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Strongly interacting photons in hollow-core waveguides
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Hollow-core photonic-crystal waveguides filled with cold atoms can support giant optical nonlinearities
through nondispersive propagation of light tightly confined in the transverse direction. Here we explore
electromagnetically induced transparency is such structures, considering a pair of counterpropagating weak
quantum fields in the medium of coherently driven atoms in the ladder configuration. Strong dipole-dipole
interactions between optically excited, polarized Rydberg states of the atoms translate into a large dispersive
interaction between the two fields. This can be used to attain a spatially homogeneous conditional phase shift
of π for two single-photon pulses, realizing a deterministic photonic phase gate, or to implement a quantum
nondemolition measurement of the photon number in the signal pulse by a coherent probe, thereby achieving a
heralded source of single- or few-photon pulses.
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I. INTRODUCTION

Photons are ideal carriers of information in terms of
transfer rates and distances. Yet, scalable and efficient
quantum-information processing [1] with photons would
require implementing deterministic quantum logic between
single-photon qubits [2], which is hindered by the weakness of
optical nonlinearities in conventional media. Highly enhanced
nonlinear interactions in atomic vapors [3] in the regime of
electromagnetically induced transparency (EIT) [4–6] have
emerged as a promising route to circumvent these difficulties
and to achieve large conditional phase shifts φ for pairs
of slowly propagating photons. Attaining the phase shift of
φ = π would amount to realizing the universal CPHASE gate
for photonic qubits [1].

Among the many relevant proposals [7–13], one of the most
promising schemes is based on employing EIT in a ladder
configuration [11], wherein the photon-photon interaction is
mediated by strong dipole-dipole interactions (DDIs) between
optically excited Rydberg states of the atoms [14–16]. An
important advantage of this scheme is that the long-range
nature of the DDI relaxes the need for tight focusing of the
quantum fields to the atomic absorption cross section ς ∼ λ2,
which is close to the diffraction limit.

In Ref. [11] we presented an effective one-dimensional (1D)
treatment of the dynamics of two slowly counterpropagating,
weakly focused single-photon pulses. We did so by considering
the electric fields only on the propagation axis, and showed
that, for a pair of photons passing through each other, the
accumulated conditional phase shift φ can be both large
and uniform in the longitudinal direction. In free space,
however, the 1D treatment of interacting quantum fields is
incomplete, because it does not capture the diffraction effects
and the fact that, in the transverse direction, the resulting
phase shift is inhomogeneous due to the relative coordinate
dependence of the DDI potential [17]. To remedy these
problems and achieve nondiffracting, uniform transverse phase
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fronts, here we propose to impose onto the quantum fields only
a single transverse mode by confining them into a hollow-core
photonic-crystal waveguide [18,19] filled with an ensemble of
cold alkali atoms [20]. In what follows, we present a rigorous
derivation of 1D propagation equations for two interacting
quantum fields. We extend our earlier scheme by considering
the atomic level configuration involving different Rydberg
states. We then discuss the conditional phase shift for two
single-photon pulses. Furthermore, we analyze a quantum
nondemolition measurement (QND) of the photon number
in the signal pulse inducing a phase shift of the coherent
probe pulse. This can serve as a heralded source of single-
or few-photon pulses.

II. EQUATIONS OF MOTION

We begin by assuming that the transverse intensity profile
of the counterpropagating fields Ê1 and Ê2 in the cylindrically
symmetric waveguide is described by a Gaussian e−r2

⊥/w2
f

of width wf , where r⊥ = |r⊥| is the distance from the
propagation z axis. The corresponding electric field can
then be expressed as Êl(r) = εle

−r2
⊥/2w2

f Êl(z) (l = 1,2), where
εl = √

h̄ωl/2ε0V is the field per photon of frequency ωl

within the quantization volume V = πw2
f L, with L the

waveguide length, while Êl(z) = ∑
k ak

l e
ikz is the traveling-

wave field operator, given by a superposition of bosonic
operators ak

l for the longitudinal field modes k, yielding
the commutation relations [Êl(z),Ê †

l′(z
′)] = Lδll′δ(z − z′). An

ensemble of N cold atoms is trapped in the hollow core of
the waveguide [20]; the corresponding atomic density is then
ρ(r) = (πw2

a)−1e−r2
⊥/w2

a (N/L), where wa (�wf ) is the width
of the transverse Gaussian distribution. The level configuration
of the atoms, all of which are initially prepared in the ground
state |g〉, is schematically shown in Fig. 1(a). The quantum
fields Ê1,2 resonantly interact with the atoms on the transitions
|g〉 → |e1,2〉, respectively. The intermediate states |e1,2〉 are
resonantly coupled by two strong (classical) driving fields
with Rabi frequencies 
1,2 to the Rydberg states |d1,2〉. In
a static electric field Estez, these Rydberg states possess
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FIG. 1. (Color online) (a) Level scheme of atoms resonantly
interacting with quantum fields Ê1,2 and classical driving fields

1,2 on the corresponding transitions. Vdd denotes the DDI between
atoms in Rydberg states |d〉. (b) The quantum fields transversely
confined in a hollow-core waveguide of length L filled with the atoms,
counterpropagate as dark-state polaritons �̂1,2 having slow group
velocities v1,2 and interacting via long-range potential �12(z1 − z2)
mediated by Vdd. (c) The potential �ll′ (ζ ) of Eq. (5), as a function of
dimensionless distance ζ , in units of 2Cll′/h̄(

√
2w)3 Hz.

permanent dipole moments p = 3
2nqea0ez, where n and q are

the (effective) principal and parabolic quantum numbers, e is
the electron charge, and a0 is the Bohr radius [21]. A pair
of atoms at positions r and r′ excited to states |dl〉 and |dl′ 〉
interact with each other via a DDI potential Vdd resulting in an
energy shift

h̄�ll′ (r − r′) = Cll′
1 − 3 cos2 ϑ

|r − r′|3 , (1)

where ϑ is the angle between vectors ez and r′ − r, and
Cll′ = ℘dl

℘dl′ /(4πε0) is proportional to the product of atomic
dipole moments ℘dl

= 〈dl| p|dl〉. We assume that state mixing
within the same n manifold is suppressed by a proper choice
of parabolic q and magnetic m quantum numbers [21].

We use collective atomic transition operators σ̂µν(r) =
1/Nr

∑Nr
j=1 |µ〉jj 〈ν| averaged over the volume element �V

containing Nr = ρ(r) �V � 1 atoms around position r. In
the frame rotating with the frequencies of the optical fields,
the interaction Hamiltonian H = Vaf + Vdd contains the atom-
field and DDI terms

Vaf = −h̄

∫
d3r ρ(r)

∑
l=1,2

[
gle

−r2
⊥/2w2

f Êl(z)σ̂elg(r)

+
lσ̂dlel
(r)

] + H.c., (2a)

Vdd = h̄

∫
d3r ρ(r)

∫
d3r ′ρ(r′)

× 1

2

∑
l,l′=1,2

σ̂dldl
(r)�ll′ (r − r′)σ̂dl′dl′ (r

′), (2b)

where gl = (℘gel
/h̄)εl is the corresponding atom-field cou-

pling constant, with ℘gel
being the dipole matrix element on

the transition |g〉 → |el〉.
Using Hamiltonian H , we derive the Heisenberg-Langevin

equations for the atomic operators σ̂gel
(r), σ̂gdl

(r) and the
propagation equations for the slowly varying quantum fields
Êl(z). Solving for the atomic operators perturbatively in the
small parameters gl Êl/
l and in the adiabatic approximation
[4,6,11], and after substituting into the equations for the

fields, we obtain the following propagation equations for the
dark-state polaritons �̂l = √

c/vl Êl [4]:(
∂

∂t
± vl

∂

∂z

)
�̂l(z,t) = −i sin2 θlŜl(z,t)�̂l(z,t). (3)

The sign “+” or “−” corresponds to l = 1 or 2, respectively,
vl = c cos2 θl is the group velocity of the corresponding
field in the EIT medium, and the mixing angles θl are
defined through tan2 θl = (g2

l N/|
l |2)(w/wa)2, with w =
wawf (w2

a + w2
f )−1/2. Operators Ŝl(z,t) are responsible for the

self- and cross-phase modulation between the fields,

Ŝl(z,t) = 1

L

∫ L

0
dz′[�ll(z − z′) sin2 θl Îl(z

′,t)

+�ll′ (z − z′) sin2 θl′ Îl′(z
′,t)], (4)

where Îl ≡ �̂
†
l �̂l = (c/vl)Ê †

l Êl are the polariton intensity
(excitation number) operators in the EIT medium, which
correspond to the photon number operators outside the
medium (vl = c) [4], while the effective one-dimensional DDI
potentials �ll′ (z − z′) result from �ll′(r − r′) upon double
integration over the transverse coordinates,

�ll′ (z − z′) = 1

(πw2)2

∫
d2r⊥

∫
d2r ′

⊥e−(r2
⊥+r ′2

⊥ )/w2
�ll′ (r − r′)

= 2Cll′

h̄(
√

2w)3
[2|ζ | − √

π (1 + 2ζ 2)eζ 2
erfc(|ζ |)],

ζ ≡ (z − z′)/
√

2w. (5)

As seen in Fig. 1(c), �ll′(ζ ) is sharply peaked around ζ = 0
with the range (full width at half maximum) of δζ 
 0.65.

It follows from Eq. (3) that the intensity operators Îl are
constants of motion: Îl(z,t) = Îl(z ∓ vlt,0), the upper (lower)
sign corresponding to l = 1 (l = 2). The solution for the field
operators then reads

�̂l(z,t) = exp

[
− i sin2 θl

∫ t

0
dt ′Ŝl(z ∓ vl(t − t ′),t ′)

]

× �̂l(z ∓ vlt,0). (6)

The validity of this dissipation-free solution hinges on the
following assumptions: (i) The duration Tl of each pulse
exceeds the inverse of the corresponding EIT bandwidth δωl =
|
l|2/(γgel

√
κlL), where γgel

is the transversal relaxation
rate and κl 
 ςlρ̄ is the resonant absorption coefficient,
with ςl = 3λ2

l /(2π ) the absorption cross section on the
transition |g〉 → |el〉 and ρ̄ = N/[π (w2

a + w2
f )L] the effective

atomic density. With vl = 2|
l|2/(κlγgel
), this yields the

condition (κlL)−1/2 � Tlvl/L < 1 which requires a medium
with large optical depth κlL � 1 [5,6]. (ii) The DDI-induced
frequency shifts lie within the EIT bandwidths, sin2 θl〈Ŝl(z)〉 <

δωl,∀ z ∈ [0,L]. (iii) The propagation/interaction time of each
pulse tout = L/vl is limited by the relaxation rate γgdl

of the
σ̂gdl

coherence via toutγgdl
� 1.

In what follows, we employ Eq. (6) to demonstrate the
quantum phase gate between two single-photon pulses Ê1,2,
and to realize a quantum nondemolition measurement of
photon number in the signal pulse Ê2 by a coherent probe
pulse Ê1. For simplicity of notation, we set θ1,2 = θ , i.e.,
g2

1N/|
1|2 = g2
2N/|
2|2.
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III. PHOTONIC PHASE GATE

We are concerned with the evolution of input state
|�in〉 = |11〉|12〉 composed of two single-excitation wave
packets |1l〉 = [ 1

L

∫
dzfl(z)�̂†

l (z)]|0〉 whose spatial envelopes
inside the medium fl(z) = 〈0| �̂l(z,0)|1l〉 are normalized as
1
L

∫
dz|fl(z)|2 = 1. With the operator solution (6), for the

(equal-time) correlation amplitude or the “two-photon wave
function” F12(z1,z2,t) = 〈0| �̂1(z1,t)�̂2(z2,t)|�in〉 [2,7], we
obtain

F12(z1,z2,t) = f1(z1 − vt)f2(z2 + vt) exp[iφ12(z1,z2,t)],

(7)

φ12(z1,z2,t) = − sin4 θ

∫ t

0
dt ′�12(z1 − z2 − 2v(t − t ′)). (8)

Hence, the two polaritons counterpropagate in a shape-
preserving manner with group velocities ±v. Since Îl�̂l|1l〉 =
0, the self-interaction within each pulse is absent, while the
cross interaction between the pulses results in the phase shift
(8). Assume that at t = 0 the first pulse is centered at z1 = 0
and the second pulse at z2 = L, while after the interaction,
tout = L/v, the coordinates of the two pulses are z1 = L and
z2 = 0, respectively. The accumulated phase shift is then
φ12(L,0,L/v) = − sin4 θ/v

∫ L

0 dz′�12(2z′ − L). To evaluate
the integral, we replace the variable (2z′ − L)/

√
2w → ζ ′ and

extend the integration limits to L/(
√

2w) → ∞, obtaining

φ12 = C12 sin4 θ

h̄w2v
, (9)

which is spatially uniform and the state of the system at tout

is |�out〉 = eφ12 |�in〉. Since for input states |m1〉|n2〉 (m,n =
0,1) there is no phase shift when m + n < 2, the conditional
two-photon phase shift φ12 = π is equivalent to the CPHASE

gate |�out〉 = (−1)mn|m1〉|n2〉 [1].

IV. QND MEASUREMENT OF PHOTON NUMBER

We next consider the probe pulse in a multimode
coherent state |α1〉 ≡ �k|αk

1〉, which is an eigenstate of
the field operator �̂1(z) with eigenvalue α1(z) = ∑

k αk
1e

ikz,
that is, �̂1(z)|α1〉 = α1(z)|α1〉. The signal pulse can be
in any superposition or mixture of the n-photon number
states |n2〉 = 1√

n!
[ 1
L

∫
dzf2(z)�̂†

2(z)]n|0〉. Given an input state
|�in〉 = |α1〉|n2〉 and neglecting the self-interaction, for the
expectation value of the probe field we have

〈�̂1(z,t)〉 = α1(z − vt)

×〈n2| exp

[
−i

sin4 θ

L

∫ t

0
dt ′

∫ L

0
dz′

×�12(z − z′ − v(t − t ′))Î2(z′ + vt ′,0)

]
|n2〉.

(10)

As before, we assume that at t = 0 the probe and signal pulses
are centered, respectively, at z = 0 and z = L. The output

probe field at tout = L/v and z = L is then

〈�̂1(L,L/v)〉

= α1(0)〈n2| exp

[
−i

sin4 θ

L

∫ L/v

0
dt ′

∫ L

0
dz′

×�12(z′ − vt ′)Î2(z′ + vt ′,0)

]
|n2〉. (11)

Recall that the DDI potential �ll′(z) is sharply peaked
around z = 0 with the range δz � w � L [Fig. 1(c)], while∫ ∞
−∞ dz�ll′(z) = −2Cll′/(h̄w2). On the other hand, in the

EIT medium, 〈nl| Îl(z)|nl〉 = n|fl(z)|2 are smooth pulses
of length Tlv � L. To evaluate the integral in the expo-
nential of Eq. (11), we may therefore replace the DDI
potential as �12(z) → −2C12/(h̄w2) δ(z). We then obtain
〈�̂1(L,L/v)〉 = α1(0) exp(iφ12n2), with φ12 given by
Eq. (9). This indicates that at the output from the medium
[�̂1(L + 0) = Ê1(L + 0)], the coherent probe field has
acquired a phase proportional to the number of photons n2

in the signal field. This phase can be measured by, e.g., a
single-port homodyne detection using another coherent field
of the same amplitude |α1|. The average detector signal is then
s(n2) = 4|α1|2 sin2(φ12n2/2) with the corresponding uncer-
tainty δs(n2) = √

2s(n2). Our aim is to distinguish with high
probability the photon number states with n2 ∈ [0,nmax]. This
requires that φ12nmax � π , while the measurement uncertainty
constraint yields s(n2) − s(n2 − 1) > 1

2 [δs(n2) + δs(n2 − 1)].
Above we have neglected the self-interaction within

the probe pulse, which would otherwise dephase the
coherent state. We can estimate its effect as fol-
lows: − sin4 θ/L

∫ L/v

0 dt ′
∫ L

0 dz′�11(z′ − vt ′)|α1(z′ − vt ′)|2 

2C11 sin4 θ/(h̄w2v)|α1(0)|2, which should be small compared
to φ12. This leads to the condition 2C11|α1(0)|2 < C12. (Note
that, as long as we are concerned with determining the photon
number in the signal field, its self-interaction is immaterial.)
Thus, for the QND measurement of the signal photon number
by a coherent probe, the Rydberg states |d1,2〉 should be
chosen such that ℘d1 < ℘d2/(2|α1(0)|2), and therefore the
self-interaction of the probe, C11 ∝ ℘2

d1
, is small compared

to the cross interaction C12 ∝ ℘d1℘d2 . On the other hand, to
realize the CPHASE gate between two single-photon pulses,
φ12 = π , both states |d1,2〉 should have large and comparable
dipole moments ℘d1,2 so that C12 is large.

Of course, in all cases we need to satisfy condition (ii),
since otherwise the DDI frequency shifts beyond the EIT
transparency window would induce strong self- and/or cross
absorption of the fields [20]. We therefore require that

2Cll′ sin4 θ

h̄w2L
max〈Îl′(z)〉 < δωl (l,l′ = 1,2). (12)

In terms of the phase shift per photon φll′ , Eq. (9), and
assuming smooth nl-photon pulses of lengths Tlv � L, we then
have 2φll′ nl′ < Tl′δωl for cross interaction and 2φll(nl − 1) <

Tlδωl for self-interaction. In turn, the product of the pulse
duration and EIT bandwidth is restricted by the optical depth
as Tl′δωl � 1

2

√
κlL. We thus obtain that the maximal cross and

self phase shifts are limited by

φll′ nl′ , φll(nl − 1) <

√
κlL

4
. (13)
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Alternatively, the photon number in each pulse is limited by
nl <

√
κl′L/(4φll′ ),

√
κlL/(4φll) + 1.

V. EXPERIMENTAL CONSIDERATIONS

To relate the foregoing discussion to a realistic
experiment, we assume a hollow-core waveguide of length
L ∼ 1 cm with the lowest transverse mode of width wf 

2 µm [18–20]. The waveguide is filled with N 
 5 × 104 cold
Rb atoms tightly confined by a guided dipole trap to wa 
 2
µm, leading to the effective density ρ̄ 
 2 × 1011 cm−3.
For the two quantum fields tuned to the D1 and D2
transitions |g〉 → |e1,2〉 (λ1 = 795 nm, λ2 = 780 nm), the
corresponding optical depths are κ1L 
 600 and κ2L 
 580.
With γge1 
 1.8 × 107 s−1, γge2 
 1.9 × 107 s−1, and taking

1 
 7.35 × 106 rad/s, 
2 
 7.43 × 106 rad/s, the group
velocities are v1,2 = 100 m/s. The bandwidth of the pulses
T −1

l � v/L = 104 s−1 is smaller than the EIT bandwidth
δωl 
 1.2 × 105 rad/s. To realize the CPHASE gate, we choose
the Rydberg states |d1,2〉 with ℘d1 = ℘d2 = 315ea0 (quantum
numbers n = 15 and q = n − 1), leading to the conditional
phase shift φ12 = π . For the QND measurement of photon
number n2 � 2 in the signal field with a weak coherent probe

|α1|2 
 4, the corresponding dipole moments for the Rydberg
states are ℘d1 = 50ea0 and ℘d2 = 450ea0, leading to the cross
phase shift per photon of φ12 = 0.7. We have verified that
in both cases the DDI frequency shifts are within the EIT
window δωl [cf. Eq. (12)].

Hence, the present scheme enables a realization of deter-
ministic quantum gates with photonic qubits and is capable
of distinguishing with high probability the photon number
states via QND measurement, which can serve as a heralded
source of single- or few-photon pulses. In closing, we note
that all the necessary ingredients of our proposal, including
EIT via Rydberg states [15,16] and in hollow-core waveguides
[18–20], have already been demonstrated experimentally.
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