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Chiral quantum router with Rydberg atoms
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We exploit controlled breaking of time-reversal symmetry to realize coherent routing of quantum information
in spin networks. The key component of our scheme is a spin triangle whose chirality is determined by the
quantum state of a control qubit which thus defines the propagation direction, or a superposition thereof, of the
quantum information. We then consider a particular realization of a coherent router using Rydberg atoms. Our
results can facilitate scalable quantum information processing and communication in large arrays of Rydberg
atoms.
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I. INTRODUCTION

Routing quantum states in spin networks is an impor-
tant task for efficient quantum information processing and
transfer in large quantum processors with finite-range in-
teractions between the qubits. Photonic systems are most
suitable for transferring quantum states over long distances
and several routing schemes have been developed [1–6]. For
short-distance communication tasks, the seminal paper of
Bose [7] initiated many studies of coherent transfer of quan-
tum states in networks of coupled spins or qubits [8–13].
In such schemes, routing of quantum information [14–20]
usually involves static or dynamic control of couplings and/or
on-site energies of the qubits. Another possible way to steer
the excitation or state transfer is to exploit chiral dynam-
ics that has been associated with breaking the time-reversal
symmetry [21–23]. In qubit networks, the first proposal that
exploited the breaking of time-reversal symmetry to real-
ize transport in a preselected direction was put forward in
Ref. [24]. Subsequently, a classification of time-symmetric
or asymmetric networks was presented in Ref. [25]. The
breaking of time-reversal symmetry has also been employed
to achieve directional state transfer in closed ring geometries
[26], to transfer entanglement on a triangular chain [27], and
to simulate a continuous chiral quantum walk through Floquet
engineering [28]. Quantum walk searches with time-reversal
symmetry breaking have also been studied [29].

In most of the above schemes, the router is controlled by
a classical “switch” to direct the quantum information into
one of two (or more) possible output channels. But a genuine
quantum router (or a transistor) should be controlled by a
quantum switch (or a gate) to direct the quantum informa-
tion into an arbitrary superposition of propagation channels
[19,30,31]. Here, we propose such a genuine quantum router
in a spin or qubit network that can be realized with an exper-
imentally relevant system. The building block of our router
is a triangle of interacting spins, or qubits, where the chiral
dynamics originates from complex amplitudes of excitation
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hopping between the spins, controlled by the quantum state
of a control qubit. We note that the structural and spectral
properties of spin triangles with broken time-reversal sym-
metry have been studied from a graph theoretical perspective
[32] and the emergence of chiral dynamics of excitations in
such “flux” triangles has been experimentally demonstrated in
various setups including nuclear magnetic resonance (NMR)
systems [25], plasmonic nanorings [33], cold atoms [34], and
Rydberg atoms [35]. Inspired by the latter setup that demon-
strated state-dependent Peierls phases and chiral motion of
excitations, we consider an appropriately configured network
of Rydberg atoms and show that this platform can implement
a genuine quantum router realizing an arbitrary coherent su-
perposition of propagation paths for quantum information.

The paper is organized as follows: In Sec. II we introduce
a spin network containing a flux triangle and demonstrate
the dynamics of the quantum router. In Sec. III we describe
the envisioned implementation of the system with Rydberg
atoms and present the derivation of the effective Hamiltonian
verified by exact numerical simulations. Our conclusions are
summarized in Sec. IV. Details of calculations and additional
considerations for the system are deferred to the Appendixes.

II. ROUTER IN A SPIN NETWORK

Our quantum router consists of a triangle of spins attached
to a longer spin chain. We first outline the properties of the
spin triangle with complex hopping amplitudes and the con-
ditions to attain chiral dynamics of an excitation. We then
discuss how to smoothly launch and absorb a single-excitation
wave packet in a finite spin chain by controlling two spins con-
nected to the opposite ends of the chain. We finally combine
the flux triangle and the spin chain and demonstrate coherent
routing of excitation between one sender and two receiver
spins.

A. A flux triangle

The minimal configuration that can act as a quantum
state router corresponds to three coupled spins or qubits
[25]. Assuming a single excitation, the system is de-
scribed by the following Hamiltonian matrix in the basis
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FIG. 1. (a) Illustration of the spin triangle governed by Hamil-
tonian (1). (b) Dynamics of populations (excitation probabilities) of
each site of the triangle (time is in units of 1/J). The excitation is
initially localized on site 1 and the total phase is γtot = γ1 + γ2 +
γ3 = −π/2 (e.g., γ1,2,3 = −π/6), leading to the counterclockwise
circulation of the excitation; for γtot = π/2, the circulation direction
would be clockwise, with the red (site 2) and gray (site 3) curves
interchanged.

{|100〉 , |010〉 , |001〉} (h̄ = 1):

H3 =
⎛
⎝ 0 J1 J∗

3
J∗

1 0 J2

J3 J∗
2 0

⎞
⎠, (1)

where the coupling amplitudes Jj are complex, Jj = |Jj |e−iγ j ,
see Fig. 1(a). We may envisage that the phases γ j of the
coupling amplitudes stem from an effective magnetic field
threading the area of the triangle. A detailed analytic treatment
of the single-excitation eigenstates and dynamics of the flux
triangle can be found, e.g., in Ref. [26]. Under the conditions

|J1| = |J2| = |J3| = J, (2a)

γtot = γ1 + γ2 + γ3 = ±π/2, (2b)

the dynamics of the system corresponds to sequential lo-
calization of the excitation at successive sites, as illustrated
in Fig. 1(b). Only the total phase γtot determines the chiral
dynamics of the excitation, while the individual phases γ j

can be arbitrary, e.g., we could apply a unitary transforma-
tion to make all the phases equal to each other or absorb
the total phase into a single coupling element. The sign of
the total phase determines the chirality, with γtot = +π/2

corresponding to the clockwise and γtot = −π/2 to the coun-
terclockwise circulation of the excitation. Note that here the
switching between output channels is facilitated by the choice
of γtot, i.e., by a prescribed, classical degree of freedom.

B. Nondispersive wave packet in a spin chain

We now discuss how to transfer a quantum state via launch-
ing and absorbing a quasi-dispersionless wave packet in a
chain of N spins. To this end, we couple in a controllable way
a sender s and a receiver r spins to the two ends of the chain.
The Hamiltonian of the system is given by (h̄ = 1)

H = H0 + Hsr (t ), (3)

with

H0 =
N−1∑
j=1

J (σ̂+
j σ̂−

j+1 + H.c.) + 1

2

N∑
j=1

Bσ̂ z
j , (4a)

Hsr (t ) = [Js(t )σ̂+
1 σ̂−

s + Jr (t )σ̂+
N σ̂−

r + H.c.]

+ 1

2

(
Bsσ̂

z
s + Br σ̂

z
r

)
, (4b)

where σ̂
x,y,z
j are the Pauli spin operators, σ̂±

j = 1
2 (σ̂ x

j ± iσ̂ y
j )

are the raising and lowering operators, J is the uniform cou-
pling between the nearest-neighbor spins of the chain, and
B is the effective magnetic field, which is assumed uniform
and can be set to zero without loss of generality (meaning we
work in the frame rotating with frequency B). Hsr (t ) describes
the time-dependent couplings of the sender and receiver spins
Js,r (t ) to the first and last spins of the chain, and the effective
magnetic fields Bs,r for tuning their transition frequencies.

Initially, at t = 0, a qubit state is encoded in the sender
spin, |ψ〉 = c0 |↑〉s + c1 |↓〉s, while all the spins of the inter-
mediate chain are prepared in state |↓〉i, and our aim is to
retrieve the state from the receiver spin at time t = T . Since
the total spin �̂z = ∑N

j=1 σ̂ z
j commutes with the Hamiltonian

[H, �̂z] = 0, the complete Hilbert space of the system can be
decomposed into decoupled subspaces, each having a fixed
number of spin-up excitations. Following the common ap-
proach [7,8] for transferring a quantum state between two
spins s and r, we consider only the single-excitation subspace
and calculate the efficiency of the excitation transfer via

PT = | 〈r| e−iHT |s〉 |2, (5)

which gives the probability of an excitation initially localized
at the sender |s〉 ≡ |↑s,↓1, . . . ,↓N ,↓r〉 to be retrieved from
the receiver |r〉 ≡ |↓s,↓1, . . . ,↓N ,↑r〉 at time T . In order
to achieve coherent transfer of any superposition state—not
just the excitation—it is also important that the phase ζ =
arg( 〈r| e−iHT |s〉 ) acquired during the evolution be fixed and
known.

The single-excitation energy spectrum of the intermediate
chain with nearest-neighbor exchange [7–9] is

En = 2J cos

(
πn

N + 1

)
, n = 1, 2..., N. (6)

For a chain with longer-range exchange interactions that we
will encounter below, this spectrum is slightly modified but
can be treated similarly [see Appendix D and Eq. (D1) there].
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FIG. 2. (a) Schematics of the proposed setup for quantum router in a network of spins involving the flux triangle with γtot = −π/2 and
spin chain coupled to the sender and receiver spins. (b) Modulation time tm and the total transfer time T vs the length N of the spin chain
(including two sites of the flux triangle) enclosed by the red dashed box in (a). Inset illustrates the temporal profiles of the coupling strengths
Js (solid lines) and JrL ,rR (dashed lines) for three different N = 3, 31, 71. (c) Transfer probability PT at t = T for different lengths N of the
chain. Time is in units of 1/J and coupling strength Js,rL ,rR is in units of J .

To launch a quasi-dispersionless wave packet, the sender spin
should couple predominantly to the linear part of the spec-
trum, i.e., around En = 0, which is analogous to a requirement
of the classical wave theory that the second derivative of the
dispersion relation (group velocity dispersion) be zero for a
wave packet to maintain its shape during propagation. We
therefore tune Bs = 0 and adjust the coupling strength Js to
avoid leakage to eigenstates that do not reside near the linear
part of the spectrum. It has been shown [36,37] that, for a
static coupling between the sender and the chain, there is an
optimal coupling strength, Js = JN−1/6, that ensures that the
generated wave packet does not significantly broaden during
propagation through the chain.

Here, instead, we consider time-dependent coupling Js(t )
having a linear temporal profile,

Js(t ) =
{

J t
T 0 � t � tm

0 tm < t � T
, (7)

where tm is the duration of modulation. By adjusting tm, we
can “smoothly” couple the excitation to a few eigenstates in
the linear part of the spectrum, creating therefore a highly lo-
calized wave packet in momentum space (around |k| = π/2)
but broad (long) in real space (time). We then let the system
evolve for time T , while applying at time t ′

m = T − tm the
time-reversed modulation to the coupling of the receiver spin,

Jr (t ) =
{

0 0 � t < t ′
m

J (1 − t
T ) t ′

m � t � T
. (8)

The receiver spin thus fully absorbs the incoming wave
packet, provided it is also resonant with the linear part of the
spectrum, Br = 0.

As for the phase accumulated during the transfer, if we
start with an excitation localized at the sender site and let
the system evolve, the amplitude of the wave function ∝ eik j

will acquire a k = −π/2 phase factor for every step along the
chain [10,38]. The total phase at the receiver site will then be
ζ = (−π/2)(N + 1) mod 2π .

C. The complete setup

Our router consists of the flux triangle whose two sites are
part of a chain of spins, as shown in Fig. 2(a). We connect
the sender spin s to the apex of the triangle with coupling
amplitude Js and two receiver spins rL,R to the opposite ends of
the chain with coupling amplitudes JrL,rR . Initially the sender
spin is excited and all the other spins are in their ground state,
and our goal is to efficiently transfer the excitation to one of
the receiver spins. To this end, we modulate the coupling Js(t )
in order to generate a wave packet that will travel to the left or
to the right part of the spin chain, depending on the total phase
γtot of the flux triangle. As the wave packet propagates in the
chain, we modulate the couplings JrL,rR (t ) of the receiver spins
to absorb the incoming wave packet.

The direction of propagation of the wave packet launched
by the sender spin is determined by the total phase γtot in the
flux triangle [24]. For γtot = −π/2 the wave packet is sent to
the left of the chain, while for γtot = π/2 it is sent to the right.
This can be intuitively understood by considering the phase
that the excitation acquires at each site upon the evolution. As
stated above, for J ∈ R+ at each hopping step the amplitude
of the wave function acquires a factor of e−iπ/2. But if the
couplings Ji between the sites of the triangle are complex,
their arguments must also be accounted for when calculating
the acquired phase along a particular path. In the flux triangle,
there are two paths for an excitation initially localized on
site 1 to reach site 2: either direct hopping 1 → 2, or in two
steps 1 → 3 → 2 via site 3. The acquired phase factors for
the two paths are e−i(π/2−γ1 ) and e−i(π+γ3+γ2 ), respectively.
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Analogously, we can calculate the acquired phase factors for
the two paths leading from site 1 to site 3. If the conditions (2)
are satisfied with γtot = −π/2, we have constructive interfer-
ence on site 2 and destructive interference on site 3, while the
opposite holds true for γtot = π/2. In Fig. 1(b) we observe
that, for γtot = −π/2, site 3 is weakly populated before the
wave function is localized on site 2, which is due to the fact
that it takes longer to reach site 3 via path 1 → 2 → 3 and
interfere destructively.

Hence, the transfer scheme presented in Sec. II B can be
applied to the setup of Fig. 2(a). By gradually turning on the
coupling of the sender spin to the apex of the flux triangle, we
avoid significantly populating site 3 before the destructive in-
terference takes place. The launched wave packet, provided it
is narrow in momentum space around k = −π/2 (sufficiently
smooth and long in time), is then sent almost solely to the left
of the chain [see Fig. 2(a)]. For γtot = π/2, the launched wave
packet would propagate to the right. To ensure that the sender
spin is resonantly coupled to the linear part of the spectrum
of the chain (left or right part), for convenience we consider
configurations with an odd number of spins in each subchain
(i.e., a zero-energy eigenstate is always present). In Fig. 2(b)
we show the total transfer time T and the modulation time tm
versus the length of the intermediate chain, while in the inset
we illustrate the temporal profiles of the coupling strengths
Js(t ), JrL (t ) for some indicative chain lengths. Note that for
short chains we have tm ≈ T and the temporal modulation of
the boundary couplings resembles the counterintuitive pulse
sequence of the stimulated Raman adiabatic passage (STI-
RAP) scheme [39,40], where the pulse overlap is optimized
to ensure adiabaticity. In our transfer scheme, however, once
the chain is sufficiently long, the couplings Js(t ), JrL,rR (t )
need not have temporal overlap. In Fig. 2(c) we show the
corresponding transfer probabilities for different lengths of
the intermediate chain, attesting to the excellent scalability
and efficiency of our transfer scheme. The acquired phases
during the transfer are ζL = −(N + 1)(π/2) + γ1 and ζR =
−(N + 1)(π/2) − γ3 for the left or the right receiver spin with
γtot = ∓π/2, respectively.

So far, we have described a router that can transfer a quan-
tum state of the sender spin to the distant left or right receiver
spin, determined by the total phase of the flux triangle. But
to realize a genuine quantum router, the directionality of the
transfer should be determined by the state of a control qubit,
which in general can be in a superposition state and therefore
create distributed entanglement in the system. We will address
this issue in the next section.

III. IMPLEMENTATION OF A QUANTUM ROUTER
WITH RYDBERG ATOMS

We envision a realization of the flux triangle and the spin
network with Rydberg atoms. By making use of the density
dependence of complex hopping amplitudes in Rydberg sys-
tems [35,41], we can implement a genuine quantum router,
i.e., a switch that directs the transport of quantum information
depending on the quantum state of a control qubit.

Consider the geometry shown in Fig. 3(a), where we as-
sume two different kinds of atoms (blue and gray). The three
spins of the triangle correspond to atoms 1,2,3 (blue) in the

xz plane, and we place two auxiliary atoms 4,5 (gray) in
the xy plane. One or the other auxiliary atom will mediate
second-order excitation transfer between the main atoms, sim-
ilar to Ref. [35], leading to complex exchange interactions, as
detailed below. To be specific, we assume that the main atoms
of the triangle and the rest of the spin chain are Rb (blue),
while the auxiliary atoms are Cs (gray). Other choices are also
possible, but having different atomic species can facilitate in
the experiments their selective laser excitation to the Rydberg
states.

A. Dipole-dipole interaction

A pair of atoms i and j in Rydberg states interact with each
other via the dipole-dipole interaction

Vi j = 1

4πε0|ri j |3 [d̂ i · d̂ j − 3(d̂ i · r̂i j )(d̂ j · r̂i j )], (9)

where d̂ i = êxd̂x
i + êyd̂y

i + êzd̂
z
i = ê+d̂+

i + ê−d̂−
i + êzd̂

z
i is

the (vector) dipole operator with ê± = ∓(êx ± iêy)/
√

2, r̂i j =
�ri j/|�ri j | is the unit vector along the relative position vector �ri j ,
and ri j = |�ri j | is the interatomic distance. In Figs. 3(b1) and
3(b2) we show the Rydberg state manifold with the relevant
atomic transitions between the levels nS1/2, nP3/2 of Rb and
n′S1/2, n′P3/2 of Cs. The unperturbed energy levels of an atom
in Rydberg state with the principal quantum number n are

Enl = − Ry

(n − δl )2
, (10)

where Ry is the Rydberg constant and δl is the quantum defect
that depends on the atomic species and the orbital angular
momentum l of the Rydberg state electron. We assume that
a sufficiently strong static and homogeneous magnetic field
B along the z direction defines the quantization axis and lifts
the degeneracy of the magnetic sublevels. For simplicity, we
consider linear Zeeman splitting of the magnetic sublevels
δEjm = μBBgjm, where μB is the Bohr magneton, g j is the
Lande factor, and m is the projection of the total angular
momentum j onto the quantization axis.

Let us first assume that each atom has only one relevant
transition between a pair of levels: |0〉 → |1〉 (
m = +1)
for Rb, and |−〉 → |+〉 (
m = −1) for Cs, as illustrated in
Figs. 3(b1) and 3(b2) with solid lines; later on we will account
for all the levels and transitions of the atoms. The pairwise
dipole-dipole interactions between the main atoms V (AA) and
between the main and auxiliary atoms V (AB) then reduce to
(see Appendix A)

V (AA)
i j = |d+

A |2
4πε0|ri j |3

1

2
(|0〉i 〈1| ⊗ |1〉 j 〈0|

+ |1〉i 〈0| ⊗ |0〉 j 〈1|) × (1 − 3 cos2 θi j ), (11a)

V (AB)
i j = − |d+

A d+
B |

4πε0|ri j |3
3

2
(|1〉i 〈0| ⊗ |−〉 j 〈+| e−2iφi j

+ |0〉i 〈1| ⊗ |+〉 j 〈−| e2iφi j ) sin2 θi j, (11b)

where θi j is the angle between the relative position vector
�ri j and the quantization axis ẑ, φi j is the polar angle [see
Fig. 3(a)], and d±

A,B are the dipole matrix elements of the
corresponding transitions of the main (A) and auxiliary (B)
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FIG. 3. (a) Spatial arrangement of the main (1,2,3, blue) and auxiliary (4,5, gray) atoms to realize the flux triangle. (b) Rydberg state
manifold for two Rb atoms (b1) and Rb and Cs atoms (b2) in a static magnetic field that lifts the degeneracy of the magnetic sublevels
m. (c) Dynamics of populations of the excited states |1〉i of Rb atoms i = 1, 2, 3 of the triangle sharing a single excitation, as obtained
from the effective Hamiltonian (12) (thick faded lines), for the truncated system of four two-level atoms (dotted lines), and for the complete
system of four six-level atoms without optimization (dashed lines). We choose the principal quantum numbers n = 70 for Rb and n′ = 71 for
Cs, set the distance r23 = a = 17 µm, and solve Eqs. (13), obtaining r24 = r34 = r52 = r53 = b = 9.39 µm (r45 = 4 µm) and r12 = r13 = c =
10.04 µm, while 
 = 2π × 14.29 MHz for B = 26.84 G, leading to |J12| = |J23| = |J13| = 2π × 198.1 kHz with the corresponding angles
γ12 = γ13 = −0.151π , γ23 = −0.198π . We then optimize the complete system of four six-level atoms to attain good chiral dynamics (solid
lines). The parameters obtained by the optimization are r23 = a = 17 µm, r24 = r34 = r52 = r53 = b = 12.25 µm (r45 = 8.8 µm), and r12 =
r13 = c = 9.83 µm, while 
 = 2π × 2.68 MHz for B = 46.38 G, leading to |J12| = |J13| = 2π × 238 kHz and |J23| = 2π × 265.7 kHz with
corresponding angles γ12 = γ13 = −0.2548π , γ23 = 0.0113π .

atoms. Note that in the above equations the θ dependence is
relevant only for atom 1, since the rest of the atoms are in the
xy plane and therefore θ = π/2, while the φ dependence is
relevant only for the interaction between the main and aux-
iliary atoms involving 
m(A,B) = +1 or −1 transitions (see
Appendix A).

We assume that initially one main atom of the triangle is
in the excited state |1〉 and the rest of the atoms are in their
lower states |0〉 and |−〉. The transition |−〉 → |+〉 of the
auxiliary atoms is strongly detuned by 
 � |〈V (AB)〉| with
respect to the transition |0〉 → |1〉 of the main atoms. We also
assume that only one of the auxiliary atoms, 4 or 5, is prepared
initially in the Rydberg state |−〉 by the control qubit (see
below and Appendix B), while the other atom is in its ground
electronic state and does not participate in the interaction.

B. Effective model for the flux triangle

The excitation hopping between any pair of the main
atoms i and j of the triangle involves two processes: (1)
Resonant excitation exchange |1〉i |0〉 j → |0〉i |1〉 j between
the main atoms described by Eq. (11a) and illustrated in
Fig. 3(b1), and (2) excitation exchange between an excited
main atom and an auxiliary atom described by Eq. (11b)

and shown in Fig. 3(b2), followed by an exchange between
the auxiliary atom and another main atom, |1〉i |−〉k |0〉 j →
|0〉i |+〉k |0〉 j → |0〉i |−〉k |1〉 j . Since we assume large detun-
ing 
, the nonresonant state |+〉k of the auxiliary atom k is
only virtually populated and can be eliminated adiabatically,
leading to the second-order exchange interaction between the
main atoms i and j which is responsible for the complex
phase of the transition amplitudes determined by the polar
angles φ in Eq. (11b). We thus obtain an effective Hamiltonian
for the three main atoms 1,2,3 in the single-excitation basis
{|100〉 , |010〉 , |001〉} as

Heff =

⎛
⎜⎝

μ1 |J12|e−iγ12 |J13|eiγ13

|J12|eiγ12 μ2 |J23|e−iγ23

|J13|e−iγ13 |J23|eiγ23 μ3

⎞
⎟⎠, (12)

with

μi = S(2)
i→k→i,

|Ji j | = ∣∣Ti→ j + T (2)
i→k→ j

∣∣,
γi j = arg

(
Ti→ j + T (2)

i→k→ j

)
,
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where

Ti→ j = CAA

r3
i j

1

2
(1 − 3 cos2 θi j ), CAA ≡ |d+

A |2
4πε0

are the amplitudes of the resonant dipole-dipole exchange
interaction between the main atoms i and j, while

S(2)
i→k→i = − 1




C2
AB

r6
ik

(
3

2

)2

sin4 θki, CAB ≡ |d+
A d+

B |
4πε0

,

T (2)
i→k→ j = − 1




C2
AB

r3
ikr3

k j

(
3

2

)2

e−2iφik e2iφk j sin2 θik sin2 θk j

are the second-order level shifts of, and excitation exchange
between, the main atoms via virtual excitation of the auxiliary
atom k = 4 or 5.

To implement the flux triangle, we look for the param-
eters of the system that would satisfy conditions (2) while
μ1 = μ2 = μ3. To this end, we choose the principal quantum
numbers n and n′ for Rb and Cs atoms, leading to a small
difference (∼2π × 30 MHz) in their nS1/2 → nP3/2 transition
frequencies as per Eq. (10), and calculate their dipole mo-
ments d+

A and d−
B on the transitions |0〉 → |1〉 and |−〉 → |+〉

(see Appendix A). Next, we fix the distance r23 = a between
atoms 2 and 3, and place the auxiliary atoms 4 and 5 at
equidistant positions from atoms 2 and 3, r24 = r34 = r52 =
r53 = b, so that μ2 = μ3. We place atom 1 at an equidistant
position from atoms 2 and 3, r12 = r13 = c, and note that
c �= b. Then, assuming only the presence of the auxiliary atom
4, we solve numerically the system of equations

μ1 = μ2,3,

|J12,13| = |J23|,
γtot = γ12 + γ23 + γ13 = −π/2, (13)

obtaining thereby the distances b, c (for a fixed a) and the
detuning 
, which determines the applied magnetic field B.

In Fig. 3(c) we show the results for one such solution,
where we compare the dynamics of the excitation in the trian-
gle, as obtained for the effective three-state system of Eq. (12)
(thick faded lines) and for the four-level system (dotted lines)
including the transition |−〉 → |+〉 of the auxiliary atom 4.
We observe good agreement between the effective and exact
(but truncated) models, with nearly perfect chiral dynamics of
the excitation circulating in the counterclockwise direction.
The exact (but truncated) model exhibits slightly different
circulation frequency, due to small violation of the conditions
for adiabatic elimination of state |+〉4, and small-amplitude
large-frequency oscillations associated with the finite detun-
ing 
 of level |+〉4. But when we include in our calculations
all the levels and allowed transitions of the four six-level
atoms sharing a single excitation (Hilbert space size is 128),
we obtain complete distortion of the desired chiral dynamics,
see Fig. 3(c) (dashed lines), which is due to the additional
level shifts and higher-order transitions of the atoms induced
by various nonresonant transitions in the system.

There are two possibilities to circumvent this problem. One
option is to choose lower principal quantum numbers n, n′
or/and to increase the distances between the atoms so that
the dipole-dipole exchange interactions are much smaller than

the detunings of all the spurious nonresonant states, which
therefore do not distort much the dynamics of the effec-
tive three-level or truncated four-level system. But then the
effective couplings |Ji j | between the triangle atoms will be
weak and the resulting slow dynamics will suffer much from
the decay of the Rydberg states.

A better option is to start with the exact solution for the
effective model, include all the relevant atomic levels and tran-
sitions, and then optimize the distances b, c and the magnetic
field B so that the chiral dynamics still persists in the full
system (four six-level atoms). In Fig. 3(c) we show one such
solution (solid lines) obtained by an optimization algorithm
that uses the Nelder-Mead method [42]. Even though this
solution deviates significantly from the smooth analytic dy-
namics of the effective system, it still exhibits chiral dynamics
on a fast time scale compared to the lifetimes of the Rydberg
states.

We note that if, instead of the auxiliary atom 4, we place
atom 5, due to the symmetry of the setup, the excitation in the
triangle circulates in the clockwise direction.

C. The complete setup

Following the blueprint of Sec. II C, we now describe the
complete setup. We assume that atoms in an array of micro-
taps are selectively excited by the lasers to the Rydberg state
|0〉 to form the required network for manipulation, routing,
and transfer of quantum states between the sender and receiver
spins-qubits.

To set the phase γtot = ±π/2 of the flux triangle, we need
to excite one of the auxiliary atoms, 4 or 5, to state |−〉, or
create an arbitrary superposition of the form α |−〉5 + β |−〉4
that would lead to the corresponding superposition of the
propagation directions of the excitation wave packet, or quan-
tum state of the sender spin, to the right or left receiver spin.
We assume that the control qubit, which determines which of
the two auxiliary atoms 4 or 5 is prepared in the Rydberg
state |−〉, is encoded in a ground state superposition of one
of the auxiliary atoms, e.g., atom 4, |ψ〉4 = α |g〉4 + β |e〉4,
while the other auxiliary atom is in state |e〉5. Then, by us-
ing the sequence of laser pulses as in the standard Rydberg
blockade gate [43,44], we can prepare the corresponding su-
perposition of single Rydberg excitation of the two auxiliary
atoms, provided they can be individually addressed by the
lasers while strongly interacting when excited to the Rydberg
state (see Appendix B).

The dynamical control of the couplings Js,r (t ) of the sender
and receiver spins to the spin network, as per Eqs. (7) and
(8), can be achieved in several ways. Conceptually the sim-
plest, but experimentally involved, method would be to move,
during time 0 � t < tm, the sender atom, encoding a qubit in
the Rydberg state superposition c0 |0〉s + c1 |1〉s, from some
large distance to the position next to the first atom of the
network; and move, during time t ′

m � t � T , the receiver
atom, initially in the Rydberg state |0〉r , away from the last
atom of the network. A more practical approach for static
atoms trapped at appropriate positions is to encode the qubit
in the ground state superposition c0 |g〉s + c1 |e〉s of the sender
atom, apply a resonant π pulse on the transition |g〉s → |0〉s,
and then apply a (near-)resonant laser pulse �s(t ) on the
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FIG. 4. (a) Temporal profile of the coupling strengths of the
sender and receiver atoms coupled to the atoms of the flux triangle.
The inset on the left illustrates the spatial configuration of the seven-
atom router. (b) Dynamics of excitation transfer from the sender
s to receiver rL,R atoms. The presence of auxiliary atom 4 results
in nearly complete transfer to rL , while the excitation probability
of rR is less than 0.015 at all times. The parameters of the flux
triangle are the same as for the optimized solution in Fig. 3, while
the total decay rate of the atoms is �tot � 1/62, 1/45, 1/24 µs−1

for the temperatures T = 0, 77, 300 K (sold, dashed, dotted lines),
respectively, with the lifetimes of the nS and nP states of Rb and Cs
obtained from Ref. [45]. For vanishing decay �tot = 0 (thick faded
line) the transfer is nearly perfect.

transition |e〉s → |1〉s to the excited Rydberg state, from
where the excitation will hop in the spin network of the Ryd-
berg atoms, until it reaches the receiver atom initially in state
|0〉r , which is then transferred to the qubit state |e〉r by another
laser pulse �r (t ) acting on the transition |1〉r → |e〉r , fol-
lowed by resonant π pulses on the transitions |0〉s,r → |g〉s,r
(see Appendix C).

To demonstrate the operation of our scheme under real-
istic conditions, we have performed numerical simulations
for the excitation transfer between the sender and receiver
atoms attached to the flux triangle. The latter corresponds
to the optimized configuration for four six-level atoms of
Fig. 3 in Sec. III B with three main atoms 1,2,3 (Rb) and
one auxiliary atom 4 or 5 (Cs). For simplicity, we consider
only two states |0〉 and |1〉 of the sender and two receiver
atoms (Rb), and hence the Hilbert space (of size 128 + 3) is
enlarged by three new states corresponding to the excitation
on the sender or one of the two receiver atoms, while all the
atoms of the flux triangle are in the lower Rydberg states in
the n(′)S manifold. The sender atom s is coupled to atom 1
of the triangle with the time-dependent coupling Js(t ), and
the receiver atoms rL,R are coupled to atoms 2 and 3 with
couplings Jr (t ), as illustrated in Fig. 4. The initial state is
|�(0)〉 = |1s〉 ⊗ |01, 02, 03〉 ⊗ |−4(5)〉 ⊗ |0rL , 0rR〉, with only
the sender atom excited to state |1〉 while all the other main
atoms are in state |0〉 and the auxiliary atom is in state |−〉.
We propagate the state vector of the system using the non-
Hermitian Hamiltonian that includes the decay of the Rydberg
states of the atoms outside the manifold of the computational

Hilbert space. Since each atom in state nS or nP decays with
the rate �nS,nP to other atomic states, the total decay rate
is �tot = �

(Rb)
nP + 5�

(Rb)
nS + �

(Cs)
n′S � 6�

(Rb)
nS + �

(Cs)
n′P . Then, the

norm of the wave function 〈�(t )〉 � e−�tott decreases with
time, reducing thereby the transfer probability.

In Fig. 4 we show the results of our simulations. Ne-
glecting the decay, we obtain nearly perfect transfer between
the sender and the desired receiver atoms determined by the
auxiliary atom 4. In the presence of Rydberg-state decay, the
rate of which depends on the temperature of the surrounding
environment [45], the transfer selectivity is not affected but
the final population of the desired state is reduced. We note
that this population decrease of the total state determines the
lower bound for the transfer probability, since in practice
the decay of an atom which has already played its role in
the transfer would not decrease the population of the receiver
atom.

The seven-atom network represents the minimal setup for
a quantum router. For larger networks of Rydberg atoms,
other important considerations to attain good transfer fidelities
include the influence and possible compensation of level shifts
μi to attain resonance between the atoms in the flux triangle
and in the chain, and taking into account that the resonant
dipole-dipole interactions are long range ∝ r−3 rather than
nearest neighbor, which affects the spectrum and dispersion
of the chain (see Appendix D).

We finally note that the experimental parameters to realize
our scheme are similar to those in recent experiments with
Rydberg atoms [35,46], but in principle we could go to Ry-
dberg states with higher principal quantum numbers n > 70
to further increase the coupling strengths and reduce the de-
cay, which would improve the transfer fidelity for optimized
parameters of the system.

IV. SUMMARY

To conclude, we have presented an efficient method for
coherent routing of quantum states in spin networks using
quantum-state controlled chiral dynamics and nondispersive
propagation of spin excitations. Our routing scheme is based
on quantum interference effects, whereby, depending on the
state of the control qubit that controls the chirality of the
router, a spin excitation is sent to the channel with constructive
interference while destructive interference blocks the other
channel. This should be contrasted with alternative schemes
[17,19,30] where controlled detuning of one or the other
channel can facilitate the transfer of the excitation to the
resonant channel and suppress its transfer to the nonresonant
one. Depending on the particular physical setup of the spin
or qubit network, one or the other method may be more
practical to implement. But we note that energy mismatch
δE > J can suppress the transfer probability only quadrati-
cally (J/δE )2, while destructive interference can in principle
be perfect, which is one of the potential advantages of the
present and similar schemes. We proposed a practical system
involving a laser-driven array of Rydberg atoms to implement
this scheme. Our results can facilitate scalable quantum in-
formation processing and communication in large quantum
registers of Rydberg atoms.
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APPENDIX A: DIPOLE-DIPOLE INTERACTION

The static magnetic field B along the z direction defines
the quantization axis and lifts the degeneracy of the magnetic
sublevels of Rb and Cs atoms, δEjm = μBBgjm, where the
Lande factors are g1/2 = 2 and g3/2 = 4/3 for nS1/2 and nP3/2,
respectively.

The dipole-dipole interaction of Eq. (9) can be expanded
as

Vi j = 1

4πε0|ri j |3
[

d̂ z
i d̂ z

j (1 − 3 cos2 θi j )

+ 1

2
(d̂+

i d̂−
j + d̂−

i d̂+
j )(1 − 3 cos2 θi j )

− 3√
2

(d̂+
i d̂ z

j + d̂ z
i d̂+

j ) sin θi j cos θi je
−iφi j

− 3√
2

(d̂−
i d̂ z

j + d̂ z
i d̂−

j ) sin θi j cos θi je
iφi j

− 3

2
(d̂+

i d̂+
j e−2iφi j + d̂−

i d̂−
j e2iφi j ) sin2 θi j

]
, (A1)

where d̂ z,± are dipole operators for the atomic transitions
between states |nl jm〉 and |n′l ′ j′m′〉 with 
m = m′ − m =
0,±1. Then, in the truncated basis, the resonant exchange
interactions between the main atoms i and j, |0〉i |1〉 j →
|1〉i |0〉 j with 
mi = +1 and 
mj = −1, and |1〉i |0〉 j →
|0〉i |1〉 j with 
mi = −1 and 
mj = +1 are described by
the second line of the above equation, while nonresonant
exchange interactions between the main atom i and auxiliary
atom j, |1〉i |−〉 j → |0〉i |+〉 j with 
mi = −1, and 
mj =
−1 and |0〉i |+〉 j → |1〉i |−〉 j with 
mi = +1 and 
mj = +1
are described by the last, fifth line of the above equation.
When we simulate the complete system, we take into account
all the dipole-allowed transitions with 
mi, j = 0,±1, leading
to the Hilbert space of size 128 for a system of four six-level
atoms sharing a single excitation.

The matrix element of the dipole operator d̂ = er̂ for
the transition between any two atomic states |nl jm〉 and
|n′l ′ j′m′〉,

e 〈n′l ′ j′m′| r̂ |nl jm〉 = eCl ′ j′m′
l jm Rn′l ′

nl , (A2)

is given by the product of the angular Cl ′ j′m′
l jm and radial Rn′l ′

nl
parts [47]. The angular part is calculated using the relation
between the Clebsch-Gordan coefficients and the Wigner 3 j

FIG. 5. Level scheme for the two auxiliary atoms 4 and 5 for
realizing excitation routing by exciting one of the atoms to the
Rydberg state |−〉 using an analog of the Rydberg blockade gate.
The qubit that controls the routing direction is encoded in states |g〉
and |e〉 of atom 4.

and 6 j symbols:

Cl ′ j′m′
l jm =

√
(2 j′ + 1)(2 j + 1)(2l ′ + 1)(2l + 1)

× (−1) j−m+ j′+s+1

{
j 1 j′
l ′ s l

}(
l 1 l ′
0 0 0

)

×
(

j 1 j′
−m −
m m′

)
,

where s = 1/2 is the electron spin. The radial part

Rn′l ′
nl =

∫ ∞

0
Rnl (r) Rn′l ′ (r)r3dr

involves integration over radial wave functions Rnl (r) and
Rn′l ′ (r) of the electron in the two states, and we employ the
semiclassical approach [48] to calculate it for the transitions
nS1/2 → nP3/2 between the Rydberg states of Rb and Cs.

APPENDIX B: ROUTER DIRECTION CONTROL

A control qubit determines which of the two auxiliary
atoms 4 or 5 is prepared in the Rydberg state |−〉 to induce the
corresponding chirality of Heff with γtot = ∓π/2. The level
scheme of the auxiliary atoms 4 and 5 is shown in Fig. 5.
The control qubit is encoded in the ground state sublevels
|g〉4 and |e〉4 of atom 4, while atom 5 is prepared in state
|e〉5. To excite either atom 4 or 5 to the Rydberg state |−〉,
we assume strong static dipole-dipole (ν = 3) or van der
Waals (ν = 6) interactions V = Cν/|r45|ν between atoms 4
and 5 in the Rydberg state |−〉 and use a protocol similar
to the standard Rydberg blockade gate with resonant laser
pulses [43,44]: In step (1) we apply a π pulse to atom 4 on
the transition |e〉4 → |−〉4: then atom 4 initially in state |g〉4
or |e〉4 (or any superposition thereof, |ψ〉4 = α |g〉4 + β |e〉4)
ends up in state |g〉4 or i |−〉4 (or any superposition thereof,
|ψ〉4 = α |g〉4 + iβ |−〉4). In step (2) we apply a π pulse with
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Rabi frequency � � V to atom 5 on the transition |e〉5 →
|−〉5: then atom 5 is transferred to state i |−〉5 if atom 4 was
in state |g〉4, otherwise atom 5 remains in state |e〉5 since its
transition |e〉5 → |−〉5 is suppressed by the strong interaction
V between the Rydberg levels |−〉. Hence, only one of the two
atoms, 4 or 5, is prepared in state |−〉, or their single-excitation
superposition,

|ψ〉45 = iα |g〉4 |−〉5 + iβ |−〉4 |e〉5 .

We note that while the two auxiliary atoms should be suffi-
ciently close to each other for the blockade to be effective,
they should also be sufficiently far apart so that each of them
could be separately addressed by a laser. We also note that we
neglect the diagonal (static dipole-dipole or van der Waals)
interactions between the auxiliary atom and the main atoms
of the chain.

We can now perform the excitation routing protocol as
described in the main text. After the routing is complete, we
perform steps (3) and (4) by applying π pulses to atoms 5
and 4 to transfer them back to the initial state. More precisely,
the initial and final states of the two auxiliary atoms and the
sender and receiver spins are

(α |g〉4 + β |e〉4) ⊗ |e〉5 ⊗ |1〉s ⊗ |0〉rL
⊗ |0〉rR

→ i(α |g〉4 |−〉5 + β |−〉4 |e〉5) ⊗ |1〉s ⊗ |0〉rL
⊗ |0〉rR

→ −(α |g〉4 ⊗ |0〉rL
⊗ |1〉rR

+ β |e〉4 ⊗ |1〉rL
⊗ |0〉rR

)

× ⊗ |e〉5 ⊗ |0〉s ,

i.e., we obtain, in general (αβ �= 0), an entangled state of the
control qubit and the two receiver qubits.

APPENDIX C: TIME-DEPENDENT COUPLINGS Js,r

We assume cold atoms trapped in an array of microtraps.
The qubit state to be transferred is encoded in the ground state
superposition of the sender atom, |ψ〉s = c0 |g〉s + c1 |e〉s,
while the receiver atom(s) and the rest of the atoms in the
network are in state |g〉. We first apply resonant π pulses to the
sender, receiver(s), and the network atoms on the transition
|g〉 → |0〉 to prepare them in the lower Rydberg state |0〉.
Since |0〉 is an nS1/2 Rydberg state, its excitation from the
ground state sublevel |g〉 requires a two-photon transition via
an intermediate 5P3/2 or 6P3/2 state of Rb. Next, we apply
to the sender atom a (near-)resonant laser pulse �s(t ) on the

FIG. 6. Level scheme of the sender and receiver spins to imple-
ment their time-dependent couplings to the spin network of Rydberg
atoms.

(a) (b)

(c)

FIG. 7. Schematics of the router setup with (a) the atoms of the
flux triangle slightly off-resonant with respect to the atoms of the
chain, and (b) all the atoms of the triangle and chain are resonant.
(c) The corresponding transfer probabilities PT between the sender
and receiver spin via the chain of N spins.

transition |e〉s → |1〉s to the excited Rydberg state, see Fig. 6.
This is a one-photon UV transition 5S1/2 → nP3/2. Since the
Rydberg transition |1〉s → |0〉s is coupled via the exchange
interaction with transition |0〉1 → |1〉1 of the first atom of
the chain, the time dependence of the coupling laser pulse
determines the time dependence of the effective coupling
Js(t ) ∝ �s(t ), as in stimulated Raman processes [39,40]. The
single-excitation wave packet will then propagate in the spin
network of the Rydberg atoms, until it reaches the receiver
atom initially in state |0〉r , which is then transferred to the
qubit state |e〉r by another laser pulse �r (t ) acting on the
transition |1〉r → |e〉r in the time-reversed manner. Finally,
we apply resonant π pulses on the transitions |0〉 → |g〉 of
the sender, receiver, and the network atoms to bring them to
the trapped ground electronic states.

NN

LR

FIG. 8. Single-excitation spectrum En (in units of J) of a chain
of N = 71 spins with nearest-neighbor (NN) exchange interactions
(blue solid line) and longer-range (LR) 1/r3 interactions (red dotted
line).
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APPENDIX D: LEVEL SHIFTS AND INTERACTION
RANGE OF RYDBERG ATOMS

The second-order level shifts μ1,2,3 of the atoms in the flux
triangle make them slightly off-resonant with the network as
well as the sender and receiver atoms. This reduces the fidelity
of excitation transfer between the sender and receiver atoms,
as shown in Figs. 7(a) and 7(c). But if we compensate these
levels shifts using, e.g., nonresonant lasers to induce ac Stark
shifts of the atomic levels, we recover the nearly perfect state
transfer in the network of Rydberg atoms, see Figs. 7(b) and
7(c).

In Fig. 7 we also assume that the distance between the
neighboring atoms in the network is chosen such that their
(real) exchange coupling J is equal to the absolute value
|J12,13,23| of the effective couplings between the atoms of the
flux triangle. But since the exchange couplings are due to

the resonant dipole-dipole interactions scaling with the inter-
atomic distance r as C3/r3, the single excitation spectrum of
the chain deviates from the simple cosine law of Eq. (6) as
[49,50]

En = 2
N−1∑
m=1

J

m3
cos

πnm

N + 1
, (D1)

where the m = 1 term corresponds to the nearest-neighbor
exchange, while terms with m = 2, 3, . . . stem from the
longer-range exchange interactions between the next-nearest
neighbors, next-next-nearest neighbors, etc. The linear part
of the spectrum of the chain is then displaced toward higher
energies, see Fig. 8. Hence, to launch (and absorb) a nondis-
persive wave packet, the energies (effective magnetic fields
Bs,r) of the sender and receiver spins should be accordingly
tuned.
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