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Recent experiments revealed the importance of higher-band effects for the Mott-insulator(MI)–superfluid
transition(SF) of ultracold bosonic atoms or mixtures of bosons and fermions in deep optical lattices [Best et al.,
Phys. Rev. Lett. 102, 030408 (2009); Will et al., Nature (London) 465, 197 (2010)]. In the present work we derive
an effective lowest-band Hamiltonian in three dimensions that generalizes the standard Bose-Fermi-Hubbard
model taking these effects as well as nonlinear corrections of the tunneling amplitudes mediated by interspecies
interactions into account. It is shown that a correct description of the lattice states in terms of the bare-lattice
Wannier functions, rather than approximations such as harmonic-oscillator states, is essential. In contrast to
self-consistent approaches based on effective Wannier functions, our approach captures the observed reduction
of the superfluid phase for repulsive interspecies interactions.
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I. INTRODUCTION

Ultracold atoms in optical lattices provide unique and
highly controllable realizations of various many-body Hamil-
tonians [1–6]. Theoretical descriptions of these systems in
the case of deep-lattice potentials usually employ lowest-
band models only [1,7]. However, it was found recently that
for lattice bosons with a strong interaction contributions to
the Hamiltonian beyond the single-band approximation with
nearest-neighbor hopping and local two-particle interactions
need to be taken into account [8]. For example, using the
method of quantum phase diffusion, the value of the two-body
interaction U for bosons in a deep optical lattice was measured
directly and found to deviate from the prediction of the
tight-binding model derived in Ref. [1]. These experiments
also revealed the presence of additional local three- and
four-body interactions not accounted for in the single-band
Bose-Hubbard Hamiltonian. A perturbative derivation of these
terms based on harmonic-oscillator approximations was given
by Johnson et al. [9].

In the case of boson-fermion mixtures, the situation is
more involved. Early experiments on mixtures with attractive
interspecies interaction [10,11] displayed a decrease of the
bosonic superfluidity in the presence of fermions. This initiated
a controversial discussion about the nature of the effect. Ex-
planations ranged from localization effects of bosons induced
by fermions [11,12] to heating due to the admixture [10,13].
Numerical results also predicted the opposite behavior, i.e.,
the enhancement of bosonic superfluidity due to fermions [14]
(for a more detailed discussion see Ref. [15]). The situation
remained unclear until a systematic experimental study of
the dependence of the shift in the bosonic superfluid–Mott-
insulator (SF-MI) transition on the boson-fermion interaction
[16] and the subsequent observation of higher-order interac-
tions in the mixture. This shows that again higher-order band
effects need to be taken into account.

The influence of higher Bloch bands in the Bose-Fermi
mixture can be described by two different approaches. In the
first approach one assumes that the single-particle Wannier
functions are altered due to the modification of the lattice
potential for one species by the interspecies interaction with

the other [17], which is then calculated in a self-consistent
manner. The agreement of these results with experimentally
observed shifts of the SF-MI transition is very good for the
case of the attractive boson-fermion interaction (see Ref. [16]).
The method fails, however, for repulsive interactions where
experiments showed (contrary to intuition again) a reduction
of superfluidity [16]. Besides this shortcoming, the self-
consistent potential approach has a conceptual weakness as
it can only be applied close to the Mott-insulating phase. The
second approach to include higher bands is an elimination
scheme leading to an effective single-band Hamiltonian
similar to the pure bosonic case [9,18,19]. This approach,
although technically more involved, is more satisfactory from
a fundamental point of view. However, so far, it has not resulted
in quantitatively satisfactory predictions. We will show here
that this is because (i) an important nonlinear correction to the
hopping mediated by the interspecies interaction and present
already in the absence of higher-band corrections is missing
and (ii) harmonic-oscillator approximations to the Wannier
functions that have been used before lead to gross errors when
considering higher-band effects.

We present here an adiabatic elimination scheme for
Bose-Fermi mixtures obtained independently from Refs. [9,18,
19], resulting in an effective first-band Bose-Fermi-Hubbard
Hamiltonian [20]. In contrast to Refs. [9,18,19], we use
correct Wannier functions, which will be shown to be es-
sential. Furthermore, we find that already within the lowest
Bloch band the interspecies interaction leads to important
nonlinear corrections to the tunneling matrix elements of
bosons and fermions. For a fixed number of fermions per
site, the effective Hamiltonian is equivalent to the Bose-
Hubbard model with renormalized parameters U and J for
which expressions are given in a closed form. This allows
for a direct study of the influence of the boson-fermion
interactions on the bosonic superfluid to Mott-insulator
transition within this level of approximation. It is shown
that nonlinear hopping together with higher-band corrections
leads to a reduction of the bosonic superfluidity when
adding fermions for both attractive and repulsive interspecies
interactions.
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The outline of the present work is as follows. After
deriving the general multiband Hamiltonian of interacting
spin-polarized fermions and bosons in a deep lattice in Sec. II,
we introduce the first of two important additions to the standard
Bose-Fermi-Hubbard model (BFHM) in Sec. III: the nonlinear
hopping correction. By restricting the calculations to leading
contributions, we derive an effective single-band Hamiltonian
by adiabatic elimination of the higher bands in Sec. IV. Finally,
using the resulting generalized BFHM, the effect of a varying
boson-fermion interaction is studied in detail in Sec. V.

II. MODEL

In three dimensions, ultracold Bose-Fermi mixtures in an
external potential are described by the continuous Hamiltonian
[7]

Ĥ =
∫

d3r �̂
†
b(r)

(
− h̄2

2mb

� + V b(r)

)
�̂b(r)

+
∫

d3r �̂
†
f (r)

(
− h̄2

2mf

� + V f (r)

)
�̂f (r)

+ gbb

2

∫
d3r �̂

†
b(r)�̂†

b(r)�̂b(r)�̂b(r)

+ gbf

2

∫
d3r �̂

†
b(r)�̂†

f (r)�̂f (r)�̂b(r), (1)

where the index b(f ) on the field operators �̂ refers to
bosonic (fermionic) quantities and V b(r) [V f (r)] is the
external potential consisting of possible trapping potentials
as well as the optical lattice V b

lat(r) = ηb

∑
sin2(kαrα)

[V f

lat(r) = ηf

∑
sin2(kαrα)]. The intraspecies and interspecies

interaction constants are defined as

gbb = 4πh̄2

mb

abb, gbf = 4πh̄2

mR

abf , (2)

with mR = mbmf

mb+mf
being the reduced mass and abb/bf the

intraspecies and interspecies s-wave scattering lengths, respec-
tively.

Whereas in the standard approach the field operators in
Eq. (1) are expanded in terms of Wannier functions for the
first band only, here we use an expansion to all Bloch bands:

�̂b(r) =
∑

ν

∑
j

b̂ν,j w
b
ν (r − j),

(3)
�̂f (r) =

∑
ν

∑
j

f̂ν,j w
f
ν (r − j).

The operator b̂ν,j (f̂ν,j) denotes the annihilation of a boson
(fermion) in the νth band at site j and w

b/f
ν (r − j) is the

corresponding Wannier function of the νth band located at
site j. The vector ν = {νx,νy,νz} denotes the band index. The
Wannier functions factorize as

wb/f
ν (r) = w̃b/f

νx
(x) w̃b/f

νy
(y) w̃b/f

νz
(z), (4)

with the one-dimensional Wannier function w̃
b/f

β (x).

Using the expansion of the field operator, the full multiband
Bose-Fermi-Hubbard Hamiltonian can be expressed as

Ĥ =
∑
ν,µ

j1,j2

(
J j1j2

ν,µ b̂
†
ν,j1

b̂µ,j2 + J̃ j1j2
ν,µ f̂

†
ν,j1

f̂µ,j2

)

+ 1

2

∑
ν,µ,�,σ

j1, . . . ,j4

(
U j1,...,j4

ν,µ,�,σ b̂
†
ν,j1

b̂
†
µ,j2

b̂�,j3 b̂σ ,j4

)

+ 1

2

∑
ν,µ,�,σ
j1, . . . ,j4

(
V j1,...,j4

ν,µ,�,σ b̂
†
ν,j1

b̂µ,j2 f̂
†
�,j3

f̂σ ,j4

)
. (5)

The generalized hopping amplitudes (still containing local
energy contributions)

J j1,j2
ν,µ =

∫
d3r w̄b

ν (r − j1)

×
(

− h̄2

2mb

� + V b(r)

)
wb

µ(r − j2), (6)

J̃ j1,j2
ν,µ =

∫
d3r w̄f

ν (r − j1)

×
(

− h̄2

2mf

� + V f (r)

)
wf

µ(r − j2) (7)

and the generalized interaction amplitudes

U j1,j2,j3,j4
ν,µ,�,σ = gbb

∫
d3r w̄b

ν (r − j1)

× w̄b
µ(r − j2)wb

�(r − j3)wb
σ (r − j4), (8)

V j1,j2,j3,j4
ν,µ,�,σ = gbf

∫
d3r w̄b

ν (r − j1)

×wb
µ(r − j2)w̄f

� (r − j3)wf
σ (r − j4) (9)

are defined as usual. In the following we restrict our model in
such a way that only the most relevant terms are kept. Note that
many of the matrix elements vanish because of the symmetry
of the Wannier functions [21]. Unless stated otherwise, we
restrict ourselves to local contributions in the interaction terms,
i.e., j1 = · · · = j4 in U

j1,...,j4
ν,µ,�,σ and V

j1,...,j4
ν,µ,�,σ , and in this case we

drop the site indices.
With these restrictions, the general multiband Hamiltonian

can be cast in the form

Ĥ = Ĥ1 +
∑
ν �=1

Ĥ 0
ν +

∑′

ν,µ,�,σ

Ĥνµ�σ , (10)

where the first term

Ĥ1 = ĤBFHM + Ĥnl (11)

describes the (pure) first-band (1 = {1,1,1}) dynamics consist-
ing of the standard Bose-Fermi-Hubbard–model part ĤBFHM

[7] and nonlinear hopping corrections Ĥnl, which will be
discussed in Sec. III. The second term Ĥ 0

ν incorporates
the (free) dynamics within the νth band and Ĥνµ�σ describes
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the coupling between arbitrary bands ν,µ,�,σ . The prime
in the sum indicates that at least one multi-index has to
be different from the others. This general form of the full
Hamiltonian serves as the starting point of our study.

III. NONLINEAR HOPPING CORRECTION

Even when virtual transitions to higher bands are dis-
regarded there are important corrections to the standard
BFHM if the boson-fermion interaction V becomes large.
The interspecies interaction term in Eq. (1) gives rise to a
correction to the bosonic (and fermionic) tunneling amplitude
proportional to the occupation number of the corresponding
complementary species. These contributions (in the following
referred to as nonlinear hopping contributions) have been
considered before [22,23], but have been omitted from earlier
discussions of corrections to the BFHM [18,19].

To establish notation let us recall first the usual single-band
BFHM

Ĥ = −J
∑
〈ij〉

b̂†i b̂j + U

2

∑
j

n̂j(n̂j − 1)

− J̃
∑
〈ij〉

f̂ †
i f̂j + V

2

∑
j

n̂jm̂j. (12)

The amplitudes are determined by

U ≡ U
jjjj
1111, V ≡ V

jjjj
1111, J ≡ −J

j+ê,j
1,1 , J̃ ≡ −J̃

j+ê,j
1,1 ,

with ê being a unit vector in one of the three lattice directions.
Due to the isotropic setup, the choice of direction is irrelevant.
From Eqs. (8) and (9) two types of nonlinear hopping
corrections arise: From the boson-boson interaction we obtain

J b
nl

∑
〈ij〉

b̂†i (n̂i + n̂j)b̂j, (13)

whereas the boson-fermion interaction leads to both bosonic
and fermionic hopping corrections:

J
f

nl

∑
〈ij〉

b̂†i (m̂i + m̂j)b̂j + J̃nl

∑
〈ij〉

f̂ †
i (n̂i + n̂j)f̂j. (14)

The corresponding nonlinear hopping amplitudes read

J b
nl ≡ U

j+ê,j,j,j
1111 , J

f

nl ≡ V
j+ê,j,j,j

1111 , J̃nl ≡ V
j,j,j+ê,j

1111 .

Since we are interested in the influence of the fermions
on the bosons we assume in the following the fermions to
be homogeneously distributed. This assumption, also used in
Refs. [16,17], proved to be valid in the trap center and provides
a considerable simplification. This amounts to replacing the
fermionic number operators by the fermionic filling: m̂j →
m. Furthermore, the bosonic density operators in Eqs. (13)
and (14) are replaced by the filling of the Mott lobe under
consideration, n̂j → n, for simplicity.

Altogether, this allows us to write a Hamiltonian including
corrections from the nonlinear hopping contributions. By
defining the effective bosonic hopping amplitude as

J [n,m] ≡ J − 2n J b
nl − mJ

f

nl , (15)

the system is recast in the form of a pure Bose-Hubbard model
(BHM) with density-dependent hopping:

Ĥeff = −J [n,m]
∑
〈ij〉

â†
i âj + U

2

∑
j

n̂j(n̂j − 1). (16)

By analyzing the resulting predictions for the MI-SF transition
as a function of the filling and the interspecies interaction
(see Fig. 3) one recognizes a substantial reduction of bosonic
superfluidity for increasing interaction on the attractive side
and a corresponding enhancement on the repulsive side,
showing the importance of nonlinear hopping terms for the
precise determination of the MI-SF transition. Compared to the
experimental results [16], two main points arise. First, although
pointing in the right direction for attractive interactions,
the overall shift is too small compared to the experimental
observation. Second, for repulsive interactions, the transition
is shifted to larger lattice depths, in contrast to the experimental
findings.

IV. EFFECTIVE SINGLE-BAND HAMILTONIAN

In the following we derive an effective single-band Hamil-
tonian that takes into account the coupling to higher bands.
The derivation is structured in the following way. We use an
adiabatic elimination scheme presented in Appendix A, which
reduces the main task to the calculation of the second-order
cumulant 〈〈T HI (τ + T )HI (τ )〉〉 in the interaction picture,
where the average is taken over the higher bands. The full
interaction Hamiltonian ĤI = ∑′

ν,µ,�,σ Ĥνµ�σ is then reduced
according to the relevant contributions of the cumulant.
Finally, a reduction of the effective bosonic scattering matrix
[Eq. (A5)] gives the full effective single-band Bose-Fermi-
Hubbard model.

When calculating the cumulant 〈〈T HI (τ + T )HI (τ )〉〉 in
Eq. (A5), the interaction Hamiltonian of the full multiband
Bose-Fermi-Hubbard model can be reduced considerably.
Keeping only terms that lead to nonzero contributions in lowest
order, it is easy to see that only those terms in ĤI matter, where
particles are transferred to higher bands by ĤI (τ ) and down
again by ĤI (τ + T ). In the following we restrict ourselves
to precisely those contributions and furthermore treat only
local contributions since these are dominant. Three relevant
processes are found. (i) The contributions from single-particle
transitions to a certain band ν, {1,1,1,1} ↔ {ν,1,1,1}, can
be understood as density-mediated band transitions, where
the matrix elements Uν111, Vν111, and V1ν11 are only nonzero
for odd bands ν [24]. Note that from now on, the upper
site indices are omitted if they are all the same. (ii) In the
situation with double-particle transitions to the same band ν,
{1,1,1,1} ↔ {ν,ν,1,1}, two particles undergo a transition to
the same band and all bands are incorporated. The matrix
elements are Uνν11 and Vνν11. (iii) In the combined process
of double-particle transitions to different bands ν and µ,
{1,1,1,1} ↔ {ν,µ,1,1}, the two different bands both have to
be either even or odd with matrix elements Uνµ11 and Vνµ11.

The remaining important contributions to the full multiband
BFHM result from the kinetic energy of the particles. By
restricting the contributions to the usual nearest-neighbor
hoppings within a given Bloch band (ν = µ and |j1 − j2| = 1)
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FIG. 1. (Color online) Matrix elements for the coupling of the
higher Bloch bands to the first band via the generalized interaction
in Eq. (9). Bosonic contributions from Eq. (8) are equivalent. Bosons
are shown as orange circles and fermions in black. Vν1ν1 describes the
transition of a boson and a fermion from the first (higher) to the higher
(first) band; Vµ1ν1 gives two particles (boson and fermion), which
perform a transition to bands ν and µ. Vµ111 describes a fermion-
mediated single-particle transition of a boson, where V11µ1 is a boson-
mediated transition of a fermion.

and the energy of the particles within a band (ν = µ and
j1 = j2), these are (iv) the band energies �b

ν and �
f
ν and (v)

the intraband nearest-neighbor hopping for bosons Jν and,
correspondingly, for fermions J̃ν . Hopping between sites with
|j1 − j2| �= 1 is omitted since it is unimportant. In Appendix
B the different contributions to the Hamiltonian as well as
the hoppings and band energies are defined in detail. Figure 1
gives a sketch of the different contributions taken into account.
Only processes involving fermions are shown.

From the effective bosonic scattering matrix in Eq. (A5), the
effective single-band BFHM is derived by applying a Markov
approximation [25]. This amounts to replacing first-band
operators at time τ + T by the corresponding operators at
time τ , which is valid since the time scale of the higher-band
dynamics is much shorter than in the first band because of the
larger hopping amplitude [26]. The resulting Hamiltonian is
lengthy and is given in Appendix C.

The effective Hamiltonian [Eq. (C1)] contains nonlocal
interaction and long-range tunneling terms. These result from
virtual transitions into higher bands and subsequent tunneling
processes in these bands. As these terms rapidly decrease
with increasing distance |d| between the involved lattice sites,
it is sufficient to take into account only the leading-order
contributions, i.e., only local interaction terms (|d| = 0) and
only nearest-neighbor hopping (|d| = ±1). This leads to the
following extensions compared to the standard single-band
BFHM:

Ĥ eff =
∑

j

(
U3

6
n̂j(n̂j − 1)(n̂j − 2) + V3

2
m̂jn̂j(n̂j − 1)

+U2

2
n̂j(n̂j − 1) + V2

2
n̂jm̂j

)
+

∑
j

�b
1n̂j +

∑
j

�b
1m̂j

−
∑
〈ij〉

b̂†i J [n̂i,n̂j,m̂i,m̂j] b̂j −
∑
〈ij〉

f̂ †
i J̃ [n̂i,n̂j] f̂j

+
∑
〈ij〉

[
J (2)(b̂†i )2b̂2

j + J̃ (2) b̂†i f̂
†
i f̂jb̂j

]
. (17)

Compared to the standard BHM, several further terms arise,
for instance, the correlated two-particle tunneling terms J (2)

and J̃ (2). Most prominent is the appearance of the three-body
interactions U3 and V3. The bosonic interaction U3 has recently
been measured by means of quantum phase diffusion [8]. It
should be noted that in the experiments in Ref. [8] higher-order
nonlinear interactions also were detected. However, since our
approach is only second order in the interaction-induced intra-
band coupling, these terms cannot be reproduced. In addition
to the terms beyond the standard BHM, the higher bands lead to
a renormalization of the usual single-band BFHM parameters.
Whereas the local two-body interaction amplitudes U2 and V2

depend only on the band structure, the hopping amplitudes
are altered, leading to density-mediated hopping processes.
For the bosonic amplitudes, the hopping now is of the
form

J [n̂i,n̂j,m̂i,m̂j] = J − J b
nl(n̂j + n̂i) − J

f

nl

2
(m̂j + m̂i) + αn̂in̂j

+βm̂in̂j + γ n̂im̂j + δm̂im̂j (18)

and the density dependence is directly seen. For all parameters
occurring in Eq. (17), full expressions can be found in
Appendix D.

V. INFLUENCE OF FERMIONS ON THE BOSONIC
MI-SF TRANSITION

In order to discuss the phase transition of the bosonic
subsystem, we make further approximations. Coming from the
Mott-insulator side of the phase transition, the local number of
bosons is approximately given by the integer average filling,
i.e., 〈n̂j〉 ≈ n. For the fermionic species, we also replace the
number operator by the average fermion number m̂j → m = 1,
assuming a homogeneous filling of fermions in the lattice.
If we have an experimental realization with cold atoms in
mind, this is a valid assumption in the center of the harmonic
trap at least for attractive interspecies interactions. It should
also be valid, however, for slight interspecies repulsion. This
assumption is also supported by the results of Ref. [16],
where the actual fermionic density did not influence the
transition from a Mott insulator to a superfluid (for medium
and large fillings). It also agrees with the result in Ref. [17],
which is based on this assumption and shows good agreement
with the experimental results. All further contributions to the
Hamiltonian, such as the bosonic three-particle interaction
and two-particle hoppings, are neglected in the following.
With these approximations, the renormalized Bose-Hubbard
Hamiltonian for the nth Mott lobe with mean fermionic filling
m can be written as

Ĥ eff = −J [n,m]
∑
〈ij〉

b̂†i b̂j + U [m]

2

∑
j

n̂j(n̂j − 1), (19)
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with

J [n,m] = J − 2nJ b
nl − mJ

f

nl

−
∑
ν �=1

I ê
b,ν

(
Uν111 n + Vν111

m

2

)2
, (20)

U [m] = U2 + mV3. (21)

The final form of the bosonic Hamiltonian will now be used
to discuss the influence of the boson-fermion interaction on
the MI-SF transition. Following the experimental procedure
presented in Ref. [16], we consider the shift of the bosonic
transition as a function of the boson-fermion interaction
determined by the scattering length aBF , with special emphasis
on the repulsive interaction, where no theoretical prediction
exists so far.

To determine the transition point, we calculate the bosonic
hopping [Eq. (20)] and interaction amplitude [Eq. (21)] using
numerically determined Wannier functions. Knowledge of the
critical ratio U/J of the MI-SF transition from analytic or
numerical results [27–29] allows for the precise localization
of the transition point [30]. This method is displayed in Fig. 2,
where the ratio of the effective interaction strength U [1] to
the effective tunneling rate J [1,1] as per Eqs. (20) and (21)
is plotted as a function of the normalized lattice depth ηb,
which describes the amplitude of the periodic lattice potential
of the bosons V b

lat in units of the recoil energy of the bosons
Eb

rec = h̄2k2/2mb. As indicated, unity fermion filling m = 1 is
assumed and the bosonic Mott lobe with n = 1 is considered.
The horizontal dotted line gives the critical value for the MI-SF
transition [27] and the crossing of this line with the different
curves, which illustrate the relative contribution of the various
correction terms, determines the potential depth at which the

potential depth η
B
 (

Rec
)

ra
tio

 U
[1

]/J
[1

,1
]
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10

20

30

40

50

60

70
80
90

100
nonlinear bosonic
nl bosonic + bands
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harmonic approximation

MI to SF transition
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FIG. 2. (Color online) Ratio of effective interaction U to effective
tunneling rate J for unity fermion filling m = 1 and Mott lobe with
n = 1 as a function of normalized lattice depth ηb for the bosons
and for the attractive boson-fermion interaction with a scattering
length abf = −400a0. The horizontal dotted line gives the critical
value for the MI-SF transition point in the Bose-Hubbard model. The
harmonic-oscillator approximation is shown together with different
levels of corrections, as described in the main text, based on exact
Wannier functions. A perfect match is assumed between fermionic
and bosonic Wannier functions, ηF ≡ ηB .

phase transition occurs. The different levels of approximation
shown in Fig. 2 are (i) harmonic oscillator, which uses
the plain BHM and the harmonic-oscillator approximation;
(ii) pure bosonic, which uses the plain BHM and proper
Wannier functions; (iii) nonlinear bosonic, which uses the
BHM extended by the nonlinear (bosonic) hopping correction;
(iv) nonlinear bosonic with higher bands, which includes all
bands with να � 25 and gives the reference point for the shift
of the transition; (v) and nonlinear bosonic and fermionic
with higher bands, which includes fermions, the nonlinear
hopping correction, and higher bands (να � 25). A substantial
shift of the transition point to lower potential depth is easily
recognizable, in qualitative agreement with the experiment. It
is also apparent that using harmonic-oscillator approximations
leads to a large error of the predicted transition point. This
shows that the use of the correct Wannier functions is crucial
for obtaining reliable predictions.

Figure 3 shows the shift of the MI-SF transition point
for the first four lobes as a function of the boson-fermion
scattering length abf . The solid lines include all corrections
described earlier, where the amount of the shift is measured
relative to the nonlinear bosonic case including higher bands,
i.e., relative to the real bosonic transition point. Thus the
figure corresponds to the shift of the transition point when
fermions with unity filling are added to the system. For
each Mott lobe three curves are shown corresponding to
different ratios of ηf /ηb, which illustrates the effect of
different masses and/or different polarizabilities of the bosonic
and fermionic species as discussed in Appendix E. The
dash-dotted curves give the contributions of the (first-band)
nonlinear hopping corrections only (bosons and fermions). It
is clear that for increasingly attractive interactions between
the species there is an increasing shift of the transition
point toward smaller potential depth, corresponding to a
reduction of bosonic superfluidity in the presence of fermions.
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FIG. 3. (Color online) Shift of the bosonic MI-SF transition as a
function of the boson-fermion scattering length abf for different Mott
lobes (solid lines, n = 1, . . . ,4, from bottom to top) in one dimension.
The gray-shaded region depicts the influence of a mismatch of the
bosonic and fermionic lattice depths. The dash-dotted lines give the
shifts of the transition solely from the nonlinear tunneling corrections.
Dashed horizontal lines give the transition points for the pure bosonic
system.
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Interestingly, it is clear that for repulsive interspecies in-
teractions, virtual transitions to higher Bloch bands tend
to counteract the effect of the fermion-induced nonlinear
tunneling. For larger values of n there is again a shift
of the MI-SF transition point toward smaller lattice depth,
i.e., again a reduction of bosonic superfluidity. The latter
effect has been observed in the experiments [16], but is
not yet fully understood. In the calculations, the bands are
summed up to a maximal multi-index νmax = {25,25,25},
including altogether 15 625 bands. For this number of bands, a
satisfactory convergence of the effective amplitudes U and
J is found. Overall, our second-order approach including
the nonlinear corrections provides an intuitive explanation
for the behavior of the system in the experiment. This
especially holds for the repulsive case, where the agree-
ment with the experimental results is on a quantitative
level.

VI. CONCLUSION

In the present paper we studied the influence of nonlinear
tunneling processes and higher Bloch bands on the dynamics
of a mixture of bosons and fermions in a deep optical lattice in
a full three-dimensional setup. By taking into account virtual
interband transitions in lowest nonvanishing order and contri-
butions of the originally continuous interaction to tunneling
processes we derived an effective lowest-band Hamiltonian,
thereby extending the standard Bose-Fermi-Hubbard model.
This Hamiltonian contains interaction-mediated nonlinear
corrections to the tunneling rates, renomalized two-body
interactions, and effective three-body interaction terms. We
showed that an accurate determination of the effective
model parameter requires the use of the correct Wannier
functions of the corresponding single-particle model. As
differences in the tails of the wave functions are essential,
the use of approximate harmonic-oscillator wave functions
can lead to large errors. The effective model allows for
a study of the effect of admixing spin-polarized fermionic
atoms to the bosonic superfluid–Mott-insulator transition
when changing the boson-fermion interaction strength. Our
model qualitatively recovers all features observed in the
experiment. In particular we found that boson superfluidity
is reduced for both attractive and repulsive interspecies
interactions. The latter has not yet been reproduced with
other methods, such as the self-consistent potential ap-
proach.

It should be noted that our model does not take into
account heating effects and effects such as phase separa-
tion due to the presence of an inhomogeneous trapping
potential, which have recently been shown to significantly
affect the MI-SF transition point already in the lowest
band [31,32]. We thus expect that a complete picture of
the experimental observations will require proper inclusion
of higher-band effects and nonlinear tunneling as derived
in the present paper, as well as effects from heating and
a trapping potential. Finally, it should be mentioned that
our approach is limited to the second order in intraband
processes. In higher-order perturbation theory effective four-
body, five-body, etc., interactions will arise, which, how-
ever, play a progressively less important role. Nevertheless,

we expect that the higher orders should substantially improve
the results, especially for repulsive interactions.
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APPENDIX A: ADIABATIC ELIMINATION SCHEME

As long as the interaction energies U and V and the
temperature are small compared to the band gap between
the lowest and first excited Bloch band, the population of
higher bands can be neglected. However, as noted before,
there are virtual transitions to higher bands that need to be
taken into account. In the following we employ an adiabatic
elimination scheme of higher Bloch bands starting from the
general multiband Hamiltonian [Eq. (10)]. This scheme, which
is also used in Ref. [33] for the Bose-Fermi-Hubbard model
in the ultrafast-fermion limit, is equivalent to degenerate
perturbation theory [27,34] and allows for a proper description
of the reduced system. For this, the Hamiltonian [Eq. (10)] is
split up into a free and an interaction part Ĥ = Ĥfree + ĤI ,
with

Ĥfree = Ĥ1 +
∑
ν �=1

Ĥ 0
ν , (A1)

ĤI =
∑′

ν,µ,�,σ

Ĥν,µ,�,σ . (A2)

Upon transformation to the interaction picture, the dynamics of
the free part is incorporated by the time-dependent interaction
Hamiltonian HI (τ ) = e−[(i/h̄)Hfreeτ ]HI e[(i/h̄)Hfreeτ ]. Adiabatic
elimination is carried out for the time-evolution operator
(scattering matrix) of the full system given by

S = T exp

(
− i

h̄

∫ ∞

−∞
dτ ĤI (τ )

)
. (A3)

We now trace out the higher-band degrees of freedom,
assuming empty higher bands. By using Kubo’s cumulant
expansion [35]

〈exp{sX}〉X = exp

( ∞∑
m=1

sm

m!
〈〈Xm〉〉

)
(A4)

up to second order in the interband coupling, the effective
scattering matrix for the lowest band reads

Seff = T exp

[
+ 1

2

(
− i

h̄

)2 ∫ ∞

−∞
dτ

∫ ∞

−∞
dT

×〈〈T HI (τ + T )HI (τ )〉〉
]
. (A5)

The first order does not lead to any contributions because
of the vacuum in the higher bands and due to the nature
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of the interband couplings. Obviously, the effective bosonic
Hamiltonian is connected to the second-order cumulants of
operators in higher Bloch bands, 〈〈ÂB̂〉〉 = 〈ÂB̂〉 − 〈Â〉〈B̂〉
[35].

APPENDIX B: RELEVANT BAND-COUPLING PROCESSES

As discussed in Sec. IV, the different terms contributing to
the Hamiltonian are given by single-particle transitions to a
certain band ν,

1

2

∑
j

(
Uν111b̂

†
1b̂1b̂

†
ν b̂1 + U1ν11b̂

†
1b̂1b̂

†
ν b̂1 + U11ν1b̂

†
1b̂ν b̂

†
1b̂1

+U111ν b̂
†
1b̂ν b̂

†
1b̂1 + Vν111b̂

†
ν b̂1f̂

†
1 f̂1 + V1ν11b̂

†
1b̂ν f̂

†
1 f̂1

+V11ν1b̂
†
1b̂1f̂

†
ν f̂1 + V111ν b̂

†
1b̂1f̂

†
1 f̂ν

)
; (B1)

double-particle transitions to the same band ν,

1

2

∑
j

(
Uνν11b̂

†
ν b̂

†
ν b̂1b̂1 + U11νν b̂

†
1b̂

†
1b̂ν b̂ν + Vν1ν1b̂

†
ν b̂1f̂

†
ν f̂1

+V1ν1ν b̂
†
1b̂ν f̂

†
1 f̂ν

)
; (B2)

and double-particle transitions to different bands ν and µ,

1

2

∑
j

(
Uνµ11b̂

†
ν b̂

†
µb̂1b̂1 + U11νµb̂

†
1b̂

†
1b̂ν b̂µ + Vν1µ1b̂

†
ν b̂1f̂

†
µf̂1

+V1ν1µb̂
†
1b̂ν f̂

†
1 f̂µ

)
. (B3)

Only local contributions are taken into account and thus the
spatial index j is omitted for the moment. The intraband
contributions are defined as the band energy

�x
ν =

∫
d3r w̄x

ν (r)

(
− h̄2

2mx

� + V x(r)

)
wx

ν (r) (B4)

and the intraband nearest-neighbor hopping for bosons,

Jν =
∫

d3r w̄b
ν (r − ê)

(
− h̄2

2mb

� + V b(r)

)
wb

ν (r) (B5)

and, correspondingly, for fermions J̃ν .

APPENDIX C: FULL EFFECTIVE FIRST-BAND BFHM

Under the assumptions made in the main text (i.e., only
local contributions, nearest-neighbor hopping, etc.), the final
form of the effective Hamiltonian is found from Eqs. (A5)
together with the interband couplings from Eqs. (B1)–(B3) in
the Markov approximation. This yields

Ĥ eff
1 = Ĥ1 +

∑
ν �=1

∑
jd

(
(Vν1ν1)2Id

bf,νν

4
b̂
†
j+df̂

†
j+df̂jb̂j + (Uν111)2Id

b,ν b̂
†
j+dn̂j+d n̂jb̂j + Uν111Vν111Id

b,ν

2
m̂j+db̂

†
j+dn̂jb̂j

+ Vν111Uν111Id
b,ν

2
b̂
†
j+dn̂j+dm̂jb̂j + (Vν111)2Id

b,ν

4
m̂j+db̂

†
j+dm̂jb̂j + (V11ν1)2Id

f,ν

4
n̂j+df̂

†
j+dn̂jf̂j

)
+

∑
ν,µ �=1

∑
jd

(
(Uνµ11)2

4
Id

bb,νµ(b̂†j+d)2b̂2
j + (Vν1µ1)2

4
Id

bf,νµb̂
†
j+df̂

†
j+db̂jf̂j

)
. (C1)

In the Hamiltonian, the time integrals over the bosonic and
fermionic correlators are defined as

Id
b,ν = − i

h̄

∫ ∞

0
dT 〈b̂ν,j+d(τ + T )b̂†ν,j(τ )〉, (C2)

Id
bf,νµ = − i

h̄

∫ ∞

0
dT 〈b̂ν,j+d(τ + T )b̂†ν,j(τ )〉

× 〈f̂µ,j+d(τ + T )f̂ †
µ,j(τ )〉, (C3)

and, correspondingly, Id
f,ν and Id

bb,νµ. The two-point correla-
tion functions of bosons and fermions in the νth band read

〈b̂ν,j+d(τ + T )b̂†ν,j(τ )〉ν = 1

L3

∑
k

e−2πi(k·d/L3)e(i/h̄)T ε
b,ν
k ,

(C4)

〈f̂ν,j+d(τ + T )f̂ †
ν,j(τ )〉ν = 1

L3

∑
k

e−2πi(k·d/L3)e(i/h̄)T ε
f,ν
k .

(C5)

Carrying out the time integration in the thermodynamic
limit, which is obtained for L → ∞ by setting ξ = k

L
and

changing 1
L3

∑
k to

∫∫∫
d3ξ , yields

Id
x,ν = 1

(2π )3

∫∫∫
d3ξ

e−iξ ·d

εx,ν(ξ )
, (C6)

Id
bx,νµ = 1 + δνµδbx

(2π )6

∫
· · ·

∫
d3ξ d3ξ ′ e−iξ ·de−iξ ′ ·d

εb,ν(ξ ) + εx,µ(ξ ′)
.

(C7)

Here

εb,ν(ξ ) =
∑

α=x,y,z

2Jνα
cos(ξα) + �b

να
, (C8)

εf,ν(ξ ) =
∑

α=x,y,z

2J̃να
cos(ξα) + �f

να
(C9)
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is the energy of a boson and a fermion, respectively, in the
higher band and x distinguishes between bosons (x = b) and
fermions (x = f ).

APPENDIX D: DEFINITION OF CONSTANTS IN THE
HAMILTONIAN [EQ. (17)]

As used in the Hamiltonian of Eq. (17), the full expressions
of the different parameters are the density-mediated fermionic
or bosonic hopping,

J [n̂j,n̂j+ê,m̂j,m̂j+ê]

= J − J b
nl(n̂j+ê + n̂j) − J

f

nl

2
(m̂j+ê + m̂j)

−
∑
ν �=1

I ê
b,ν

{
(Uν111)2 n̂j+ên̂j + Uν111Vν111

2
m̂j+ên̂j

+ Vν111Uν111

2
n̂j+êm̂j + (Vν111)2

4
m̂j+êm̂j

}
, (D1)

J̃ [n̂j,n̂j + ê] = J̃ − J̃nl

2
(n̂j + ê + n̂j)−

∑
ν �=1

(V11ν1)2 I ê
f,ν

4
n̂j+ênj;

(D2)

the pair tunneling amplitude,

J (2) = U
j+ê,j+ê,j,j
1111

2
+

∑
ν �=1

(Uνν11)2I ê
bb,νν

2

+
∑

ν,µ �= 1
ν �= µ

(Uνµ11)2I ê
bb,νµ

4
, (D3)

J̃ (2) = V
j+ê,j,j+ê,j

1111

2
+

∑
ν �=1

(Vν1ν1)2I ê
bf,νν

4

+
∑

ν,µ �= 1
ν �= µ

(Vν1µ1)2

4
I ê

bf,νµ; (D4)

the renormalized two-particle interactions,

U2 = U +
∑
ν �=1

(Uν111)2I0
b,ν +

∑
ν,µ �=1

1

4
(Uνµ11)2I0

bb,νµ,

(D5)

V2 = V +
∑
ν �=1

(Vν1ν1)2I0
bf,νν

2

+
∑
ν �=1

(
(Vν111)2I0

b,ν

2
+ (V11ν1)2I0

f,ν

2

)

+
∑

ν,µ �= 1
ν �= µ

(Vν1µ1)2

2
I0

bf,νµ; (D6)

and the three-body interactions,

U3 = 6
∑
ν �=1

(Uν111)2I0
b,ν, (D7)

V3 =
∑
ν �=1

(
Uν111Vν111I0

b,ν + (V11ν1)2I0
f,ν

4

)
. (D8)

APPENDIX E: LATTICE EFFECTS

The lattice potentials for bosons and fermions are both
created by the same laser field and the only externally
controllable parameter is the intensity of this lattice laser. In
order to see how the parameters of the effective lattice model,
such as tunneling rates and interaction constants, depend on
this laser intensity one needs to take into account that there
is always a fixed ratio f̃ between the bosonic and fermonic
potential depths for given atomic species and transitions. To
determine f̃ we note that the optical lattice is generated by
an off-resonant standing laser field. The potential itself results
from the ac Stark shift. As shown in Ref. [36], it is given by

Vpot(r) = 3πc2

2

(
D1

ω3
0,D1

�D1

+ 2D2

ω3
0,D2

�D2

)
I (r) (E1)

in the rotating-wave approximation for a typical alkali-metal
D-line doublet, where each line contributes independently if
the laser is sufficiently far detuned from the atomic transitions.
The important parameters are the decay rates D1,2 of the
excited states; the detunings �D1,2 = ωlaser − ω0,D1,2 of the
laser frequency ωlaser from the atomic transition frequencies,
ω0,D1,2 ; and the laser intensity I (r) = I0 sin2(k · r).

Conveniently, all energies in the system are normalized to
the recoil energy of the bosonic species given by Eb

rec = h̄2k2

2mb
.

The wave number k depends on the chosen optical lattice.
The (normalized) lattice potential for the bosons thus reads
V b

lat(r) = ηb sin2(k · r). It is useful to rewrite the optical lattice
potential for the fermionic atoms with respect to the bosonic
optical lattice as V

f

lat(r) = ηf sin2(k · r), where ηf = f̃ ηb.
From Eq. (E1) we find

f̃ =


f

D1(
ω

f

0,D1

)3
�

f

D1

+ 2
f

D2(
ω

f

0,D2

)3
�

f

D2

b
D1(

ωb
0,D1

)3
�b

D1

+ 2b
D2(

ωb
0,D2

)3
�b

D2

. (E2)

At this point, we specify the experimental system. In the
preceding discussion we analyzed the experiment reported
in Ref. [16] and use the parameters given there. A mixture
of bosonic 87Rb and fermionic 40K is cooled and put into an
optical lattice with σL = 755 nm. For rubidium and potassium,
the transition wavelengths and decay rates are given by

σ K
D1

= 766.5 nm, σ Rb
D1

= 795.0 nm;

K
D1

= 38.7 × 106 Hz, Rb
D1

= 36.1 × 106 Hz;

σ K
D2

= 769.9 nm, σ Rb
D2

= 780.2 nm;

K
D2

= 38.2 × 106 Hz, Rb
D2

= 38.1 × 106 Hz (E3)
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By using these values, f̃ in Eq. (E2) evaluates to f̃ = 2.040 43,
which means that the fermionic lattice potential, in terms of
the bosonic recoil energy, is twice as deep as the bosonic
one. However, for the calculation of the Wannier functions of
bosons and fermions one has to take into account also the dif-
ferent masses of the particles. By expressing the Schrödinger
equation for the single-particle fermionic wave function �f (r)
in terms of the bosonic quantities ηb and mb, one finds(

− h̄2

2mb

� + mf

mb

f̃ ηb sin2(k · r)

)
�f (r) = mf

mb

E�f (r).

(E4)

One recognizes that the difference between the fermionic and
bosonic Wannier functions is determined only by the factor

mf

mb
f̃ . Since for the experiment in Ref. [16]

E
f
rec

Eb
rec

= mb

mf

= 2.175, (E5)

the factor f̃ is almost offset, mf

mb
f̃ = 0.93. Thus the bosonic

and fermionic Wannier functions are, to a good approximation,
identical to a maximal overlap. Nevertheless, Fig. 3 also
display results including a mismatch of the bosonic and
fermionic Wannier functions, depicted by the gray-shaded
regions. The upper (lower) boundary on the attractive side and
the lower (upper) boundary on the repulsive side correspond
to the results for a mismatch of mf

mb
f̃ = 0.7 (mf

mb
f̃ = 1.3),

indicating the importance of a good control of the mismatch
in the precise determination of the transition shift.
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