〉jj 〈ν| is the transition (μ �= ν) or

projection (μ = ν) operator for atom j at position xj and δ =
ω − ωrg is the driving field detuning. The relaxation processes
affecting the atoms include the spontaneous (radiative) decay
of the excited state |r〉 with rate �r and the (nonradiative)
dephasing of atomic coherence σ̂rg with rate �z; the decay
rate of the Rydberg state is typically small compared to �,
while the physical origins of dephasing include nonradiative
collisions, Doppler shifts, inhomogeneous trapping potential,
and the excitation laser linewidth. The decay and dephasing
Liouvillians, acting independently on each atom, are given,
respectively, by Lj

r ρ̂ = 1
2�r [2σ̂

j
gr ρ̂σ̂

j
rg − {σ̂ j

rr ,ρ̂}] and Lj
z ρ̂ =

�z[(σ̂
j
rr − σ̂

j
gg)ρ̂(σ̂ j

rr − σ̂
j
gg) − ρ̂] [40]. The density matrix ρ̂ of

the N -atom system obeys the master equation

∂t ρ̂ = − i

h̄
[H,ρ̂] + Lρ̂, (1)

with Lρ̂ = ∑N
j (Lj

r ρ̂ + Lj
z ρ̂).

A. Blockade distance

For a single two-level atom, the steady-state population of
the excited state |r〉 is a Lorentzian function of detuning δ,

〈σ̂rr〉 = �2

2�2 + �r

2γrg

(
γ 2

rg + δ2
) , (2)

with the width w = γrg

√
4�2/�rγrg + 1, where γrg ≡ 1

2�r +
2�z is the total (transversal) relaxation rate of the σ̂rg coherence
[40]. For strong (�2 > �rγrg), resonant (δ � w) driving, the
population saturates to 〈σ̂rr〉 → 1

2 . But given an atom in the
Rydberg state |r〉, it will induce a level shift �, equivalent to
detuning δ, of another atom, blocking its Rydberg excitation
when � � w. This is the essence of the dipole blockade
[2,10,11]. We may therefore define the blockade distance db

via �(db) = w, which yields

db ≡ p

√
Cp

w
�

(
Cp

2�

√
�r

γrg

)1/p

, (3)

with p = 3 for the DD interaction and p = 6 for the vdW
interaction.

B. The superatom

Consider Nsa atoms within the distance L < db, such that
�(xi − xj ) 	 w for any pair of atoms i and j [Fig. 1(b)].
We thus expect that the superatom can accommodate at most
one Rydberg excitation [32,33]. This is confirmed by our exact
numerical simulations for Nsa � 10; starting with all the atoms
in the ground state |g〉, we propagate Eq. (1) for time t (	�−1)
long enough until the steady state is reached. In Fig. 1(c)
we show the resulting mean number of Rydberg excitations
nR = 〈∑Nsa

j σ̂
j
rr〉 within the superatom. Clearly, nR < 1 ∀Nsa,

while we verify that the probabilities of double 〈σ̂ i
rr σ̂

j
rr〉, triple

〈σ̂ i
rr σ̂

j
rr σ̂

k
rr〉, etc., excitations are always small.
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In the absence of dephasing, �z = 0 and γrg = 1
2�r � �,

we have nR � 1
2 independent of Nsa. The ground state

|G〉 = |g1,g2, . . . ,gNsa〉 of the superatom is coupled only
to the single collective Rydberg excitation state |R(1)〉 =

1√
Nsa

∑Nsa
j |g1,g2, . . . ,rj , . . . ,gNsa〉, while all the states |R(n)〉

with a higher number n > 1 of Rydberg excitations are
shifted out of resonance by the strong interatomic interaction
Vaa and therefore are not populated. As the collective Rabi
frequency

√
Nsa� saturates the transition |G〉 ↔ |R(1)〉, the

superatom ground and excited states acquire populations
〈�̂GG〉 � 〈�̂RR〉 � 1

2 , where �̂GG ≡ ∏Nsa
j=1 σ̂

j
gg and �̂RR ≡∑Nsa

j=1 σ̂
j
rr

∏Nsa
i �=j σ̂ i

gg are projectors onto the ground and single
Rydberg excitation states of Nsa atoms. We note that nR slightly
larger than 1

2 seen in Fig. 1(c) is due to an imperfect blockade of
Rydberg excitation [�(L) ∼ 10w] of atoms at the boundaries
of the region of finite size (L = 0.7db).

Remarkably, strong dephasing �z increases the mean
number of Rydberg excitations nR > 1

2 within the superatom
[34]. The transversal relaxation γrg � � destroys the inter- and
intra-atomic coherences, causing individual atoms to behave
independently. In the basis of collective singly excited states,
this corresponds to a coupling of the symmetric state |R(1)〉 to
all the nonsymmetric states [34]. The superatom still contains
at most one Rydberg excitation, �̂GG + �̂RR = 1, which,
upon combining with σ̂

j
gg + σ̂

j
rr = 1, yields

〈�̂RR〉 = Nsa〈σ̂rr〉
(Nsa − 1)〈σ̂rr〉 + 1

, (4)

where 〈σ̂rr〉 is given by Eq. (2). For Nsa = 1 we have 〈�̂RR〉 =
〈σ̂rr〉, as it should, while Nsa 	 1/〈σ̂rr〉 leads to 〈�̂RR〉 → 1.
In Fig. 1(c) we plot 〈�̂RR〉, which reproduces well the exact
numerical solution, nR � 〈�̂RR〉, under the same conditions.

III. EXTENDED 1D SYSTEM

We next consider the steady-state distribution of Rydberg
excitations in a 1D system of N = ρatL atoms of linear
density ρat. For an arbitrary pattern of interatomic interactions,
exact numerical solution of the many-body master equation is
possible only for a relatively small number of atoms, N ∼ 10.
On the other hand, for a lattice with short-range (e.g., nearest-
neighbor) interactions, the t-DMRG algorithm generalized to
open quantum systems permits exact simulations for N ∼ 102

atoms [31]. Unfortunately, t-DMRG is not applicable to
dense systems lacking an intrinsic length scale, e.g., many
atoms per interaction (blockade) range. Below we present
a semiclassical Monte Carlo algorithm that can efficiently
simulate large systems of N ∼ 103 or more atoms. We note
related algorithms employed in [30,35,36]. There is, however,
no formal justification for the applicability of MC simulations
to the dissipative many-body systems. We will therefore
compare exact solutions of the master equation with the results
of semiclassical MC simulations to establish the conditions of
their validity for small but nontrivial number of atoms.

A. Monte Carlo algorithm

The dephasing suppresses interatomic coherences and
disentangles the atoms, admitting only classical N -body

correlations. Each atom then behaves as a driven two-level
system of Eq. (2) but with the detuning δ determined by
operator Ŝj ≡ ∑N

i �=j σ̂ i
rr�(xi − xj ), which describes the total

interaction-induced shift of level |r〉 for an atom at position
xj involving the contributions of all the Rydberg atoms σ̂ i

rr at
positions xi .

The suppression of entanglement between the atoms
prompts us to introduce an efficient procedure to simulate
the stationary distribution of Rydberg excitation probabilities
at any atomic density ρat. Our algorithm relies on iterative MC
sampling of {σ̂ j

rr} for an ensemble of N atoms, in the spirit of
the Hartree-Fock method. We start with, e.g., all the atoms in
the ground state, 〈σ̂ j

gg〉 = 1 ∀ j ∈ [1,N ], although the resulting
steady state does not depend on the initial configuration. At
every step, for each atom j , we draw a uniform random number
s ∈ [0,1] and compare it with the Rydberg state population
〈σ̂ j

rr〉; if s � 〈σ̂ j
rr〉, we set σ̂

j
rr → 1; otherwise, σ̂

j
rr → 0. In

turn, the thus constructed binary configuration of Rydberg
excitations {σ̂ i

rr} → {0,1,0,0, . . .} determines the level shift Ŝj

(equivalent to detuning δ) of atom j when evaluating 〈σ̂ j
rr〉. We

continuously iterate this procedure, sifting repeatedly through
every atom in the potential generated by all the other atoms
in a self-consistent way. The probability distribution σ̄

j
rr of

Rydberg excitations results from averaging over many (∼106)
configurations {σ̂ j

rr}.

B. Small system

We have performed exact numerical simulations of the
master equation (1) for N � 11 atoms with and without
dephasing �z. In Fig. 2 we show the stationary populations
〈σ̂ j

rr〉 of Rydberg states of vdW interacting atoms in a lattice
of length L = 3db [open boundary conditions (OBC)]. When
the interatomic distance exceeds db (N = 3), interactions play
no role, and the population 〈σ̂ j

rr〉 for each atom is given by
Eq. (2). With increasing atomic density, interactions progres-
sively suppress the Rydberg state populations of individual
atoms. Simultaneously, we observe an onset of the density
wave of Rydberg excitations 〈σ̂ j

rr〉.
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FIG. 2. (Color online) Rydberg state populations 〈σ̂ j
rr〉 of N = 3,

5,7,11 atoms (from top to bottom: red, green, blue, black) in
a 1D lattice of length L = 3db (vdW interaction) obtained from
the exact solutions of Eq. (1) for δ = 0, �r = 0.1�, and (top)
�z = 0 and (bottom) �z = �. Also shown are the corresponding
Rydberg excitation probabilities σ̄ j

rr (open circles) obtained from MC
simulations.
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We can now compare the exact solution with the predictions
of semiclassical MC simulations. In Fig. 2 we plot σ̄

j
rr for

various N and verify that, for strong dephasing (�z = �), the
MC algorithm accurately reproduces the exact steady-state
populations 〈σ̂ j

rr〉. In the absence of dephasing (�z = 0),
however, the steady state resulting from the MC simulations
deviates substantially from the exact state of the system: for

the relative error δσ
j
rr ≡ |〈σ̂ j

rr 〉−σ̄
j
rr |

〈σ̂ j
rr 〉 and its average over all

the atoms δσ rr ≡ 1
N

∑N
j δσ

j
rr we have max[δσ j

rr ] � 0.26 and

δσ rr � 0.14. Hence, neglecting the interatomic coherences, as
implied by the semiclassical MC algorithm, is an uncontrolled
approximation in the absence of dephasing. Then the MC
simulations cannot be relied upon for obtaining the important
characteristics of the system, such as the period and correlation
length of the Rydberg excitation density wave.

C. Large system

We employ the above MC procedure to study realistically
large 1D systems of up to N ∼ 103 atoms interacting via the
DD and vdW interactions and subject to strong dephasing.
In Fig. 3(a) we show the spatial distribution of Rydberg
excitation probabilities in a finite system of length L = 15db

(OBC) for different atomic densities. Interactions between the
atoms suppress the Rydberg excitation probabilities σ̄

j
rr , and

the suppression is stronger the higher the atomic density is
(smaller interatomic distance) and the stronger the interaction
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FIG. 3. (Color online) (a) Probabilities σ̄ j
rr of Rydberg excitations

in a 1D atomic ensemble of length L = 15db (OBC) obtained from
MC simulations with δ = 0, �r = 0.1�, and �z = �. Triangles
(connected by dotted lines) correspond to the DD interaction, and
circles (connected by solid lines) correspond to the vdW interaction
between the atoms. The atomic densities are, from top to bottom,
ρatdb = 1 1

3 ,2 2
3 ,5,10,20 (red, green, blue, brown, black). (b) The

corresponding 1D spatial correlations g(2)(x) of Rydberg excitations
of (left) DD and (right) vdW interacting atoms. In the inset of each
graph, g(2)(x) is plotted vs x in units of the corresponding collective
blockade distance dcb of Eq. (5).

is. The Rydberg excitations are then repelled to the boundaries
of the system. An atom at the edge, having a higher probability
to be excited, suppresses the excitation of the neighboring
atoms within the blockade distance, beyond which another
atom acquires a higher excitation probability. Hence a Rydberg
excitation density wave develops. This behavior is significantly
more pronounced for the vdW interaction between the atoms,
which is stronger within the blockade distance but falls off fast
outside of it, compared to the DD interaction, which is weaker
at short distances and has longer tails. The vdW potential is
thus more reminiscent of a hard-rod interaction, while the DD
potential is much softer.

From many configurations {σ̂ j
rr}, we can extract the spatial

correlations of Rydberg excitations G(2)(x ≡ |xi − xj |) =
σ̂ i

rr σ̂
j
rr . More explicitly, we place a Rydberg atom (σ̂ i

rr = 1)
at the origin xi = 0 and then use the above MC procedure
to calculate σ̄

j
rr ∀ xj > 0, from which we obtain the normal-

ized correlation function as g(2)(x) = σ̄
j
rr/σ̄rr , where σ̄rr =

1
N

∑N
j=1 σ̄

j
rr is the spatial average with N 	 1 (L 	 db). In

Fig. 3(b) we show the corresponding g(2)(x) for the DD and
vdW interactions. In the case of vdW interaction, the Rydberg
atom at x = 0 almost completely blocks the excitation of all the
atoms within the blockade distance x � db. In contrast, for the
DD potential the excitation blockage is only partial as g(2)(x)
grows nearly linearly in the region of x < db. In addition, for
higher atomic densities ρatdb > 5, we observe damped spatial
oscillations of g(2)(x) with increasing amplitude and slowly
decreasing period λ close to db.

D. Collective blockade distance

In a dense system, ρatdb 	 1, an atom in the Rydberg
state |r〉 blocks the excitation of other atoms within a certain
distance which, due to collective effects, is somewhat smaller
than the blockade distance db for a pair of atoms, Eq. (3).
To estimate the collective blockade distance dcb, note that
the collective Rabi frequency �cb = √

Ncb�, and thereby the
excitation linewidth wcb � 2�cb

√
γrg/�r , for Ncb = ρatdcb

atoms is enhanced by a factor of
√

Ncb [11,12]. Substituting
Ncb into the definition of dcb ≡ p

√
Cp/wcb yields

dcb =
(

Cp√
ρatw

)2/(2p+1)

= db

(ρatdb)1/(2p+1)
, (5)

with p = 3 for DD and p = 6 for vdW interactions. In turn,
the number of atoms within the collective blockade distance is
Ncb = (ρatdb)2p/(2p+1).

In the insets of Fig. 3(b) we plot the correlation func-
tions g(2)(x) with x rescaled by the corresponding (density-
dependent) collective blockade distance dcb. For vdW interac-
tion, all the curves for different atomic densities then exhibit
the same oscillation period λ � 1.75dcb.

The average (background) density of Rydberg excitations
ρ̄vdW = ρatσ̄rr can also be deduced from the collective excita-
tion picture [13,29]. For the average probability of the Rydberg
state of vdW interacting atoms we obtain

σ̄rr ≈ 〈�̂RR〉
Nsa

= 〈σ̂rr〉
(Nsa − 1)〈σ̂rr〉 + 1

, (6)
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FIG. 4. (Color online) (a) Average density ρ̄vdW = ρatσ̄rr of
Rydberg excitations of vdW interacting atoms vs the atom density ρat

obtained from MC simulations (circles) and Eq. (6) (solid red line).
Also shown is the average excitation density ρ̄HR of Eq. (10) for the
HR potential of the range dr = db (dotted black line). (b) Oscillation
period λ and (c) decay length ξ of spatial correlations of excitations
g(2)(x) vs the atom density ρat. For the vdW interaction potential, the
data points (red circles with uncertainty) are extracted from the MC
simulations; for HR potential, λ and ξ are obtained from the solution
of Eq. (15). The effective range d (λ,ξ )

r (blue stars, right vertical axes)
of the HR potential is obtained by equating λ and ξ for the vdW and
HR interactions.

where Nsa ≈ 1.83(ρatdb)12/13 ∼ 2Ncb is the effective number
of atoms per superatom [see Fig. 4(a)]. Note that superatoms
overlap.

IV. HARD-ROD POTENTIAL MODEL

We now introduce an analytical model to understand the
emergence of spatial correlations of Rydberg excitations for
the vdW interacting atoms. The almost-complete blockade
of simultaneous excitation of two or more atoms within a
distance close to db suggests an analogy between the vdW
interaction potential and a HR potential of a range dr ∼ db, as
was proposed in Ref. [23] for a unitary Rydberg lattice gas. The
steady state of Ref. [23] was obtained from thermodynamic
considerations as a state of maximum entropy. Here we
present a rate-equations model with a HR potential and
relate its parameters to the physical quantities of the system.
We derive the steady state of the model and provide quantitative
comparison of its predictions with the result of numerical
simulations for vdW interacting atoms at high densities.

A. Rate-equations model

In Ref. [31] we introduced a rate-equations treatment of
the 1D system with complete blockade of Rydberg excitations

of neighboring atoms. We now extend this formalism to the
longer-range interatomic interactions. To this end, we consider
N atoms on a lattice, with one atom per site, and assume that
the atoms excited to the Rydberg state |r〉 interact via the
HR potential of range dr: �(xi − xj ) = C∞�(|xi − xj | − dr),
with C∞ 	 w and �(x) being the step function. An atom
in state |r〉 blocks the excitation of Nr = ρatdr neighboring
atoms on both sides along the chain. For each atom, we then
have two incoherent processes: a pump from |g〉 to |r〉 with
rate P , conditioned upon the absence of Rydberg excitations
within the range dr, L̂

j
p = √

P σ̂
j
rg

∏
|xi−xj |�dr

(σ̂ i
rr − 1), and a

deexcitation from |r〉 to |g〉 with rate D, L̂
j

d = √
D σ̂

j
gr . The

ratio of the two rates κ ≡ P
D

= 〈σ̂rr 〉
1−〈σ̂rr 〉 is obtained from Eq. (2)

with δ = 0 as

κ = |�|2
|�|2 + 1

2�rγrg

. (7)

The density operator of the system obeys the equation of
motion

∂t ρ̂ =
∑

j

(
2L̂j

pρ̂L̂j†
p − {

L̂j†
p L̂j

p,ρ̂
}+ 2L̂

j

dρ̂L̂
j†
d − {

L̂
j†
d L̂

j

d,ρ̂
})

.

(8)

After sufficient relaxation time, the density matrix attains
a classical form, ρ̂ = ∑

{μj } p({μj }) |{μj }〉〈{μj }| , where
p({μj }) is the probability of the N -atom configuration
{μj } ∈ (g,r)N . In the steady state of the system, we have the
detailed balance relation

p({μj })
p({μ′

j })
= κM−M ′

, (9)

where M ≡ 〈{μj }|
∑

j σ̂ i
rr |{μj }〉 is the total number of ex-

citations in {μj }. States with the same number of excitations
M have equal weight, and the partition function is given by
ZN = ∑N

M=0 �(M,N )κM , where �(M,N ) = ( N − Nr(M − 1)
M )

is the number of possible arrangements of M excitations on a
lattice of N sites, with any two excitations separated by at least
Nr sites. The mean number of excitations is given by M̄ =

1
ZN

∑N
M=0 �(M,N )κM while the average (background) den-

sity is ρ̄HR = M̄/N . In a large system N 	 Nr, �(M,N )κM

is a highly peaked function of M; finding its maximum at
Mmax � M̄ , we obtain the density

ρ̄HR = 1

dr

W (β)

1 + W (β)
, (10)

where β = κNr and W (β) is the Lambert function defined via
WeW = β. For β 	 1, the density approaches ρ̄HR → 1/dr.
We note that Eq. (10) is also obtained in the classical model
of hard rods [37], where dr is the rod length and β is a free
parameter. In contrast, our derivation yields

β = κρatdr, (11)

which is uniquely determined through the system parameters.
Next to the boundary at x = 0, the density of excitations

reads

ρHR(x) = W (β)e−W (β)x/dr

dr

∞∑
k=0

�(x/dr − k)
βk(x/dr − k)k

k!
,

(12)
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and the spatial correlations are given by g(2)(x) = ρHR(x − dr)/
ρ̄HR. Using the Laplace transform, we find that the long-
distance (x > dr) correlations have the form of decaying
spatial oscillations,

g(2)(x) � 1 + A cos(2πx/λ + φ)e−x/ξ , (13)

where the oscillation period and decay length,

λ = dr
2π

b
, (14a)

ξ = dr ln−1

( −b

W (β) sin(b)

)
, (14b)

are determined by the solution of the transcendental equation
for b,

ln[W (β)] + W (β) − ln

( −b

sin(b)

)
+ b

tan(b)
= 0. (15)

Numerical solution of Eq. (15) reveal monotonous, but slow
(logarithmic), growth of ξ with increasing atomic density.
For two-level atoms, κ � 1, at large but realistic densities,
ρatdb � 102, a correlation length of a few oscillation periods
can be reached.

B. Comparison of the vdW and HR potentials

To quantify the suitability of the HR model to the de-
scription of the system under the vdW potential, we now
compare the mean densities of excitations ρ̄vdW,HR, as well
as the oscillation periods λ and decay lengths ξ of spatial
correlations g(2)(x).

Since we need to specify the range of the HR potential,
let us first equate it to the blockade distance of the vdW
potential, dr = db. The average densities of excitations are
then remarkably close, ρ̄vdW � ρ̄HR, especially at high atomic
densities ρatdb 	 1; see Fig. 4(a). The oscillation period λ

of the density wave is also well reproduced by the HR model
[Fig. 4(b)]. With increasing atomic density, however, the period
λ decreases slightly faster for the vdW potential; apparently,
the superatoms having soft boundaries can pack closer to
each other than permitted by the HR potential. The same
softness of the vdW potential, compared to the HR potential,
is the reason for somewhat shorter correlation lengths ξ ; see
Fig. 4(c).

Next, we may relax the assumption dr = db but take equal
oscillation periods λ for both potentials and then deduce the
corresponding range d (λ)

r of the HR potential, which turns out
to be close to db but slowly decreasing with increasing atomic
density ρat [Fig. 4(b)]. Alternatively, we equate the correlation
lengths ξ and find a somewhat smaller corresponding range of
the HR potential, d

(ξ )
r � 0.8db, again slowly decreasing with

increasing atomic density ρat [Fig. 4(c)].
Finally, we have performed MC simulations for N 	 1

strongly driven atoms interacting via the HR potential. In
Fig. 5 we compare the correlation functions g(2)(x) obtained
from our simulations and the corresponding analytic solutions
with the results for the vdW interacting atoms under otherwise
identical conditions. We observe qualitatively similar behavior
when the range dr of the HR potential is equal to the blockade
distance db of the vdW potential. Alternatively, we may
associate the range of the HR potential dr with the collective

0 1 2 3 4 5 6 7 8
0
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3

g
(2

) (x
)
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3

g
(2

) (x
)
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1

2

3

x/d b

x/d cb

x/d cb

ρatdb=30

ρatdb=50

FIG. 5. (Color online) Correlations g(2)(x) of atomic excitations
for vdW (circles) and HR (triangles) potentials obtained from MC
simulations with atom densities (top) ρatdb = 30 and (bottom) ρatdb =
50. In the insets, g(2)(x) are plotted vs x in units of the collective
blockade distance dcb. Atomic parameters are as in Fig. 3.

blockade distance dcb, as was done in Ref. [23], in which
case β = κNcb = κ(ρatdb)12/13. As seen in the insets of Fig. 5,
the correlation functions for the vdW and HR potentials
are now considerably different, the corresponding oscillation
periods being an approximately constant λ � 1.75dcb for the
vdW potential and a slowly varying λ � 1.3–1.25dcb for the
HR potential. Hence we conclude that assuming the range of
the HR potential dr to be equal to the blockade distance db of
the vdW potential results in a more accurate description of the
vdW interacting gas of atoms by the HR model. However, no
fixed range dr of the HR model can give quantitatively correct
predictions of the oscillation period and decay length of spatial
correlations of Rydberg excitations of the vdW interacting
atoms.

V. CONCLUDING REMARKS

To summarize, we have quantitatively analyzed the spatial
distribution of Rydberg excitations in the stationary state of
resonantly driven, dissipative atomic ensembles. Using an
exact numerical solution of the density-matrix equations for
a small system, we have shown that the steady state of a
strongly interacting multiatom system can be accurately and
efficiently simulated by a semiclassical Monte Carlo algorithm
if the atoms experience strong dephasing. The semiclassical
treatment, however, amounts to an uncontrolled approximation
in the case of purely coherent driving of radiatively broadened
dipoles. We have considered the dipole-dipole and van der
Waals interactions and found that a well-defined blockade
distance and a density wave of Rydberg excitations can be
observed only in the case of the van der Waals interatomic
potential, whereas the dipole-dipole potential is too soft for the
emergence of a pronounced density wave. For van der Waals
interacting atoms, the steady-state probabilities of Rydberg
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excitations exhibit quasicrystallization and damped spatial
oscillations whose inverse wavelength and correlation length
grow with the probability of collective Rydberg excitations
of superatoms which increases with the atomic density and
thereby the cooperativity of the excitations. We have presented
an approximate, analytically solvable model of incoherently
driven Rydberg atoms interacting via a hard-rod potential. De-
tailed comparison with the results of Monte Carlo simulations
justified the hard-rod model but also revealed its limitations
for an accurate description of the long-range correlations of
Rydberg excitations.

The system studied in this paper corresponds to an ensemble
of cold alkali atoms excited to the strongly interacting Rydberg
states |r〉 with a principal quantum number n ∼ 50–100. The
resonant atomic excitation is affected by either direct one-
photon (UV) transition |g〉 → |r〉 or two-photon transition
via nonresonant intermediate state [26]. Typical values for the
driving field Rabi frequency � ∼ 105 Hz, together with the

relaxation rates �r � 0.1� and �z � �, lead to a blockade
distance in the range of db ∼ 5–10 μm. The low-density
ensemble of equidistant atoms is trapped in a 1D optical lattice.
At higher densities, regular arrangement of the atoms in a
lattice would play a minor role, and our results should hold
also in the continuous gas of atoms confined in an elongated
trap with transverse dimension much smaller than the blockade
distance. After sudden switching off of the driving field, the
spatial distribution of Rydberg excitations can survive for
tens or hundreds of microseconds and can be detected in
situ by spatially resolved Rydberg state ionization [27] or
high-resolution fluorescence imaging [25].
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