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Mean-field approach to Rydberg facilitation in a gas of atoms at high and low temperatures
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The excitation spread caused by Rydberg facilitation in a gas of laser-driven atoms is an interesting model
system for studying epidemic dynamics. We derive a mean-field approach to describe this facilitation process in
the limits of high and low temperatures, which takes into account Rydberg blockade and the network character
of excitation spreading in a low-temperature gas. As opposed to previous mean-field models, our approach
accurately predicts all stages of the facilitation dynamics from the initial fast epidemic growth, an extended
saturation period, to the final relaxation phase.
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I. INTRODUCTION

Rydberg atoms have gained a lot of interest in the last few
decades due to their strongly exaggerated properties. In par-
ticular, they have very long life times and strong interactions
over distances covering several m [1]. These features allow
Rydberg systems to be especially useful in a multitude of
applications such as quantum information processing [2–6] or
the study of many-body spin physics [7–14].

One interesting process in many-body Rydberg systems is
Rydberg facilitation, which has been used to study dissipative
or kinetically constrained spin systems [15,16], transport and
localization phenomena in disordered systems [17], or self-
organized criticality [18,19].

In this type of many-body system, atoms are coupled off-
resonantly to a Rydberg state. As a result of the Rydberg
dipole interaction, however, atoms near an already excited
Rydberg atom can be excited resonantly. Thus an initial seed
excitation can lead to a cascade of excitations. It has been
shown experimentally that this type of system bears close
similarities to epidemic dynamics [20].

The most simple description of epidemic-type systems is
given by susceptible-infected-susceptible (SIS) models. Here,
each individual has two internal states, susceptible (S) or
infected (I). Susceptible individuals are infected with the rate
κ and infected individuals return to the susceptible state with
the rate γ [21–23].

Under the assumption of homogeneous mixing, where all
individuals interact with each other completely at random,
all information about the epidemic dynamics is contained in
the total fractions ρν in the susceptible (ν = S) and infected
state (ν = I), which obey the simple homogeneous mean-field
equations given by [24]

d

dt
ρI = κρIρS − γ ρI, (1a)

d

dt
ρS = −κρIρS + γ ρI. (1b)

This system features an absorbing-state phase transition be-
tween two dynamical phases, namely, an absorbing phase in
which all infections die out, and an active phase where, in the

thermodynamic limit, infections last forever. A suitable order
parameter to distinguish these phases is the steady-state active
(infected) density ρI

ss. From Eq. (1a) one recognizes that this
phase transition occurs when

ρSκ = γ . (2)

In addition to the SIS model, which describes diseases
where repeat infections are common (predominantly sexually
transmitted diseases) the susceptible-infected-recovered (SIR)
model can be used to describe diseases which feature life-
long immunity in individuals following an infection, such as
measles or whooping cough [25]. The SIR model features a
recovered state R, with the respective population as ρR. The
dynamics are given by [26–28]

d

dt
ρS = −κρIρS, (3a)

d

dt
ρI = κρIρS − γ ρI, (3b)

d

dt
ρR = γ ρI. (3c)

The dynamics of both SIS and SIR models are well un-
derstood in the homogeneous mean-field regime. While the
homogeneous mixing assumption is well justified in systems
where the infection spreading occurs on a regular lattice in
high spatial dimensions, it fails in many relevant cases, for
example, if the the SIS-SIR dynamics take place on real-life
networks. For such network systems, including, e.g., random
Erdős-Rényi (ER) [29] and scale-free (SF) networks [30], a
large body of more sophisticated approximation methods have
been developed [31–33], but many questions remain unsolved.
Here, Rydberg atoms provide a platform to experimentally
investigate the epidemic dynamics on a variety of complex
networks, which can, e.g., be engineered by the use of tweezer
arrays [10]. Moreover, in a gas of atoms contained in some
macroscopic trapping potential one can investigate the transi-
tion between a random ER network at very low temperatures,
where the motion of atoms on the relevant timescales of
the facilitation process can be ignored, to the homogeneous
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FIG. 1. (a) Level scheme of internal atomic states with ground
|g〉 (susceptible) state, Rydberg |r〉 (infected) state, and inert |0〉
(recovered) state. An external laser drives the transition between
|g〉 and |r〉 and spontaneous decay occurs from |r〉 to either |g〉 or
|0〉, modulated by branching parameter b ∈ [0, 1]. (b) Monte Carlo
data of the Rydberg density ρ (red) and total active density n (in
states |g〉 and |r〉) (blue) over time, with b = 0.3 and initial condition
ρ(t = 0) = 0, showing the typical epidemic stages. The blue dashed
line corresponds to n/ncrit = 1. (c) Schematic of Rydberg atoms
(red dots) spanning facilitation shells (yellow region) and blockade
spheres (red region). Ground-state atoms (gray dots) in the blue
region are subject to off-resonant laser coupling. (d) Schematic phase
diagram for the high (top) and low (bottom) temperature regimes
depending on the total gas density n.

mixing limit for a gas of high temperatures [34]. The latter
corresponding to an annealed random network.

For Rydberg facilitation systems, each atom can be con-
sidered as a three-level system with the ground (susceptible),
Rydberg (infected), and inert or ionized (recovered) states [see
Fig. 1(a)]. A concrete mapping of the Rydberg facilitation
system to SIS and SIR models will be discussed later. The
decay from the Rydberg to the inert state, given by the rate
bγ , results in a loss of susceptible and infected individuals
in the population, moving the system into an absorbing state.
This gives rise to three typical epidemic stages, which were
experimentally observed in Rydberg facilitation systems [20].
Following an initial infection, there is a rapid epidemic growth
in infected individuals, or Rydberg atoms, in the system. This
is followed by a saturation and an eventual relaxation at long
times as a result of the system reaching an absorbing-state on
these timescales [see Fig. 1(b)].

To describe the macroscopic dynamics of the Rydberg
facilitation process in a gas, a simple mean-field model was
put forward in [18], which, however, fails to provide a quan-
titative prediction of the microscopic dynamics, accurately
calculated by Monte Carlo simulations [34] (see Fig. 2). This
discrepancy results from the mean-field model not regarding
(i) Rydberg blockade, which prevents the excitation of any
atom closer than some radius rblockade to a Rydberg atom and
(ii) the emergent ER network at low temperatures.

In the following, we will develop a mean-field description
of the dynamics of Rydberg excitations in a many-body-
facilitated gas that accounts for both of these effects and
provides accurate predictions of the full facilitation dynamics,
which we demonstrate by comparing our predictions with

(a)

(b)

(c)

FIG. 2. Rydberg density ρ over time for ρ(t = 0) = 0 and
b = 0.3 modeled with Monte Carlo simulations (blue dots), Eq. (12)
(red, faint), and Eq. (33) (red, solid), for (a) high-temperature gas
with starting density n0 = 4.0 r−3

f > ncrit , (b) low-temperature per-
colating gas with n0 = 20 r−3

f > nperc, and (c) low-temperature
nonpercolating gas with n0 = 4 r−3

f < nperc.

Monte Carlo simulations. The network structure of the cold
gas leads to a higher total gas density at very long times and
subsequently a higher Rydberg density in the saturation phase
in comparison to mean-field predictions. Rydberg blockade
causes a significant modification of the facilitation (infec-
tion) rate if the density of Rydberg excited atoms (infected
individuals) reaches some threshold value. Similarly to the
effect of regulatory measures on the dynamics of epidemics
(“lockdown”), it limits the maximum density of Rydberg-
excited atoms (infected individuals), but at the same time
leads to a substantial prolongation of the slow transition into
the absorbing (recovery) phase.
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II. MICROSCOPIC MODEL OF RYDBERG FACILITATION

A microscopic description of Rydberg facilitation in a gas
can be achieved from a Lindblad master equation of the den-
sity matrix ρ̂ which takes the form

d

dt
ρ̂ = i[ρ̂, Ĥ] +

∑
l

L̂l ρ̂L̂†
l − 1

2
{L̂†

l L̂l , ρ̂}, (4)

with the atom-light interaction Hamiltonian Ĥ given by

Ĥ =
∑

i

⎡
⎣�(σ̂ gr

i + σ̂
rg
i ) +

⎛
⎝∑

j �=i

c6

r6
i j

σ̂ rr
j − �

⎞
⎠σ̂ rr

i

⎤
⎦. (5)

Here σ̂
μν
i = |μ〉ii〈ν| is the projection operator of the ith atom

from the internal state ν to μ. The external driving field is
described by the Rabi frequency � and the detuning �, and
the van der Waals interaction energy between Rydberg atoms
i and j is given by c6/r6

i j , with ri j being the distance between
the atoms. Finally, in Eq. (4) dissipation is described by the
jump operators L̂l . These take the form L̂(i)

1 = √
(1 − b)γ σ̂

gr
i ,

L̂(i)
2 = √

bγ σ̂ 0r
i for spontaneous decay from |r〉 to |g〉 and |0〉,

as well as L̂(i)
3 = √

γ⊥σ̂ rr
i for the dephasing of the Rydberg

state. The parameter b ∈ [0, 1] corresponds to the percentage
of Rydberg atoms, which spontaneously decay to |0〉 and are
thereby removed from the system. Therefore, if b = 0 the
system corresponds to a two-level system and resembles an
SIS epidemic [see Fig. 1(a)].

Dephasing results from, e.g., Doppler broadening or the
spread of the atomic wave packet over the van der Waals po-
tential [18,35]. In the large dephasing limit, the dynamics of a
many-body Rydberg gas are effectively governed by classical
rate equations [36]. As a result, this system can be simulated
to great accuracy using Monte Carlo simulations. Starting
from Eq. (4), after adiabatic elimination of coherences, one
can formulate a set of rate equations for the probabilities of
atom i being in the Rydberg state with P(i)

r or ground state
with P(i)

g as

d

dt
P(i)

r = 	f(
)P(i)
g − (	f(
) + γ )P(i)

r , (6a)

d

dt
P(i)

g = (	f(
) + (1 − b)γ )P(i)
r − 	f(
)P(i)

g , (6b)

with the stimulated excitation rate given by

	f(
) = 2�2γ⊥

γ 2
⊥ + �2

( ∑
j �=i
j∈


r6
f

r6
i j

− 1
)2

. (7)

Here 
 is the set of indices of Rydberg-excited atoms. If no
other Rydberg atom exists in the gas or their distance is much
larger than rf, 	f(
) reduces to the off-resonant excitation rate
of an isolated atom

τ = 2�2γ⊥
γ 2

⊥ + �2
. (8)

If a Rydberg atom is present in the system, the atoms located
around a certain distance to it, called facilitation distance rf,
are shifted into resonance and can be excited on a much faster
timescale, given by the facilitation rate 	f = 2�2/γ⊥. The

facilitation distance is given by

rf = 6

√
c6

�
. (9)

Rydberg facilitation can be observed when � � �, as this
naturally gives rise to a hierarchy in timescales such that

	f � γ � τ. (10)

In this case, off-resonant excitations and the decay of Rydberg
atoms are effectively static on the timescale of facilitated
excitations. Each Rydberg atom spans a spherical shell, with
distance rf and approximate width δrf, in which atoms are
resonantly coupled to the driving laser field. The width of
the facilitation shell is thereby determined by the effective
linewidth of the excitation transition and reads

δrf = γ⊥
2�

rf. (11)

Atoms closer than rf − δrf/2 to a Rydberg atom are subject to
Rydberg blockade [3] and cannot be excited since they are
shifted out of resonance again. These three regions around
a Rydberg atom (off-resonant coupling, facilitation, and
blockade) can be schematically seen in Fig. 1(c).

In [18], a mean-field equation for a macroscopic descrip-
tion of the many-body Rydberg facilitation dynamics has been
derived. For a homogeneous gas this reads

d

dt
ρ = −κ (2ρ2 − ρn) − γ ρ − τ (2ρ − n), (12a)

d

dt
n = −bγ ρ. (12b)

Here ρ corresponds to the coarse-grained Rydberg density (in
a small volume �V )

ρ(	r, t ) = 1

�V

∑
i:	ri∈�V

〈
σ̂ rr

i

〉
, (13)

and n is the density of ground and Rydberg state atoms

n(	r, t ) = 1

�V

∑
i:	ri∈�V

(〈
σ̂ rr

i

〉 + 〈
σ̂

gg
i

〉)
. (14)

Note that n does not count |0〉 state atoms and therefore
decreases over time if b > 0. The spreading rate of Rydberg
excitations in the many-body gas is given by the two-body
facilitation rate integrated over the facilitation shell

κ = 	fVs, (15)

with the volume of the facilitation shell Vs ≈ 4πδrfr2
f . The

above equations predict an absorbing-state phase transition
between an active and absorbing phase for the critical gas
density

ncrit = γ

	fVs
. (16)

Equation (12a) for the (mean-field) Rydberg density in the
many-body gas strongly resembles the SIS equation of mo-
tion of infected individuals given by Eq. (1a). However, in
contrast to SIS-SIR epidemics, Rydberg systems additionally
feature (i) off-resonant excitations with rate τ , (ii) resonant
(facilitated) deexcitations of Rydberg atoms [described by the
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term −2κρ2 in Eq. (12a)], and (iii) Rydberg blockade which
is not regarded in Eq. (12a).

For the atom number conserving limit (b = τ = 0) [18],
Eq. (12a) directly maps to those of the SIS dynamics [Eq. (1)]
by identifying ρI = 2ρ and ρS = n − 2ρ � 0 with conserved
total density ρI + ρS = n − 2ρ + 2ρ = n. Moreover in the
high-temperature limit, the deexcitation can effectively be
neglected as it is a second-order process in terms of Rydberg
density.

For the low-temperature gas, the excitation dynamics are
constrained to an ER network in which the individual nodes
are comprised of atoms (either in |g〉 or |r〉), and connections
between nodes, say i and j, exist if ri j ≈ rf. The number
of connections a node has (i.e., the number of atoms with
distance rf to an atom) is called the degree k of the atom. In an
ER network the node degrees follow a Poissonian distribution
with average degree

〈k〉 = nVs. (17)

An ER network features a percolation transition at 〈k〉 = 1 be-
tween an (almost fully) connected network and a fragmented
network, comprised of many small disconnected clusters.
Here, clusters refers to a group of connected nodes. From
Eq. (17), we can identify the gas density at which the per-
colation transition occurs as

nperc = 1

Vs
. (18)

This density is a factor 	f/γ larger than the critical density of
the phase transition to the absorbing phase for a homogeneous
gas [34]. A schematic phase diagram for the high- and low-
temperature gas can be seen in Fig. 1(d). For further details on
the mapping of the Rydberg facilitation gas to an ER network
see [34].

In this paper, we model the actual many-body dynamics
using Monte Carlo simulations of the rate equations (6). We
assume a cubic box with length L = 7rf and periodic bound-
ary conditions. Atom positions are chosen randomly and
velocities are sampled from a Maxwell-Boltzmann distribu-
tion with temperature parameter v̂, corresponding to the most
probable atom velocity in the gas. For the time evolution we
utilize a fixed time step Monte Carlo algorithm [37], with the
time step dt = 1/400 γ −1, as long-range interactions paired
with the fast movement of atoms in the high-temperature case
results in quickly changing transitional rates in the system. To
ensure numeric stability the c6 potential in Eq. (7) is truncated
at a cutoff value around the singularity ri j → 0.

III. MODIFIED LANGEVIN DESCRIPTION
OF EPIDEMIC EVOLUTION

In the following section, we develop an effective macro-
scopic theory of the Rydberg facilitation process, expanding
the Langevin equation (12), starting from the microscopic
model. This new equation takes into account Rydberg
blockade, as well as the network structure in the case of the
low-temperature gas.

In Fig. 2, the dynamics of Rydberg excitations predicted by
the improved Langevin equation and by Monte Carlo simula-
tions are compared for the cases: (i) high-temperature gas with

n0 > ncrit , (ii) low-temperature gas initially above the per-
colation threshold with n0 > nperc, and (iii) low-temperature
gas initially below the percolation threshold n0 < nperc. Here
n0 refers to the gas density at t = 0. Additionally, we use a
branching parameter b = 0.3, allowing some loss into the re-
covered state |0〉. Therefore, for all cases (i) to (iii), the system
drives itself to the absorbing-state and follows the typical
epidemic stages as seen in Fig. 1(b).

We start from the microscopic Heisenberg-Langevin
equations describing the quantum many-body dynamics of
Rydberg excitations for atoms at given spatial positions given
by

d

dt
σ̂ rr

i = −i�
(
σ̂

rg
i − σ̂

gr
i

) − γ σ̂ rr
i + ξ̂1, (19)

d

dt
σ̂

rg
i = −i

(
�

(
σ̂ rr

i − σ̂
gg
i

) − V̂iσ̂
rg
i

) − γ⊥σ̂
rg
i + ξ̂2. (20)

These equations can be obtained from the Lindblad master
equation [Eq. (4)] using d

dt 〈σ̂ rr
i 〉 = Tr{σ̂ rr

i
d
dt ρ̂} noting that for

the operator dynamics a Langevin noise term ξ̂ has to be
added to conserve commutation relations [38]. These noise
terms disappear in the quantum mechanical average and their
properties can be obtained from the fluctuation-dissipation
relation [39].

The operator V̂i describes the detuning of the ith atom and
depends on the states of all other atoms. It is given by

V̂i = �

⎛
⎝−1 +

∑
j �=i

r6
f

r6
i j

σ̂ rr
j

⎞
⎠. (21)

We note that the operator-valued quantities are objects in
Hilbert space describing the quantum mechanical evolution
and are subject to the classical statistics of the (time-
dependent) random positions of the atoms. The dynamics
of the atom positions are treated classically, which is well
justified in the high-dephasing limit, assumed throughout the
present paper.

Furthermore, the effect of c6 forces acting on the center-of-
mass motion of the atoms due to the distance dependence of
V̂i are disregarded in the present paper. They will be discussed
elsewhere in more detail [40], where we will show that, under
typical experimental conditions, they can be accounted for by
a change of the atoms velocity distribution and, in the case of
a trapped gas, by an additional loss channel.

Assuming high dephasing γ⊥ � �, the coherences σ̂
rg
i

quickly decay to quasistationary values relative to the relevant
many-body timescales. Therefore, we adiabatically eliminate
coherences ( d

dt σ̂
rg
i = 0) and arrive at

d

dt
σ̂ rr

i = − 2�2γ⊥
γ⊥2 + V̂ 2

i

(
σ̂ rr

i − σ̂
gg
i

) − γ σ̂ rr
i + ξ̂ . (22)

As a result of the quickly decaying potential V̂i with inter-
atomic distance, only Rydberg atoms with distances ri j � rf

are relevant for the internal dynamics of atom i. Therefore, we
can perform a spatially local approximation by introducing the
projection operator �̂i(m), projecting onto m Rydberg atoms
with distances ri j � rf. Using the completeness relation∑

m

�̂i(m) = 1̂, (23)

052812-4



MEAN-FIELD APPROACH TO RYDBERG FACILITATION … PHYSICAL REVIEW A 108, 052812 (2023)

we are able to expand the fraction in Eq. (22) giving

d

dt
σ̂ rr

i = − �̂i(0)
2�2γ⊥

γ⊥2 + �2

(
σ̂ rr

i − σ̂
gg
i

)

− �̂i(1)
2�2γ⊥

γ⊥2 + �2
(( rf

r1i

)6 − 1
)2

︸ ︷︷ ︸
(∗)

(
σ̂ rr

i − σ̂
gg
i

)

+ · · ·
− γ σ̂ rr

i + ξ̂ . (24)

All rates for more than one Rydberg atom in the facilitation
sphere (m > 1) are strongly suppressed due to blockade. As a
result, we truncate the expansion at m = 1.

Finally, we calculate the expectation value of the operator
σ̂ rr

i with a double averaging over the quantum mechanical
state and the ensemble of the many different atom positions
in the gas. We will denote these double averages as 〈〈σ̂ rr

i 〉〉
and write

d

dt

〈〈
σ̂ rr

i

〉〉 = −τ
〈〈
�̂i(0)

(
σ̂ rr

i − σ̂
gg
i

)〉〉
−	f

〈〈
�̂i(1)

(
σ̂ rr

i − σ̂
gg
i

)〉〉
− γ

〈〈
σ̂ rr

i

〉〉
(25)

≈ −τ 〈〈�̂i(0)〉〉(〈〈σ̂ rr
i

〉〉 − 〈〈
σ̂

gg
i

〉〉)
−	f pshell

〈〈
�̂i(1)

〉〉(〈〈
σ̂ rr

i

〉〉 − 〈〈
σ̂

gg
i

〉〉)
− γ

〈〈
σ̂ rr

i

〉〉
. (26)

Here we introduce the off-resonant excitation rate
τ = 2�2γ⊥

γ⊥2+�2 , the facilitated excitation rate 	f = 2�2

γ⊥
,

and (assuming a randomly distributed gas) the classical
probability pshell = Vs/Vf that the Rydberg atom is in the
facilitation shell if it is already in the facilitation sphere.

With the random gas assumption, we can approximate the
probabilities 〈〈�̂i(m)〉〉 as Poissonian with the rate ρVf (i.e.,
〈〈�̂i(m)〉〉 = (ρVf )me−ρVf /m!) resulting in

〈〈�̂i(0)〉〉 = e−ρVf , (27)

pshell〈〈�̂i(1)〉〉 ≡ Vs

Vf
〈〈�i(1)〉〉 = ρVs e−ρVf . (28)

We then perform the coarse-graining given by Eqs. (13) and
(14) and arrive at

d

dt
ρ = − κe−ρVfρ(2ρ − n)

− γ ρ − τ (2ρ − n). (29)

Furthermore, we assume here e−ρVfτ ≈ τ as the off-resonant
rate is only relevant when ρVf � 1.

The spreading rate of excitations κ is now exponentially
damped by the density of Rydberg atoms. This gives a better
description of the spreading of Rydberg excitations in the
epidemic growth stage. However, as all atoms with distances
closer than rblockade to a Rydberg atom cannot be excited due
to Rydberg blockade [red region in Fig. 1(c)], there exists
a maximum density of Rydberg atoms ρmax, given by the

packing density of nonoverlapping spheres, above which no
more excitations are possible.

To quantify the blockade induced saturation density in
the gas, we introduce the parameter η corresponding to the
packing density of spheres in a given volume.

For the high-temperature gas, this corresponds to the dens-
est packing of spheres, given by η = π

3
√

2
≈ 74.0%. In this

regime we can assume this packing density to be achieved,
as the high motion of the atoms allow the system to organize
itself to this state.

For the frozen gas, the packing density is slightly lower,
and is given by the closest density of randomly packed
spheres, which is given by η ≈ 63.5% [41].

As δrf � rf we can approximate the blockade radius as
rblockade ≈ rf and write

ρmax = 2
η

Vfac
, (30)

with the approximate volume of the blockade sphere
Vfac = 4

3πr3
f . The factor of 2 emerges as when a facilitation

event occurs, the facilitated atom is centered on the block-
ade sphere of the facilitating Rydberg atom. As a result, the
blockade spheres of these atoms overlap. If, however, a third
Rydberg atom is facilitated (by the second Rydberg atom),
its blockade sphere borders the blockade sphere of the first
Rydberg atom with, on average, very little overlap [see
Fig. 1(c)].

As the laser coupling smoothly changes from resonant, for
an atom with distance r = rf to a Rydberg atom, to strongly
suppressed for r < rf, this can be regarded as a packing of soft
spheres with an uncertainty in volume of δVfac = 4πδrfr2

f . The
result is a smearing out of ρmax given by δρmax = δVfac

2η

V 2
fac

. We
can now add a heuristic function which sets the facilitation
rate to 0 if ρ > ρmax as

h(ρ) = 1

2

[
1 + tanh

(
ρmax − ρ

δρmax

)]
. (31)

The added factors e−ρVf and h(ρ) to the facilitation rate κ

suffice to accurately describe the dynamics of the Rydberg
density in the high-temperature gas [see Fig. 2(a)].

Moreover, the truncation of the maximum number of in-
fected individuals as a result of blockade gives qualitative
agreement with the effect of control measures such as lock-
downs seen in the COVID-19 pandemic [42].

For the low-temperature gas the finite connectivity greatly
reduces the facilitation rate. Taking into account that facilita-
tion can only occur if the degree of the atom k is not 0, we
alter the facilitation rate to

κ → κ P(k > 0). (32)

For an ER network with average degree 〈k〉 � 1, we can
approximate P(k > 0) ≈ 〈k〉. In this case the new infection
rate κ corresponds to the Kephart-White model [43,44].

The full Langevin equation for the Rydberg density reads

d

dt
ρ = − κe−ρVf h(ρ)P(k > 0)ρ(2ρ − n)

− γ ρ − τ (2ρ − n), (33)

052812-5



DANIEL BRADY AND MICHAEL FLEISCHHAUER PHYSICAL REVIEW A 108, 052812 (2023)

with P(k > 0) = 1 − e−nVs for the low-temperature gas and
P(k > 0) = 1 at high temperatures, as the thermal velocity
of atoms allows for random-mixing of all atoms. As a result,
the high-temperature regime is described excellently by the
classical SIS-SIR models [Eqs. (1) and (3)] with the addition
of blockade.

In Fig. 2 we compare the predictions from the modi-
fied Langevin equation (33) with Monte Carlo simulations
in the high-temperature gas, the frozen percolating gas, and
the frozen nonpercolating gas. For the high temperature and
the frozen percolating case, Eq. (33) has a very good agree-
ment for all epidemic stages with Monte Carlo data. In
particular, it predicts the correct density in the saturation stage
in the high-temperature and the low-temperature percolating
gas in contrast to Eq. (12).

Furthermore, for the case of the low temperature gas,
Eq. (33) gives a much better approximation of the relaxation
epidemic stage (i.e., for times γ t � 102). In this stage, the
Rydberg density is much higher than the expected MF den-
sity (predicted by the faint red line), which holds for high
temperatures. In contrast to the high-temperature regime, the
system leaves the active phase at much higher gas density due
to the finite connectivity of excitation paths in the gas. The
factor P(k > 0) in the facilitation rate gives a much better
approximation of this increased Rydberg density.

IV. CONCLUSION

In conclusion, we developed a modified mean-field ap-
proach to model the Rydberg density over time in a
many-body gas under facilitation conditions for the limits of
high and low temperature. In the low temperature regime, we
additionally differentiated between a system with initial den-
sity n0 > nprec and n0 < nperc, where nperc is the percolation
density below which heterogeneous effects play a large role.

Our modeling is similar to that developed in [18], but
with three key improvements to the facilitation (or infection)
rate κ . We consider (i) random atom positions leading to a
Poissonian distribution in the number of Rydberg atoms closer
than rblockade to a given atom. In this case, the atom cannot be
excited or deexcited due to Rydberg blockade. As a result,

with increasing Rydberg density, the global facilitation rate κ

exponentially decreases.
Additionally, (ii) excited Rydberg atoms can be seen as

soft spheres inside of which no atoms can be excited due to
blockade. Therefore, there exists a tightest packing of excited
atoms beyond which the facilitation rate κ vanishes. In the
high-temperature regime, this packing density corresponds to
the tightest packing of spheres in a given volume, as the high
thermal velocities allow the system to continuously organize
itself to this state. In the low-temperature regime the packing
density is given by that of randomly placed spheres in a given
volume, which, in comparison, is slightly lower.

Finally, (iii) for the low-temperature regime, one has to
additionally consider the finite connectivity of the underlying
network along which facilitated excitations can spread. On a
mean-field level, we described this by reducing the facilitation
rate in correspondence with the portion of atoms with network
degree (i.e., the number of atoms in their facilitation shell)
k = 0. The percentage of these isolated atoms increases as the
network connectivity decreases, and is therefore dependent on
the total density of the gas.

For both the high temperature, as well as the low
temperature, high density case Eq. (33) gives excellent cor-
respondence to Monte Carlo data for all epidemic stages.

For the low temperature, low density gas the system is
characterized by strong heterogeneity making an accurate
mean-field description challenging. However, for this case we
still see a large improvement in the Langevin description of
the dynamics.
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[17] M. Marcuzzi, J. Minář, D. Barredo, S. de Léséleuc, H. Labuhn,
T. Lahaye, A. Browaeys, E. Levi, and I. Lesanovsky, Facilita-
tion dynamics and localization phenomena in Rydberg lattice
gases with position disorder, Phys. Rev. Lett. 118, 063606
(2017).

[18] S. Helmrich, A. Arias, G. Lochead, T. M. Wintermantel,
M. Buchhold, S. Diehl, and S. Whitlock, Signatures of
self-organized criticality in an ultracold atomic gas, Nature
(London) 577, 481 (2020).

[19] D.-S. Ding, H. Busche, B.-S. Shi, G.-C. Guo, and C. S. Adams,
Phase diagram and self-organizing dynamics in a thermal en-
semble of strongly interacting Rydberg atoms, Phys. Rev. X 10,
021023 (2020).

[20] T. M. Wintermantel, M. Buchhold, S. Shevate, M. Morgado, Y.
Wang, G. Lochead, S. Diehl, and S. Whitlock, Epidemic growth
and griffiths effects on an emergent network of excited atoms,
Nat. Commun. 12, 103 (2021).

[21] R. M. Anderson and R. M. May, Infectious Diseases of Humans:
Dynamics and Control (Oxford University Press, New York,
1991).

[22] N. T. Bailey et al., The Mathematical Theory of Infectious Dis-
eases and its Applications (Charles Griffin & Company, High
Wycombe, England, 1975).

[23] J. D. Murray, Epidemic models and the dynamics of infectious
diseases, Math. Biol. 19, 610 (1993).

[24] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A.
Vespignani, Epidemic processes in complex networks, Rev.
Mod. Phys. 87, 925 (2015).

[25] M. J. Keeling and K. T. Eames, Networks and epidemic models,
J. R. Soc., Interface 2, 295 (2005).

[26] T. Harko, F. S. Lobo, and M. Mak, Exact analytical solutions
of the susceptible-infected-recovered (sir) epidemic model and

of the sir model with equal death and birth rates, Appl. Math.
Comput. 236, 184 (2014).

[27] O. N. Bjørnstad, K. Shea, M. Krzywinski, and N. Altman,
Modeling infectious epidemics, Nature Methods 17, 455
(2020).

[28] R. Beckley, C. Weatherspoon, M. Alexander, M. Chandler, A.
Johnson, and G. S. Bhatt, Modeling epidemics with differential
equations, Tennessee State University Internal Report, 2013.
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