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Fractional quantum Hall physics with ultracold Rydberg gases in artificial gauge fields
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We study ultracold Rydberg-dressed Bose gases subject to artificial gauge fields in the fractional quantum
Hall (FQH) regime. The characteristics of the Rydberg interaction give rise to interesting many-body ground
states different from standard FQH physics in the lowest Landau level. The nonlocal but rapidly decreasing
interaction potential favors crystalline ground states for very dilute systems. While a simple Wigner crystal
becomes energetically favorable compared to the Laughlin liquid for filling fractions ν < 1/12, a correlated
crystal of composite particles emerges already for ν � 1/6 with a large energy gap to the simple Wigner crystal.
The presence of a new length scale, the Rydberg blockade radius aB , gives rise to a bubble crystal phase for
ν � 1/4 when the average particle distance becomes less than aB , which describes the region of saturated, almost
constant interaction potential. For larger fillings indications for strongly correlated cluster liquids are found.

DOI: 10.1103/PhysRevA.87.043628 PACS number(s): 67.85.−d, 73.43.Cd, 32.80.Qk, 32.80.Ee

I. INTRODCUTION

In the context of the fractional quantum Hall effect (FQHE)
interesting many body ground states exists, some of which
carry fractional and non-Abelian braiding statistics [1–5].
This makes them ideal candidates for a topological quantum
computer [6,7] and gives access to topological quantum phases
[8]. For an experimental study a high degree of control
is required and quasi-two-dimensional (quasi-2D) ultracold
gases of atoms in artificial magnetic fields have been suggested
as potential candidates [9]. Effective magnetic fields are
generated either by rotation [10,11], employing light-induced
gauge potentials [12–16], or in lattices with complex hopping
amplitudes [17,18]. When a weakly interacting superfluid
Bose gas is rotated sufficiently fast an ordered vortex-lattice
forms [19,20] and the lowest Landau level (LLL) regime
can be reached [21]. Although for bosonic atoms there is
no integer quantum Hall effect based on the Pauli principle,
repulsive interactions can give rise to highly correlated FQH
states for fillings ν � 6 [9] when only the LLL is occupied
[22–24]. However, despite the experimental progress strongly
correlated phases have not been realized yet. In part this can
be attributed to the rather small interaction energies in atomic
gases. In the present paper we propose an alternative approach
using 1/r6 van der Waals (vdW) interactions in Rydberg
states. The associated energies can be orders of magnitude
larger than those achievable with contact or magnetic dipole-
dipole interactions [25] making Rydberg interactions an ideal
candidate for the realization of FQH physics. It is also possible
to hybridize Rydberg atoms with light in form of so-called
Rydberg polaritons [26], which opens the possibility to realize
FQH physics with photons. Here artificial gauge fields can be
generated either by rotation of a suitable medium [27] or using
waveguide lattice structures [28].

In the present paper we theoretically analyze the phase
diagram of particles with a Rydberg interaction in the LLL us-
ing exact diagonalization (ED) as well as variational methods.
Similar to dipolar gases with 1/r3 interaction, which have been
extensively studied in the past [29–31], we find a transition
from Laughlin (LN) liquids [32] to crystalline ground states
for very dilute systems, however with an extended filling

region where only composite particles can crystallize at zero
temperature. In contrast to dipolar gases the difference in
variational energy between composite crystals and simple
Wigner crystals is rather large. Additionally, the presence of
a new length scale, the so-called Rydberg blockade radius aB

gives rise to a clustering mechanism supporting bubble crystal
ground states for fractional fillings ν � 1/4. For larger fillings
we find in the regime of large blockade radii indications for
very interesting cluster liquids.

II. RYDBERG DRESSED ATOMS AND
PSEUDOPOTENTIALS IN THE LLL

Recently, there has been a lot of interest in atoms excited to
high Rydberg states and there has been considerable experi-
mental progress to make these systems accessible [33–39]. Of
particular interest in the present context are atoms excited by
far-off resonant laser radiation. In this case, called Rydberg
dressing [see Fig. 1(a)], the atoms essentially remain in their
ground state but show an effective interaction [40,41] [see
Fig. 1(b)]

V (r) = C̃6

a6
B + r6

, aB =
(

C6

2h̄�

)1/6

. (1)

For large particle separations r the interaction potential is
of vdW type ∼r−6, where C̃6 = (�/2�)4 C6 describes the
effective interaction strength with C6 being the bare vdW
coefficient, � � |�| the Rabi frequency of the laser excitation,
and � its detuning. Since bare Rydberg interaction energies
are typically many orders of magnitude stronger than, e.g.,
magnetic dipole-dipole interactions, the excitation gap of FQH
states can easily reach the energy separation between Landau
levels (LLs). Most importantly the interaction potential (1)
flattens off below the blockade radius aB , thereby defining
a new characteristic length scale. We note that the same
behavior of the interaction potential is found for Rydberg
polaritons [42], which makes it possible to apply many of the
results obtained here to FQH physics of photons hybridized
with Rydberg atoms.
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FIG. 1. (Color online) (a) An ultracold Bose gas is dressed
with Rydberg excitations |r〉 by illuminating with a far-off-resonant
(detuning �) laser beam �. Rotating the gas with frequency ω0 and
applying a weak harmonic trap ω⊥ in radial and a tight one in the
transverse direction (ωz � ω⊥) the quasi-2D FQH regime can be
reached. (b) Interaction potential for Rydberg-dressed atoms.

To be specific, we consider in the following a continuous
gas of Rydberg atoms for which the effective magnetic field
is created by rotation, noting, however, that the results carry
over to lattice systems with not too large flux per plaquette
[43]. When a Rydberg-dressed Bose gas is set into rotation
with angular frequency ω0 in a radial trap of frequency
ω⊥, the characteristic oscillator length scale is given by
�c = (2maω⊥/h̄)−1/2 [44], with ma the atomic mass. The
competition of the two length scales �c and aB leads to
interesting new physics. Already in the mean-field regime
where the rotation frequency is well below the deconfinement
limit (ω⊥ > ω0) there is, e.g., a transition from a vortex
lattice to a supersolid phase [45]. Here we are interested in
the regime of strong correlations. To this end we consider a
Rydberg-dressed Bose gas in the LLL regime for fillings ν < 1,
assume a quasi-2D gas, neglect finite-thickness effects, and
use ω⊥ = ω0. In the latter case �c is replaced by the magnetic
length �c → �B . For simplicity we consider only even values
of 1/ν corresponding to bosonic LN states.

The interaction projected to the LLL is described by
Haldane’s two-particle pseudopotentials Vm [46], where the
integer m denotes the relative angular momentum. In disk
geometry the pseudopotenials are given by

Vm = 1

22m+1m!

∫ ∞

0
drr1+2mV (r)e−r2/4, (2)

where for bosons (fermions) only m = 0,2,4, . . . (m =
1,3,5, . . .) are relevant.

The dominant energy scale is determined by the lowest
pseudopotential V0, while the higher-order terms typically
fall off very fast. For a strict point interaction in the
LLL all Vm’s vanish identically except for m = 0. Tables I
and II list some explicit values of V0 for Rb. There we
assume a fixed magnetic length �B ≈ 1μm (corresponding

TABLE I. Realistic blockade radii aB and energies V0 for Rb with
ωc ≈ 2π × 130 Hz (i.e., �B ≈ 1μm), � = 10� = 2π × 1 GHz as a
function of the principle quantum number n.

∖
n 40 50 60 70 80 90 100

aB (μm) 0.97 1.5 2.0 2.7 3.4 4.3 5.2
V0/2π (kHz) 2.8 5.3 7.9 9.9 11.2 11.8 12.1

TABLE II. Realistic blockade radii aB and energies V0 for Rb
with ωc ≈ 2π × 130Hz (i.e., �B ≈ 1 μm), n = 46 as a function of
the detuning of the dressing laser �. Note that the Rabi frequency �

was chosen as � = 0.1�.

∖
� (MHz) 1.0 9.0 80 700 20 × 103

aB (μm) 3.94 2.73 1.90 1.32 0.76
V0/2π (kHz) 0.0744 0.574 3.75 20.8 240.0

to ωc ≈ 2π × 130 Hz, which is a realistic value [47]) as well
as a fixed ratio �/� = 0.1. For the 60S1/2 Rydberg state in
Rb, C6(n = 60)/2π = 0.14 THz μm6 and we used the scaling
law C6(n) ∝ n11 [48]. In Table I � = 2π × 1 GHz is constant
and the principle quantum number of the Rydberg state n is
varied. In Table II, on the other hand, n = 46 is fixed and the
detuning � is varied. Note that by varying � it is possible to
tune the interaction potential adiabatically.

One recognizes rather large values of V0 up to hundreds of
kHz, which can easily become comparable to or even exceed
the typical LL splitting ωc. Thus, different from all previously
discussed interactions in cold gases the characteristic energy
scales for Rydberg-Rydberg interactions must be limited by
demanding LLL approximation (i.e., V0 < h̄ωc).

Table III lists some explicit values of higher pseudopoten-
tials Vm for the vdW interaction (1). They are also plotted in
Fig. 2 together with contour lines of the continuous function
V (m) = Vm for m ∈ R defined as in (2) above. One recognizes
that at given aB the first Vm are approximately equal until the
radial extent Rm = √

2m�B of the wave function in the relative
coordinate is ∼aB . The subsequent pseudopotentials decrease
quickly.

The relevance of the pseudopotentials becomes apparent
if one considers the (bosonic analog of the) Laughlin wave
function for the ground state of N particles at filling ν = 1/n,
with n being an (even) integer. Denoting the coordinate of
the j th particle in the 2D plane by the normalized complex
variable zj = (xj + iyj )/�B the LN wave function reads [32]

ψν=1/n(z1, . . . ,zN ) ∼
∏
i<j

(zi − zj )n e− 1
4

∑
k |zk |2 . (3)

In the absence of interactions and any confinement potential all
states are degenerate and have zero energy. When considering
the contribution of the interaction Hamiltonian to the energy
of the LN states one recognizes that the Jastow factors∏

i<j (zi − zj )n eliminate, furthermore, all contributions from
pseudopotentials Vm with m = 0,2, . . . ,n − 2. As a conse-
quence the energy scale of the ground state at filling ν = 1/m

is set by the largest unscreened pseudopotential, i.e., by Vm.
For this reason, the curve

√
2m �B = aB separating the two

regions in the contour plot of pseudopotentials in Fig. 2 also
separates two parameter regions with qualitatively different
physics for a given filling fraction ν,

√
2/ν �B < aB and

√
2/ν �B > aB. (4)

The first region corresponds to at most one particle per
blockade area on average, while the second corresponds to
more than one particle in that area.
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TABLE III. Leading-order bosonic (m even) pseudopotentials Vm for the potential Eq. (1) discussed in the main text.

aB/�B V0 (C̃6/�
6
B ) V2/V0 V4/V0 V6/V0 V8/V0 V10/V0 V12/V0 V14/V0

0.1 3.015 × 103 1.40 × 10−5 2.16 × 10−7 4.30 × 10−8 1.54 × 10−8 7.19 × 10−9 3.91 × 10−9 2.37 × 10−9

0.2 1.871 × 102 1.69 × 10−4 3.48 × 10−6 6.95 × 10−7 2.49 × 10−7 1.16 × 10−7 6.31 × 10−8 3.82 × 10−8

0.3 3.652 × 101 6.93 × 10−4 1.78 × 10−5 3.56 × 10−6 1.27 × 10−6 5.95 × 10−7 3.23 × 10−7 1.96 × 10−7

1 2.455 × 10−1 3.43 × 10−2 2.53 × 10−3 5.28 × 10−4 1.89 × 10−4 8.82 × 10−5 4.80 × 10−5 2.91 × 10−5

2 9.816 × 10−3 0.223 4.56 × 10−2 1.24 × 10−2 4.66 × 10−3 2.20 × 10−3 1.20 × 10−3 7.28 × 10−4

3 1.172 × 10−3 0.505 0.203 8.06 × 10−2 3.55 × 10−2 1.77 × 10−2 9.91 × 10−3 6.04 × 10−3

4 2.314 × 10−4 0.740 0.450 0.250 0.137 7.75 × 10−2 4.63 × 10−2 2.92 × 10−2

5 6.279 × 10−5 0.877 0.680 0.479 0.322 0.212 0.140 9.47 × 10−2

10 9.996 × 10−7 0.996 0.987 0.970 0.944 0.908 0.863 0.811

III. GROUND STATE FOR SMALL BLOCKADE RADII

In the following we discuss the ground state of the system
in the case of a small blockade radius aB < �B

√
2/ν, where

its effect can be disregarded.

A. The ν = 1/2 and ν = 1/4 ground states

For aB/�B → 0 the first two pseudopotentials diverge,

V0 ≈ 3

8

C̃6

�6
B

(
�B

aB

)4

, V2 ≈ 1

26

(
0.571 − ln

aB

�B

)
C̃6

�6
B

, (5)

while all Vm>2 converge. Therefore, the ν = 1/2,1/4 bosonic
LN states are exact ground states. To understand the effect of
finite (but small) blockade radii we performed ED calculations
in spherical geometry for small particle numbers N . Table IV
lists overlaps to the Laughlin states for N = 6 particles and
several aB . The results remain valid even for larger particle
numbers: We obtain overlaps squared of, e.g., 0.992 for ν =
1/2 and N = 10 and 0.974 for ν = 1/4 and N = 7. Some
remarks on the ED simulations are given in the Appendix.

B. Ground states at small fillings

Now we want to address the physics for small fillings, i.e.,
ν < 1/4, again for aB � �B . Due to the nonlocal interaction
a natural ground-state candidate in this regime is the non-
correlated Wigner crystal (NWC) [49] described by the wave
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FIG. 2. (Color online) Contour plot of pseudopotentials Vm for the
potential (1), where m was treated as continuous parameter for better
illustration. Black solid lines denote contours of constant (continuous)
pseudopotential.

function

ψNWC(z) = S
∏
j

e−(|zj −Rj |2+zj R
∗
j −z∗

j Rj )/4, (6)

where Rj ∈ C defines a lattice in the plane of complex
coordinates zj = (xj + iyj )/�B and S stands for complete
symmetrization.

1. Variational ground-state energy

To see if the NWC could be a ground state we compare
the corresponding variational energy per particle εNWC to that
of the LN state. To this end we generalize the expression for
εNWC derived in [49] to bosons,

εNWC = 1

2

C̃6

�6
B

∑
j �=0

e−|Rj |2/4

1 + 1
2e−|Rj |2/2

K(ξ = |Rj |),
(7)

K(ξ ) =
∫ ∞

0

drre−r2/4

r6 + (aB/�B)6

(
I0

(
rξ

2

)
+ J0

(
rξ

2

))
,

where I0,J0 denote Bessel functions. The integral can be han-
dled numerically and the lattice sum can easily be performed.
Like for electrons [49,50] and dipolar fermions [51], the lattice
that minimizes the NWC energy is a hexagonal one, see Fig. 3.

In Fig. 3 the energies of different NWCs and the LN liquid
are plotted for small aB = 0.2�B and even values of 1/ν. The
energy of the LN liquid was calculated using the standard
plasma analogy [32] for N = 100 particles for all examined ν

using a Metropolis Monte Carlo (MC) algorithm [52]. We find
a transition from LN to a NWC for

ν � νNWC = 1
14 , (8)

TABLE IV. Overlaps squared of the ground state to the Laughlin
states at fillings ν = 1/2,1/4. They were obtained using ED at N =
6 in spherical geometry. We write 0 when our value is below the
numerical precision, i.e., <10−15.

aB/�B ν = 1/2 ν = 1/4

6.1 1.690 × 10−09 0
5.1 4.935 × 10−10 0
4.1 7.303 × 10−10 0
3.1 2.594 × 10−03 0.9026
2.1 0.9940 0.9696
1.1 0.9998 0.9960
0.1 0.999 999 999 978 0.999 88
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FIG. 3. (Color online) Comparison of the variational energies per particle ε0 (at fillings ν = 1/2,1/4,1/6, . . . , corresponding to the bosonic
Laughlin states) for the different trial wave functions at aB = 0.2�B (LN, Laughlin states; NWC, noncorrelated Wigner crystal of bare particles).

although for ν = 1/12 the energy difference is so small that
we cannot exclude a transition here. Interestingly, this value of
the critical filling is far below the corresponding value of ν ≈
1/7 found for pure Coulomb and dipolar interacting fermions
[50,51,53]. Due to the more local nature of the vdW interaction
potential, this is not surprising: For pointlike interactions there
is no crystallization at all.

2. Stability of Wigner crystal

In an alternative approach we can determine the stability
region of a lattice using, e.g., the Lindemann criterion. To this
end we calculate the Lindemann parameter γ ≡

√
〈δu2〉/a

from the phonon spectrum in harmonic and nearest-neighbor
approximation following [54], where a denotes the (hexag-
onal) lattice constant and δu the atomic displacement from
the lattice {Rj }. The phenomenological criterion states that
the crystal melts when γ exceeds a critical value γc. In
our case γ = 0.57

√
ν for aB < �B at zero temperature, and

γc ≈ 0.28 [51,55]. Thus, the crystal is expected to be stable
for

ν < νLd = 1
4 , (9)

similar to the result found in dipolar systems [30,51]. This
value differs significantly from the transition point to a NWC,
νNWC = 1/14, found above.

3. Gap to collective excitations and spatial correlations

For small system sizes (see Appendix) and small aB � �B

the exact ground state has relatively large overlap to the LN
liquid and the spectrum shows a low-lying exciton branch. On
the other hand, the analysis of the previous section suggests
that in the thermodynamic limit the true ground state may not
be a LN liquid. Thus, to investigate the nature of the ground
state in the region of intermediate fillings we calculate the
energy gap �E of LN states to collective excitations using ED
in spherical geometry. More specifically, �E is the difference
from the ground to first excited state, where the latter can
well be described as a density wave and exhibits a roton
minimum [56,57]. In Fig. 4 �E is plotted for ν = 1/6,1/8 for
finite size systems and extrapolations to the thermodynamic
limit are shown. Also shown are the results for ν = 1/4

for comparison, which clearly yield a positive gap in the
thermodynamic limit. Although the system sizes which we
were able to reach with our ED are not very large, they do
allow for an extrapolation to the infinite size limit and indicate
negative gaps—i.e., instability—for ν = 1/6 and ν = 1/8.

In Fig. 5 second-order correlations, g(2)(r) =
〈ψ̂†(0)ψ̂†(r)ψ̂(r)ψ̂(0)〉 are shown for ν = 1/8 and
aB = 0.2�B . We find strongly enhanced oscillations for
N = 6 signaling a trend towards long-range order. For N = 5
this effect is absent, which can be attributed to a more general
finite-size effect: Already for the gaps (Fig. 4) we observe a
slightly different behavior for N even/odd and ν = 1/6,1/8.
For N = 2,4,6, �E is smaller than for N = 3,5 and we find
the same behavior for the ground-state energy. This is another
indication for crystallization, since also for a classical vdW
crystal on a sphere the ground-state energy per particle shows
these oscillations due to incommensurability.

These numerical findings for small systems support the
result of the Lindemann stability analysis, that crystallization
occurs below ν = 1/4. That raises the question about the
nature of the ground state for fractional fillings in the range
1/4 > ν � 1/14.

0 0.1 0.2 0.3 0.4 0.5
−1

0

1

2

3

x10−4

FIG. 4. (Color online) Gap to collective excitations �E at ν =
1/4,1/6,1/8 and for aB = 0.2�B . Note that for ν = 1/4 energies
were scaled down by a factor of 100. ED in spherical geometry was
used and finite-size corrections were performed as described in the
Appendix. Solid lines, quadratic fits.
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FIG. 5. (Color online) Second-order correlation functions,
g(2)(r), of the ground state for van der Waals (vdW) interactions
at aB = 0.2�B and ν = 1/8, compared to those of the corresponding
LN liquids for different system size (N = 6 thin, N = 5 thick). ED
in spherical geometry was used.

C. Correlated Wigner crystal of composite particle

Instead of a NWC the ground state in the region νLd > ν �
νNWC could be a crystal of composite particles (CPs) [58],
termed correlated Wigner crystal (CWC) [59,60]. As for the
LN states the first pseudopotentials are screened for CPs
and only the effects of the long-range tails of the repulsive
interaction potential remain. As the latter should be the same
for CPs as for bare particles the stability arguments given
above remain valid and a CWC should form already for
ν < νLd = 1/4.

CWC variational wave functions of the form

ψ
(μ)
CWC(z) = PLLL

∏
j<k

(zj − zk)μψNWC(z)

were investigated in [59] using MC simulations based on the
plasma analogy, and the critical filling ν ≈ 1/7 in electronic,
i.e., fermionic systems was correctly predicted. Here PLLL is a
projector to the LLL and (zj − zk)μ are Jastrow factors describ-
ing the formation of μ-composite bosons CBμ (fermions CFμ)
for μ even (odd). We here performed similar MC simulations
and calculated the variational energy of hexagonal CWCs for
different μ. From the plasma analogy it can be concluded [59]
that the lattice constant a used for the NWC have to be rescaled
in the definition of the CWC wave function in order to produce
the desired density at filling ν:

a → a(1 − μν). (10)

In the MC simulations we take into account only direct but
no exchange terms but have checked that the first exchange
corrections are negligible. Our results are shown in Fig. 6 and
we observe that for ν � 1/6 CWCs are energetically favorable
compared to LN states.

We thus expect crystalline order already for ν < νLd = 1/4,
in agreement with the stability analysis and long before the
simple NWC becomes energetically favorable at ν = νNWC.
More specifically we expect a CB4 CWC ground state at ν =
1/6 and ν = 1/8. For ν = 1/10 the CB4 and CF5 CWCs are
equal in energy within our MC errors and we cannot make a
final conclusion about the underlying CPs. Most importantly,
the variational energy of the composite crystals is for a larger

2 4 6 8 10

0.85

0.9

0.95

1

1.05

1.1

FIG. 6. (Color online) Variational energy per particle of the
hexagonal CWC of CPμ, εCWC(μ), in units of the LN state energy
εLN(ν) at filling ν. Results were obtained in Metropolis MC
simulations with N = 91 particles.

range of fractional fillings substantially below the value of the
NWC.

That crystals of CPs are formed for ν < 1/4 is further
supported by the ED results for the second-order correlation
function plotted in Fig. 5. For larger distances r one recognizes
enhanced oscillations of g(2)(r) as compared to those expected
for LN liquids. On the other hand, the correlations decay
still according to a power law for small r , e.g., g(2)(r) ∼ r11

for N = 6 at ν = 1/8. This is a direct indication that the
ground-state physics of these systems is dominated by CPμ’s
with μ between 4 and 6, as predicted above.

IV. EFFECTS OF FINITE BLOCKADE RADIUS

We now discuss the effects of the saturation of the effective
vdW interaction potential, Eq. (1), for distances less than
the blockade radius aB . As we show the competition of the
magnetic length �B with the new length aB will give rise to
new physics which has similarities with physics of higher LLs
in the solid-state context. Specifically we consider the case
where there are more than two particles per blockade area
AB = πa2

B , i.e., the regime aB �
√

2/ν�B .

A. Bubble crystal at small fillings

ED results obtained on spheres suitable for LN states show
that for aB �

√
2/ν�B and ν = 1/4 or 1/2, the ground state

is a ν LN state with vanishing angular momentum L = 0. For
aB ≈ √

4/ν�B a transition to a L �= 0 state is observed, which
after mapping from sphere (radius R) to plane (momentum
k), kR = L [61], corresponds to a breaking of translational
invariance. Figure 7 shows numerical results for the two-
particle correlation g(2)(r) for different ratios of aB/�B . For
small aB (L = 0 phase) we find LN-like correlations while for
large aB (L �= 0 phase) we find particle bunching at r = 0,
which indicates clustering. Clustering of k particles can also
be seen in the k + 1st-order density correlations,

g(k+1)(z) ≡ 〈(̂†(0))k̂†(z)̂(z)(̂(0))k〉.
For example, for aB = 2.9�B , k = 2 particles cluster, resulting
in a very small g(3)(0) ≈ 2 × 10−5(ν/2π )3 (for ν = 1/2,N =
8), while g(2)(0) = 0.9(ν/2π )2 is still large.
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FIG. 7. (Color online) Second-order correlation function for the
ground state for increasing values of aB for N = 8, solid line (N = 6,
dashed line) for ν = 1/2 (ν = 1/4). For large aB symmetry is broken
(L �= 0 thick lines), in contrast to small aB (L = 0 thin lines).

These numerical findings can be explained as follows: For
aB >

√
4/ν�B where there are more than two particles per

AB , the long-range contribution to the interaction energy can
be reduced by bringing the particles inside AB together. At the
same time there is no energy penalty from interactions inside
AB since the potential (1) is constant for r � aB . This provides
a pairing mechanism. Assuming that all particles within AB

undergo clustering, one expects a transition from k − 1 to k

particles per cluster at a
(k)
B = √

2k/ν�B .
By analogy we expect the formation of a NWC consisting

of clusters, when the reduced filling of the system with clusters
νcl = ν/k is small. This state is referred to as bubble crystal
(BC) and was, e.g., considered for electrons in a weak magnetic
field where ν > 1, i.e., beyond the LLL [62]. The present situa-
tion is comparable since the effective interaction in a higher LL
is “smeared out” around r = 0, making it qualitatively similar
to our interaction Eq. (1). A BC phase was also predicted for
dipolar bosons at filling ν = 1/2 with large finite-thickness
effects [63]. To verify that BCs are indeed good ground-state
candidates for large blockade radii we calculate the variational
energy per particle by generalizing (7). This yields

εBC(k; ν) = kεNWC (ν = νcl) + (k − 1) V0, (11)

where the second term describes the binding energy per
particle required for the cluster formation. In Fig. 8 the ground-
state phase diagram is shown determined by comparing the
variational energies of the LN liquid, the NWC, and the BC.
Also shown are the transition points between symmetry-
conserving (L = 0) and symmetry-breaking (L �= 0) states
obtained from ED. One recognizes that BC ground states with
k � 2 particles per cluster exist for ν � 1/4 and aB � a

(2)
B .

B. Speculations for large filling: Cluster liquids

For ν = 1/2 the BC is higher in energy than the LN state
for all aB and for sufficiently large aB � a

(2)
B the LN state is

no longer a good ground-state candidate. Therefore, the nature
of the ground state for large aB and large filling is an open
question. In the following we give some speculative arguments
about the ground state in this parameter region. In contrast to
other regions here only numerical results from ED for up to
N = 10 particles are available and thus it is difficult to make
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FIG. 8. (Color online) Phase diagram (for 1/ν ∈ 2N) obtained
from the comparison of variational energies of LN state (N = 100
using Metropolis MC) and BC. The optimal number kopt of particles
per cluster (color code) was used in the BC region. The squares with
error bars show the phase transition from LN to a symmetry-breaking
state obtained numerically (ED, spherical geometry).

definite statements. Clearly, further studies are needed here.
Yet our preliminary studies show that this parameter regime
could be a very interesting one.

Besides clustered crystalline states of the type discussed
above, many different correlated cluster liquids have been
proposed and discussed in the context of the FQHE in
higher LLs. Most prominent are the Read-Rezayi (RR) Zk

parafermion states [64] which have recently been generalized
using totally symmetric Jack polynomials [65]. The Haffnian
(Hf) [66] is another example not contained in the Jack series.
These states are characterized by the number of particles
per cluster k (e.g., k = 2 for Hf) and the exponent r which
determines the short-distance behavior of the correlations
g(k+1)(z) ∼ |z|2r . For Hf r = 4 and for all RR states r = 2.
For filling ν = 1 the Moore-Read Pfaffian (Pf) [3] (the k = 2
RR state) was shown to be the ground state for dipolar [31] and
contact [24] interactions corresponding to aB � �B . We also
find a large overlap to the Pf of, e.g., |〈ψ(N = 12)|Pf〉|2 =
0.90 for aB = �B . Since the potential (1) provides a clustering
mechanism also for ν < 1, the cluster liquids are reasonable
trial wave functions for our situation as well.

In the following we focus on filling ν = 1/2, where the BC
is no ground state. We investigate the three simplest ν = 1/2
cluster liquids, namely the LN state (k = 1,r = 2), the Hf (k =
2,r = 4), and the k = 3,r = 6 Jack polynomial. We refer to the
latter as 3-6 BH (Bernevig, Haldane) state. As in the BC case,
we expect a transition from k − 1 to k particles per cluster at
a

(k)
B . This estimates the transition from LN to Hf to be at a

(2)
B �

2.8�B and from Hf to 3-6 BH at a
(3)
B � 3.5�B . In Fig. 9(a) we

show the numerically obtained overlaps of the ground state
wave functions with the trials. (The 3-6 BH state is obtained
from the “Jack generator” [68].) Note that the calculations
were done for spheres of the different sizes supporting the
respective trial ground states. We find that for every aB at least
one of the overlaps takes a substantial value. This finding must
be taken with care, however: It is known that when a trial
wave function has a large overlap to the exact ground state
for small systems, this does not imply a good description in
the thermodynamic limit. The transitions between the different
trial states in Fig. 9 are reasonably well described by the above
estimates. Coexistence of phases is a finite size effect, at least
partly caused by the different system sizes.
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FIG. 9. (Color online) ED results in spherical geometry. (a) Overlap of the numerically determined ground states to the different trial wave
functions. (b) Finite size approximation of the gap to collective excitations for the ground state at the system size of the Hf (at aB = 3�B ).
Finite size corrections were carried out following [67]. The different behavior of � for N even/odd is another indication of cluster formation
with k = 2 particles per cluster.

We close our discussion of cluster liquids by investigating
the ground-state excitation gap. In Fig. 9(b) finite size
approximations are shown for the Hf state which suggest that it
is an incompressible ground state in the thermodynamic limit.
This is a surprising result since the Hf is generally believed to
describe compressible states. We note that the arguments given
by Green [66] that the Hf lies on a phase transition and should
be gapless rely on the fact that the effective CB2 interaction is
purely repulsive. It was shown for composite fermions (CFs)
that a flattening of the bare 1/r potential leads to attractive
inter-CF interactions [69]. By analogy we speculate that for our
extremely flat potential (1) the inter-CB2 interactions becomes
attractive as well, which will indeed lead to CB2 pairing [70].
We also note that even our bare potential has a small attractive
component in momentum space. Whether or why the pairing
symmetry should be d-wave as required for the Hf will be
devoted to future work.

We conclude this section by noting that this parameter
regime, which may be easier accessible experimentally than
the low-filling regimes discussed above, is potentially a very
interesting one. In order to make more definite statements
further studies are needed, however.

V. SUMMARY

Summarizing, we have shown that Rydberg-dressed Bose
gases can give rise to extremely strong interactions and a

FIG. 10. (Color online) Qualitative form of the LLL phase
diagram.

variety of interesting correlated phases not found in the
standard FQH physics of the LLL. This has two reasons:
The rapid falloff of the interaction potential with distance
and the competition of two length scales, aB and �B . A
qualitative picture of the LLL phase diagram is shown in
Fig. 10. In the limit of pure vdW interactions (aB/�B → 0) the
ν = 1/2,1/4 Laughlin states are exact ground states. Although
we mainly discussed filling fractions with even values of 1/ν

the entire region is denoted by “FQHE” since we expect the
standard bosonic FQH physics [24] to hold for all fractional
fillings larger than ν = 1/6. For ν � 1/6 we find CWC ground
states, while a NWC ansatz predicts crystallization only at
ν = 1/12. For aB �

√
4/ν�B and ν � 1/4 a transition to a

BC is expected. Finally, for larger fillings and blockade radii
the nature of the ground state is an open question, and for
filling ν = 1/2 we speculated on a connection to interesting
cluster liquid states in particular the Hf [66].
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APPENDIX: EXACT DIAGONALIZATION

In addition to variational calculations we performed state-
of-the-art ED studies. To minimize the role of finite-size effects
we did all our systematic investigations in spherical geometry.
We work on standard desktop computers and have excess up
to the following particle numbers:

ν 1 1/2 1/4 1/6 1/8
Nmax 14 10 7 6 6
dim. 194 668 246 448 48 417 32 134 118 765

The dimension of the full Hilbertspace containing all
angular momentum multiplets is given, since we do not
explicitly exploit that [H, �L2

tot] = 0 in the numerics. In the
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numerics the filling fraction ν is adjusted by changing the
magnetic flux N� through the surface of the sphere. For
ν = 1/2,1/4, . . . Laughlin states

N� = N − 1

ν
.

We eliminate leading-order finite size effects by rescaling the
magnetic length [67],

�B → �∞
B =

√
N�ν

N
�B.

In simulations aB must be chosen small enough since when the
blockade area fills half a sphere, i.e., when aB � π

√
N�/8�B ,

we expect the formation of two clusters on opposite poles. We
indeed found large overlaps to two-cluster trial wave functions
in this case and no conclusions about the thermodynamic limit
can be drawn.

In disk geometry we only performed systematic studies
for small aB � �B and found similar results as in spherical
geometry. The accessible system sizes are the same as above,
although requiring slightly more CPU time.
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