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Quantized transport induced by topology transfer between coupled one-dimensional lattice systems
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We show that a topological pump in a one-dimensional insulator can induce a strictly quantized transport in an
auxiliary chain of noninteracting fermions weakly coupled to the first. The transported charge is determined by
an integer topological invariant of the fictitious Hamiltonian of the insulator, given by the covariance matrix of
single-particle correlations. If the original system consists of noninteracting fermions, this number is identical to
the Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) invariant of the original system and thus the coupling
induces a transfer of topology to the auxiliary chain. When extended to particles with interactions, for which the
TKNN number does not exist, the transported charge in the auxiliary chain defines a topological invariant for
the interacting system. In certain cases this invariant agrees with the many-body generalization of the TKNN
number introduced by Niu, Thouless, and Wu. We illustrate the topology transfer to the auxiliary system for the
Rice-Mele model of noninteracting fermions at half filling and the extended superlattice Bose-Hubbard model
at quarter filling. In the latter case the induced charge pump is fractional.
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I. INTRODUCTION

Topological states of matter [1–3] have fascinated physi-
cists for a long time as they can give rise to interesting
phenomena such as protected edge states and edge cur-
rents, quantized bulk transport in insulating states, and exotic
elementary excitations [4–8]. Free-fermion systems with
topological band structure are very well understood by now
and a full classification can be given in terms of generalized
symmetries of the single-particle Hamiltonian [9–11]. An im-
portant subclass of these systems is that of Chern insulators,
such as the Harper-Hofstadter model, where time-reversal
symmetry is broken. A hallmark feature of them in the case
of two spatial dimensions is the quantized Hall conductivity.
A related phenomenon in one-dimensional (1D) systems is
the quantized bulk transport upon adiabatic cyclic variations
of system parameters [12]. Both are strictly quantized in the
thermodynamic limit and at zero temperature and are related
to a topological invariant. In the last decade there has been a
growing interest in the field of interacting topological insula-
tors and a number of topological states have been discovered
that exist only because of interactions. Prime examples are
fractional quantum Hall states [7,8] and their generalizations
or the Haldane state in antiferromagnetic spin-1 chains [13].
While being incompressible like their noninteracting coun-
terparts, interacting topological insulators are fundamentally
different and are characterized by degeneracies and fractional
topological charges. One of the challenges in the field of inter-
acting topological insulators is to find suitable and measurable
invariants to distinguish between topological phases.

In the present paper we argue that the covariance matrix
of single-particle correlations can be used to define directly
measurable topological invariants of one-dimensional lat-
tice models, with and without interactions and also at finite

temperatures. In the absence of interactions all equilibrium
properties, including topological ones, are encoded in single-
particle correlations. Interestingly, as shown in Ref. [14], the
latter extends also to finite-temperature states. We here show
that topological properties encoded in the covariance matrix of
an (interacting) one-dimensional lattice system can be trans-
ferred to a second auxiliary chain of noninteracting fermions
giving rise to a quantized transport in the latter upon cyclic
adiabatic variations of parameters. In mean-field approxima-
tion the dynamics of the auxiliary fermions is governed by a
single-particle Hamiltonian matrix, which is identical to the
covariance matrix of the original model, which is therefore
also termed a fictitious Hamiltonian.

If the 1D system is composed of noninteracting fermions
the transported charge in the auxiliary chain is just given by
the Thouless, Kohmoto, Nightingale, and den Nijs (TKNN)
invariant of the original fermion Hamiltonian [5]. If the orig-
inal system is interacting, the number of auxiliary particles
transported in a full cycle is still quantized and defines a
topological invariant. We show that this invariant is fully de-
termined by the Zak phase of the single-particle Bloch states
of the fictitious Hamiltonian matrix. In many cases it is identi-
cal to the many-body generalization of the TKNN invariant by
Niu, Thouless, and Wu (NTW) [15,16], but a general relation
cannot be derived.

The idea to relate topological properties of interacting sys-
tems to single-particle quantities is not new. Building on early
work by Volovik [17], Wang et al. [18–20], and Gurarie and
coworkers [21,22] suggested simplified topological invariants
of interacting systems in terms of single-particle Green’s func-
tions. As is true for the fictitious Hamiltonian discussed in
the present paper, the Green’s function at zero frequency is
simply related to the single-particle Hamiltonian in the case
of noninteracting fermions. Also all generalized symmetries
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of the Hamiltonian are inherited by the Green’s function in
this case.

Our paper is organized as follows. In Sec. II we discuss the
topological equivalence between the single-particle Hamilto-
nian of free fermions and the covariance matrix in a gapped
many-body ground state or in a finite-temperature state. In
Sec. III we show that the topological properties of an aux-
iliary chain of fermions weakly coupled to the original one
are controlled by an effective single-particle Hamiltonian, the
fictitious Hamiltonian above. Thus topological effects, such
as quantized bulk transport, can be induced in the auxiliary
chain. We illustrate our findings for a simple 1D topological
model, the Rice-Mele model (RMM) at half filling. The cou-
pling scheme proposed in Sec. III is diagonal in momentum
space and difficult to implement. Therefore we discuss in
Sec. IV an approximate implementation using quasilocal cou-
plings only. In Sec. V we extend the discussion to insulating
ground states of interacting systems in one dimension, includ-
ing the case of degeneracy. As a specific example we consider
the superlattice Bose-Hubbard model with strong nearest-
neighbor (NN) and next-nearest-neighbor (NNN) interactions
of bosons. This model has two degenerate, Mott-insulating
ground states at quarter filling associated with a fractional
topological charge. Finally, making use of the simple relation
between the covariance matrices of a noninteracting fermion
system at finite and zero temperature, we give an outlook
to measurements of finite-temperature topological invariants
[14,23,24].

II. FREE FERMIONS: TOPOLOGICAL EQUIVALENCE
OF THE HAMILTONIAN AND THE EQUILIBRIUM

COVARIANCE MATRIX

A. Model and the equilibrium covariance matrix

Let us first consider gapped ground states of noninteracting
fermions on a lattice with particle number conservation. We
consider a one-dimensional lattice with lattice constant a = 1
and L unit cells and set h̄ = 1 throughout this paper. The
operators ĉµ, j, ĉ†

µ, j describe the annihilation and creation of a
fermion in the jth unit cell and with the index µ ∈ {1, . . . , p}
denoting a possible internal degree of freedom within a unit
cell. Assuming translational invariance for simplicity, the
Hamiltonian can be written in second quantization in the form

Hs =
∑

k

p∑

µ,ν=1

ĉ†
µ(k) hµν (k) ĉν (k). (1)

Some remarks about disordered systems will be made later.
We consider a grand canonical setting with chemical potential
µ which fixes the total particle number in the system. We
assume that Hs has multiple bands and consider an insula-
tor, i.e., assume that µ is chosen within a band gap of Hs.
Topological properties of lattice models are characterized by
integer-valued invariants, which in many cases are based on
geometric phases, such as the Zak phase [1], which is the
phase picked up by a Bloch state |un(k)⟩ in a specific band
n upon parallel transport through the Brillouin zone. In the
thermodynamic limit, where the lattice momentum becomes

continuous it reads

φ(n)
Zak = i

∫

BZ
dk ⟨un(k)|∂kun(k)⟩. (2)

The Zak phase is in general not unique as it depends on the
gauge choice of the Bloch states |un(k)⟩. One-dimensional
lattice models can possess nontrivial topological properties
only when protected by symmetries. A well-known example is
the Su-Schrieffer-Heeger model [25], where chiral symmetry
enforces topology. The latter is characterized by a quantized
value of the Zak phase of zero or π [1], which allows one to
distinguish between two topologically different phases. These
phases can only be connected by going through a phase transi-
tion or breaking the symmetry. As suggested by Rice and Mele
[26] adding an appropriate symmetry-breaking term allows
one to smoothly connect the phases avoiding the critical point.
Adiabatic cyclic variations of the Hamiltonian parameters en-
closing the critical point lead to a nontrivial winding of the
Zak phase, which defines a topological invariant as integral
over the two-dimensional parameter space (k, t ) on a torus:

νs = i
2π

∫ τ

0
dt

∫

BZ
dk ⟨∂t un(k)|∂kun(k)⟩. (3)

In two-dimensional systems with lattice momenta kx and ky,
one of the two momenta can take over the role of t .

We now argue that the topological properties of the sys-
tems, determined by the single-particle Hamiltonian h(k), are
also encoded in the covariance matrix of normal-ordered,
single-particle correlations in a gapped many-body ground
state:

mµν (k) = ⟨ĉ†
µ(k)ĉν (k)⟩. (4)

The ground state of a system of free fermions on a lattice is a
Gaussian state

ρ = 1
Z

exp

{

−
∑

k

ĉ†(k) g(k) ĉ(k)

}

(5)

which is fully determined by a p × p Hermitian matrix g(k),
and we have used the abbreviation ĉ(k) = (ĉ1(k), . . . , ĉp(k)).
The covariance matrix of such a state is directly related to g
by [23]

mµν (k) = 1
2

[
1 − tanh

(
g(k)

2

)]

µ,ν

. (6)

One notices that Eq. (5) has the form of a Gibbs state and
indeed an equilibrium state of Hs at finite β = 1/(kBT ) is also
a Gaussian state with

g(k) = β(h(k) − µ). (7)

The ground state is obtained in the limit β → ∞. Most impor-
tantly all (single-particle) eigenstates |ϵn(k)⟩ of h(k) are also
eigenstates of g(k) and thus of the covariance matrix m(k).

B. Fictitious Hamiltonian

Let us now consider a free-fermion lattice system with
fictitious Hamiltonian [23]

Hfict = η
∑

k

p∑

µ,ν=1

â†
µ(k) mµν (k) âν (k) (8)
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where âµ(k) and â†
µ(k) are fermion annihilation and creation

operators in momentum space and m(k) is the single-particle
covariance matrix, Eq. (6).

If m(k) corresponds to a gapped ground state of a fermion
lattice model, the fictitious Hamiltonian hfict(k) = ηm(k) is
also gapped. In an insulating nondegenerate ground state of
the original system, the fictitious Hamiltonian hfict(k) has a
flat spectrum

ϵfict
n (k) =

{
0 if ϵn(k) > µ
η if ϵn(k) < µ

, (9)

with only two energy “bands.” Note that for positive values
of η the spectrum of the fictitious single-particle Hamiltonian
is reversed with respect to that of h(k). Depending on the
sign of η, the gapped many-body ground state of the ficti-
tious Hamiltonian thus contains all single-particle eigenstates
with energies ϵn(k) either above (for η > 0) or below (for
η < 0) the chemical potential µ. In particular if η > 0 and
the original Hamiltonian has d bands with energy ϵn(k) < µ,
hfict(k) has a p-d-fold degenerate ground state for every lattice
momentum k with energy ϵfict

n (k) = 0 and a d-fold degenerate
excited state with energy ϵfict

n (k) = η. If η < 0 the situation is
reversed.

We now argue that the fictitious system inherits the topo-
logical properties of the original one. Let us consider adiabatic
parameter variations of the system Hamiltonian Hs(t ) in a
closed loop in time from t = 0 to t = τ , such that Hs(t ) =
Hs(t + τ ). Then the initial and final states of the original
system are the same apart from a phase and also the ground
state of the fictitious system will return to itself. Since the
single-particle eigenstates of the fictitious Hamiltonian are
identical to those of the system Hamiltonian, the Wilson loop
[27] of the d-fold (η < 0) degenerate ground-state manifold
of Hfict reads

νfict = 1
2π

∫ τ

0
dt

∂

∂t
Im ln det W

= 1
2π

∫ τ

0
dt

∂

∂t
Im Tr ln W, (10)

with the d × d matrix (n, m ∈ {1, . . . , d})

Wnm = exp
{

i
∫

BZ
dk

〈
un(k)

∣∣∂kum(k)
〉}

, (11)

which is identical to the winding of the total Zak phase of all
occupied bands for η < 0:

νs = i
2π

∫ τ

0
dt

∑

n;occup.

∫

BZ
dk ⟨∂t un(k)|∂kun(k)⟩. (12)

Here the |un(k)⟩ are the Bloch states of the original
Hamiltonian (1), with ⟨r|ϵn(k)⟩ = eik·r⟨r|un(k)⟩, which are
also eigenstates of the fictitious Hamiltonian (8).

For η > 0, νfict corresponds to the winding number of
all unoccupied bands ν̃s = −νs of the original system. That
the two Hamiltonians H and Hfict have the same topological
properties in their corresponding insulating ground states is no
surprise as one recognizes from Eqs. (6) and (7) that h(k) can
be smoothly deformed into m(k) without closing the many-
body gap and thus both are topologically equivalent.

FIG. 1. Sketch of the topology transfer scheme: The original
chain of free or interacting fermions (top) is weakly coupled to an
auxiliary system of noninteracting fermions (bottom). The coupling
is diagonal in momentum space and conserves the particle numbers
in both chains.

III. TOPOLOGY TRANSFER FROM A FREE-FERMION
SYSTEM TO AN AUXILIARY SYSTEM

We now want to show that the fictitious Hamiltonian of
a 1D system can be physically realized by a weak coupling
to an auxiliary chain of otherwise noninteracting fermions.
In this way topological properties are transferred from one
system to a second, auxiliary one. This “topology transfer”
manifests itself, e.g., in a quantized charge transport in the
auxiliary system upon periodic adiabatic modulations of the
original Hamiltonian.

In this section we consider as the “system” noninteracting
fermions in a gapped many-body ground state, which is non-
degenerate. The generalization to interacting fermions, which
also includes the possibility of degeneracies, will be discussed
in a subsequent section.

A. Model

To be specific we consider two one-dimensional chains of
fermions weakly coupled to each other as indicated in Fig. 1.
The system, represented by the top chain, is described by a
free-fermion Hamiltonian Hs with annihilation and creation
operators ĉµ(k) and ĉ†

µ(k), where k is the lattice momentum
and µ labels the degrees of freedom within a unit cell. It is
weakly coupled to an “auxiliary” system of otherwise non-
interacting fermions with respective annihilation and creation
operators âµ(k) and â†

µ(k) according to

H = Hs + Hη, (13)

Hη = η
∑

k

p∑

µ,ν=1

ĉ†
µ(k)ĉν (k)â†

µ(k)âν (k). (14)

Here we have assumed a unit cell of p sites. The number
of fermions in both chains is individually conserved and we
assume that it is chosen such that the combined system has
an insulating many-body ground state |*0⟩. If |η| is small
compared to the gap of Hs, then the original system is only
little affected by the coupling and is approximately described
by its ground state |*s

0⟩, which is also insulating.
For the following discussion it is useful to rewrite the total

Hamiltonian in the form

H = H0 + H1 (15)
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where

H0 = Hs + η
∑

k

p∑

µ,ν=1

⟨ĉ†
µ(k)ĉν (k)⟩â†

µ(k)âν (k) (16)

contains the system Hamiltonian and the mean-field interac-
tion Hamiltonian, where mµν = ⟨ĉ†

µ(k)ĉν (k)⟩ is evaluated in
the ground state |*s

0⟩ of Hs. Thus Eq. (16) represents the ficti-
tious Hamiltonian (8) experienced by the auxiliary fermions.
The second term in (15) formally describes the coupling of the
auxiliary system to fluctuations in the original system

H1 = η
∑

k

p∑

µ,ν=1

(ĉ†
µ(k)ĉν (k) − ⟨ĉ†

µ(k)ĉν (k)⟩)â†
µ(k)âν (k)

(17)
and is responsible for the buildup of entanglement between
the two fermion chains.

B. Topology transfer and induced quantized particle transport

We now argue that an adiabatic cyclic modulation of Hs →
Hs(t ) in time will lead to a topological charge pump in the
auxiliary system. A modulation Hs → Hs(t ) = Hs(t + τ ) in
time with period τ implies a corresponding cyclic modulation
of the covariance matrix m(t ) and the fictitious Hamiltonian.
As we will show this gives rise to an adiabatic transport of Qa
particles in the auxiliary system.

If the auxiliary system is prepared in the ground state,
Qa is equal to the total winding number of occupied bands
of the original system, νs, for an attractive coupling η < 0,
or the total winding number of unoccupied bands, ν̃s = −νs,
for the case of a repulsive coupling η > 0:

Qa =
{
+νs, for η < 0
−νs, for η > 0 . (18)

If, on the other hand, the auxiliary system is prepared in
the excited state of the fictitious Hamiltonian, the transported
charge is opposite, i.e.,

Qa =
{
−νs, for η < 0
+νs, for η > 0 . (19)

Thus the transport in the auxiliary system is indeed of topo-
logical nature and not just due to an interaction-induced drag
of auxiliary particles with particles in the original system.

To calculate the number of transported particles Qa, assum-
ing initial preparation in the ground state, for simplicity, we
follow the procedure of Niu, Thouless, and Wu [15] and inte-
grate the expectation value of the total momentum operator of
the auxiliary fermions P̂a =

∑N
i=1 p̂i in a nondegenerate adi-

abatic eigenstate |*(t )⟩ with |*(t = 0)⟩ = |*0⟩ of the total
system. Since there is no transport in instantaneous insulating
eigenstates, one has to consider the lowest-order nonadiabatic
correction:

|*(t )⟩ = |*0(t )⟩ + i
∑

n ̸=0

|*n(t )⟩⟨*n(t )|∂t*0(t )⟩
En(t ) − E0(t )

. (20)

|*n(t )⟩ are the excited eigenstates with energy En(t ). This
gives in lowest order of nonadiabatic corrections

Qa = 1
L

∫ τ

0
dt ⟨*(t )|P̂a|*(t )⟩

= 1
L

∫ τ

0
dt

∑

n ̸=0

⟨*0(t )|P̂a|*n(t )⟩⟨*n(t )|∂t*0(t )⟩
En(t ) − E0(t )

+ c.c.

(21)

In order to calculate the matrix elements of the momentum op-
erator it is useful to perform a canonical transformation of the
Hamiltonian H (α) = e−iαX̂a HeiαX̂a , with X̂a being the position
operator of the particles of the auxiliary system. Making use
of P̂a = −i[X̂a, H] = ∂αH (α)|α=0 one finds

⟨*0|P̂a|*n⟩ = ⟨*0|
∂H (α)

∂α
|*n⟩

∣∣∣∣
α=0

= −⟨∂α*0(α)|*n(α)⟩(En(α) − E0(α))|α=0. (22)

This gives for the transported charge

Qa = − i
L

∫ τ

0
dt (⟨∂α*0|∂t*0⟩ − ⟨∂t*0|∂α*0⟩)α=0. (23)

Following Ref. [15] Qa is identical to its average over all
values of α between {−π/L,π/L} in the thermodynamic
limit L → ∞. Note that α = ±π/L correspond to the same
situation. This gives an integral of a Berry curvature over a
two-dimensional torus

Qa = − i
2π

∫ τ

0
dt

∫ π/L

−π/L
dα(⟨∂α*0|∂t*0⟩ − ⟨∂t*0|∂α*0⟩)

(24)
which must be an integer and is a topological invariant νa,
corresponding to a winding number.

We now show that this winding number is identical to
the topological invariant characterizing all occupied bands
(respectively, all unoccupied bands) of the original system. To
this end we assume a weak coupling η where H1 can be con-
sidered as a perturbation to H0. For simplicity we assume in
the rest of this subsection η < 0. All arguments can however
straightforwardly be applied to η > 0.

1. Zeroth-order perturbation in H1

In lowest order of H1 the evolution of the system chain is
unaffected by the auxiliary one and the dynamics of the latter
is determined by the mean-field (fictitious) Hamiltonian:

Hfict(t ) = η
∑

k

p∑

µ,ν=1

â†
µ(k) mµν (k, t ) âν (k). (25)

Since the Hamiltonian of the system chain hµν is mod-
ulated in time with period τ , the covariance matrix is also
τ periodic, mµν (k, t + τ ) = mµν (k, t ). In lowest-order per-
turbation there is no buildup of entanglement between the
two subsystems and all eigenstates of the combined system
factorize. In particular one has for the ground state of the total
system

∣∣*(0)
0

〉
=

∣∣*s
0

〉 ∣∣*a
0

〉
(26)

012209-4



QUANTIZED TRANSPORT INDUCED BY TOPOLOGY … PHYSICAL REVIEW A 104, 012209 (2021)

where |*a
0⟩ is the ground state of (25). The transported charge

Qa is thus given by Eq. (24), with |*0⟩ replaced by the
ground state |*a

0⟩ of Hfict. Since for noninteracting fermions
the covariance matrix has the same eigenfunctions as the
single-particle Hamiltonian hµν (k, t ) of the original system,
Qa is given in lowest-order perturbation by the winding num-
ber of the total Zak phase of the system Hamiltonian, i.e.,

Q(0)
a = νfict =

{
+νs, for η < 0
−νs, for η > 0 . (27)

The excited states with energy E (0)
n,m can be labeled with

two indices n and m corresponding to the system and auxiliary
chain, respectively:

∣∣*(0)
n,m

〉
=

∣∣*s
n

〉 ∣∣*a
m

〉
. (28)

2. First-order perturbation in H1

In first order of H1 the instantaneous ground state of the
combined system reads

∣∣*(1)
0

〉
= √

p
∣∣*(0)

0

〉
+

√
1 − p|*̃⟩ (29)

where
√

p is the overlap between the exact ground state of the
system and the unperturbed one. The normalized correction to
the state vector reads

|*̃⟩ =
√

p
1 − p

∑

n ̸=0

∑

m

∣∣*(0)
n,m

〉〈
*(0)

n,m

∣∣H1
∣∣*(0)

0

〉

E (0)
n,m − E (0)

0

. (30)

Since H1 ∼ (ĉ†
µĉν − ⟨*s

0|ĉ†
µĉν |*s

0⟩), the only states contribut-
ing to |*̃⟩ are those where the system chain is excited
|*s

n>0⟩|*a
m⟩. Thus the denominator is always larger than the

energy gap of the system, i.e., E (0)
n,m − E (0)

0 ! ,gap, and the
probability 1 − p for the exact ground state to contain compo-
nents orthogonal to the unperturbed one scales as

(1 − p) ∼
∑

n ̸=0

∑

m

〈
φ(0)

0

∣∣H1
∣∣*(0)

n,m

〉〈
*(0)

n,m

∣∣H1
∣∣*(0)

0

〉

(
E (0)

n,m − E (0)
0

)2

∼ O
(

η2

,2
gap

)
. (31)

Plugging |*(1)
0 ⟩ into expression (24) for the transported charge

yields

Q(1)
a = − i

2π

∫
dt

∫
dα

{〈
∂α*(1)

0

∣∣∂t*
(1)
0

〉
− c.c.

}
(32)

= − i
2π

∫
dt

∫
dα

{
p
(〈
∂α*(0)

0

∣∣∂t*
(0)
0

〉
− c.c.

)

+ (1 − p)
(
⟨∂α*̃|∂t*̃⟩ − c.c.

)

+
√

p(1 − p)
(〈
∂α*(0)

0

∣∣∂t*̃
〉
+

〈
∂α*̃

∣∣∂t*
(0)
0

〉

−
〈
∂t*̃

∣∣∂α*(0)
0

〉
−

〈
∂t*

(0)
0

∣∣∂α*̃
〉)}

. (33)

As can be seen from Eq. (32), also Q(1)
a is an integral

of a Berry curvature of a gapped many-body state over a
two-dimensional torus and thus an integer. Apart from the
prefactors p and 1 − p the same holds for the integrals in the
second and third line of the above expression. Furthermore,

as we will show in the Appendix, the last integral in (33)
vanishes exactly.

Thus we can write

Q(1)
a = Q(0)

a + (1 − p)Q̃a, (34)

with Q̃a being an integer. As long as η is sufficiently small
compared to the gap of the unperturbed system, ,gap, there
is no phase transition in the combined system and thus the
winding number of the total system as well as the transported
charge Q(1)

a must be the same as in the limit (1 − p) → 0. The
only integer in Eq. (34) compatible with this is Q̃a ≡ 0. Thus
also in first-order perturbation one has

Q(1)
a = νfict =

{
+νs, for η < 0
−νs, for η > 0 , (35)

i.e., a cyclic adiabatic variation of parameters of the original
system Hamiltonian induces a strictly quantized topological
charge transport in the auxiliary system.

C. Example

To illustrate the topology transfer let us consider the sim-
plest topologically nontrivial model in one dimension, the
RMM [26]. This model, which is sketched in Fig. 2(a),
describes lattice fermions in the tight-binding limit with al-
ternating tunnel couplings t1 and t2 between neighboring sites
and a staggered on-site potential ±,. The unit cell thus con-
tains two sites, labeled A and B. The Hamiltonian can be
written in momentum space as

HRM =
∑

k

(
ĉ†

A(k)

ĉ†
B(k)

)T(
, −t1 − t2e−ik

−t1 − t2eik −,

)(
ĉA(k)

ĉB(k)

)
.

(36)

Here ĉA,B(k) denote the fermion annihilation operators of the
A or B sublattice in momentum space. The RMM has two
bands

ε±(k) = ±ε(k) = ±
√

,2 + t2
1 + t2

2 + 2t1t2 cos(k) (37)

and the gap closes only for , = t1 − t2 = 0. Except at this
point in parameter space, the RMM has thus an insulating
ground state at half filling. Adiabatically changing , = ,(t )
as well as t1,2 = t1,2(t ) in a closed loop encircling the degen-
eracy point leads to a nontrivial winding of the Zak phase of
the lower (upper) band, νs = +1 (ν̃s = −1), associated with
a quantized topological transport of one particle. This sim-
ple model has been implemented in cold-atom experiments
with fermions [28] or strongly interacting, fermionized bosons
[29]. The effects of going away from the strong interaction
limit of hard-core bosons was discussed in Ref. [30].

We now couple the RMM to an auxiliary chain of oth-
erwise noninteracting fermions at half filling, according to
Eq. (14). If we choose, say, a positive value of η, we expect
a quantized transport of particles in the auxiliary chain in the
opposite direction as in the Rice-Mele ground state.

Figures 2(b) and 2(c) show numerical simulations of the
particle transport in the auxiliary chain as a function of
time for different values of the coupling η > 0 (η/,RM

gap =
0.1, 1, 10) for the parameter path ,(t ) = −6 sin(2π t

τ
),

t1(t ) = 2[1 + cos(2π t
τ

)], t2(t ) = 2[1 − cos(2π t
τ

)], where τ
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was chosen sufficiently large to be adiabatic. At t = 0 the
Rice-Mele system decouples into unit cells, which are sym-
metric double wells, and we assume that it is prepared in
its ground state |*s

0⟩ =
∏

(|01⟩ + |10⟩). The auxiliary sys-
tem, on the other hand, is prepared either in the ground
state of the fictitious Hamiltonian [Fig. 2(b)] or in its excited
state [Fig. 2(c)]. One recognizes quantized transport in oppo-
site directions depending on the preparation of the auxiliary

fermions, despite the same interaction. The latter shows that
the induced transport is topological and not just an interaction-
induced drag.

On first glance it is surprising that the transport in the
auxiliary chain remains strictly quantized to one also beyond
the perturbative limit of small η. This can be understood as
follows: The Hamiltonian of the total system, consisting of
the RMM and the auxiliary chain, can be written in the form

H =
∑

k

(
ĉ†

A(k)

ĉ†
B(k)

)T(
, + ηâ†

A(k)âA(k) (−t1 − t2e−ik ) + ηâ†
A(k)âB(k)

(−t1 − t2eik ) + ηâ†
B(k)âA(k) −, + ηâ†

B(k)âB

)(
ĉA(k)
ĉB(k)

)
, (38)

where âA,B(k) denote the fermion annihilation operators of the A or B sublattice in the auxiliary system. The total Hamiltonian
conserves the particle number in each subsystem and for every momentum. Thus we can express (38) at double half filling in the
particle-number basis |nc

Anc
Bna

Ana
B⟩k as follows:

H =
∑

k

⎛

⎜⎜⎜⎝

|1001⟩
|0101⟩
|1010⟩
|0110⟩

⎞

⎟⎟⎟⎠

T⎛

⎜⎜⎜⎝

, −(t1 + t2e−ik ) 0 0
−(t1 + t2eik ) −, + η η 0

0 η , + η −(t1 + t2e−ik )
0 0 −(t1 + t2eik ) −,

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

⟨1001|
⟨0101|
⟨1010|
⟨0110|

⎞

⎟⎟⎟⎠
. (39)

The 4 × 4 Hamiltonian has four eigenvalues for every lattice
momentum, which can easily be calculated:

ε±(k) = ±ε(k) = ±
√

,2 + t2
1 + t2

2 + 2t1t2 cos(k), (40)

ε±(k, η) = η ±
√

ε(k)2 + η2. (41)

The corresponding bands are separated by gaps, which
close for any η ̸= 0 only for , = t1 − t2 = 0. There is no
band crossing because, for η > 0, ε+(k, η) > ε+(k) > 0 >
ε−(k, η) > ε−(k). In the absence of a gap closing upon chang-
ing η, there is no topological phase transition and thus the
transported charge in both systems remains quantized to the
same value for arbitrary values of η, i.e., in particular also
beyond the perturbative regime. The many-body gap ,gap of
the full system at double half filling ranges between |η| and
half the gap of the RMM, ,RM

gap , with

,gap ≃
{

|η| for |η| ≪ 1
,RM

gap

2 for |η| ≫ 1
. (42)

Another surprising feature of the simulations in Figs. 2(b) and
2(c) is that all curves lie on top of each other. This is due to the
choice of η being positive. In this case the lowest eigenstate
of (39), |φ−⟩, does not depend on η:

|φ±⟩ ∼ − (, ± ε(k))2

(t1 + t2eik )2
|1001⟩ + , ± ε(k)

t1 + t2eik
|0101⟩

−, ± ε(k)
t1 + t2eik

|1010⟩ + |0110⟩, (43)

|φη
±⟩ ∼ t1 + t2e−ik

t1 + t2eik
|1001⟩ + , − ε±(k, η)

t1 + t2eik
|0101⟩

−, + ε±(k, η)
t1 + t2eik

|1010⟩ + |0110⟩. (44)

Thus not only is the net charge transported in one full cycle
of the Thouless pump exactly quantized, but the transport is
completely independent of η.

D. Comment on the effect of disorder

Until this point we have assumed lattice translational
invariance, which excludes the presence of disorder. Topo-
logical properties are however expected to be robust against
weak perturbations and thus we have to discuss if the topology
transfer survives in the presence of disorder. To this end we
can modify the discussion in Sec. III B and add a disorder
potential acting on the original system:

H1 → H1 + Hdis. (45)

We can repeat the perturbation arguments given in Sec. III B
and see that as long as Hdis does not lead to a gap closing
the transported charge in the auxiliary system remains strictly
quantized to the value set by the fictitious Hamiltonian.

IV. IMPLEMENTATION OF TOPOLOGY TRANSFER

The coupling Hamiltonian (14), which induces the topol-
ogy transfer between system and auxiliary chain, is diagonal
in momentum space and as such difficult to realize. In the
following we will show that it can be approximately imple-
mented by couplings that are short ranged in real space and
thus can be realized, e.g., in experiments with ultracold gases.
We will restrict the following discussion to a system with
translational invariance of the ground state by two lattice sites.
Then transforming to a real-space description via

ĉµ(k) = 1√
L

L∑

j=1

e
2π i jk

L ĉ j,µ (46)

where the index j ∈ {1, . . . , L} denotes the unit cell and µ ∈
{A, B} denotes the intracell degree of freedom, the fictitious
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(a)

(b)

(c)

FIG. 2. (a) Rice-Mele model (RMM) with alternating hopping t1,
t2 and staggered potential ±,. (b) Particle transport in the auxiliary
chain between adjacent unit cells (,ninter

BA ) and within the unit cell
(,nintra

AB ) as a function of time upon adiabatic change of parame-
ters of RMM for the auxiliary system prepared in the ground state
|φ−⟩ of the fictitious Hamiltonian. (c) The same for the auxiliary
system being prepared in the excited state |φ+⟩. In (b) the curves,
which are plotted for η/,RM

gap = 0.1, 1, 10, lie exactly on top of each
other. Here ,RM

gap is the minimum gap along the parameter path of
the RMM: ,(t ) = −6 sin(2π t

τ
), t1(t ) = 2[1 + cos(2π t

τ
)], t2(t ) =

2[1 − cos(2π t
τ

)].

Hamiltonian (8) can be expressed as

Hfict = η
∑

m,n

∑

µ,ν

(⟨ĉ†
m,µĉn,ν⟩â†

m,µân,ν + H.a.). (47)

Here we have used the translational invariance of ground-state
correlations. In an insulating state of the original system,
off-diagonal first-order coherences decay exponentially with
distance and to good approximation it is sufficient to consider
nearest-neighbor correlations. If we denote the left site of a
unit cell with the index µ = A and the right site by µ = B,
the only relevant correlations are thus

⟨ĉ†
m,µĉm,µ⟩, ⟨ĉ†

m,Aĉm,B⟩, ⟨ĉ†
m,Bĉm+1,A⟩, ⟨ĉ†

m,Aĉm−1,B⟩.

With this we find

Hfict ≈ 2η
∑

l

⟨ĉ†
l ĉl⟩â†

l âl + 2η
∑

l

(⟨ĉ†
l+1ĉl⟩â†

l+1âl + H.a.),

(48)

(b)

(a)

FIG. 3. (a) Particle transport in the auxiliary system for system
size of L = 2 unit cells, and η/,RM

gap = 0.25 between sites within
a unit cell (blue) and across unit cells (orange), using the approxi-
mate real-space coupling scheme (49). All other parameters are as
in Fig. 2. (b) Deviation from quantized transport as a function of
number of sites N = 2L for strong coupling to the auxiliary system
η/,RM

gap = 1. Even for this large coupling, clearly outside the per-
turbative regime, one recognizes exponential decay with increasing
system size N and a quantized value of the transported charge is
approached in the thermodynamic limit.

where we have switched to a a simpler notation for the spatial
indices (m, A) → l = 2m and (m, B) → l = 2m + 1. Equa-
tion (48) is the mean-field approximation corresponding to a
coupling Hamiltonian

H̃η = 2η
∑

l

ĉ†
l ĉl â

†
l âl + 2η

∑

l

(ĉ†
l+1ĉl â

†
l+1âl + H.a.),

(49)

which describes a local density-density coupling and corre-
lated nearest-neighbor hopping.

In Fig. 3(a) we have shown numerical results for the adi-
abatic transport in the auxiliary system coupled to a RMM
chain by the approximate interaction (49) obtained from exact
diagonalization for a system of L = 2 unit cells (of 2 × 2
sites). Shown is the time dependence in one cycle of a Thou-
less pump for repulsive interaction (η > 0) and η/,RM

gap =
0.25. One recognizes that the transport deviates from the ex-
pected value of unity. The deviation increases with increasing
coupling strength η but decreases exponentially with sys-
tem size. This is shown to hold true even for a very strong

012209-7



WAWER, LI, AND FLEISCHHAUER PHYSICAL REVIEW A 104, 012209 (2021)

coupling η/,RM
gap = 1, i.e., outside of the perturbative regime,

in Fig. 3(b).

V. TOPOLOGY TRANSFER FROM INTERACTING
SYSTEMS TO AUXILIARY FERMIONS

We have seen that a chain of auxiliary fermions coupled
to a one-dimensional lattice according to Eq. (14) inherits the
topological properties encoded in the fictitious Hamiltonian.
In particular the transport in the auxiliary chain upon cyclic
adiabatic variations of parameters directly detects the topo-
logical invariant of the fictitious Hamiltonian.

If the original system is in a gapped ground state of nonin-
teracting fermions, νfict is identical to the TKNN invariant.
It is near at hand to ask what happens in the presence of
interactions. We will show in the following that the transfer
of topology also applies if the original system is an interacting
system with an insulating many-body ground state.

In the absence of interactions, gapped ground states occur
only at integer fillings of fermions per unit cell, which im-
plies integer-valued topological charges. This changes with
interactions. Here gapped ground states can exist which have
fractional fillings and the Lieb-Schultz-Mattis theorem [31]
tells us that they are degenerate [32]. We will thus have to
discuss the topology transfer in the case of interactions with
and without degeneracies separately.

A. Nondegenerate ground state

In Sec. III we have shown that if the total system is pre-
pared in a nondegenerate and gapped ground state |*0⟩ =
|*s

0⟩|*a
0⟩ + O(η) the charge transported in the auxiliary chain

is integer quantized and the integer is given by the winding
number νfict of the Zak phase of the fictitious Hamiltonian.
Since the discussion in Sec. III B made no reference to the
system being a noninteracting one, all results apply equally to
interacting particles. Thus

Qa = νfict. (50)

Equation (50) gives us the license to interpret the winding
number νfict as topological invariant also for interacting one-
dimensional systems with a nondegenerate, gapped ground
state [33].

It is near at hand to ask if and what relation exists between
νfict and, e.g., the winding number νs of the many-body Zak
phase φMB

Zak introduced by NTW [15]:

φMB
Zak = i

∫ π/L

−π/L
dθ ⟨*s

0(θ )
∣∣∂θ*

s
0(θ )

〉
. (51)

Here |*s
0(θ )⟩ is the nondegenerate many-body ground state of

the twisted system Hamiltonian Hs(θ ) = e−iθ X̂ Hseiθ X̂ , with X̂
being the total position operator of all particles, and periodic
boundary conditions are assumed. While for the examples we
studied, such as the superlattice Bose-Hubbard model in a
Mott insulating state with one boson per unit cell, it appeared
that they are the same, i.e., νfict = νs, a strict proof is not
obvious. Furthermore a word of caution should be given: It is
not guaranteed that the fictitious Hamiltonian remains gapped
whenever the many-body ground state of the original system

does. The latter holds true for noninteracting systems but may
fail in the presence of interactions.

B. Ground-state degeneracies and fractional transport

Let us now discuss the case of a d-fold degenerate ground
state |*s

0,λ⟩ of the interacting system, with λ = (1, 2, . . . , d ).
Furthermore let us restrict ourselves to cases where the
degeneracy is accompanied by a spontaneous breaking of
lattice-translational invariance. Then it is possible to find a
basis {|*s

0,λ⟩} such that the application of the lattice shift op-
erator T̂ by one unit cell transforms between the basis states:

|*0,λ+1⟩ = T̂ |*0,λ⟩. (52)

d-fold application of T̂ returns any eigenstate back to itself
(up to a phase). Real-space correlations ⟨ĉ†

j ĉl⟩ in any of the
degenerate ground states are then only invariant under d suc-
cessive lattice translations. It is therefore useful to introduce
a new, enlarged unit cell. If the single-particle Hamiltonian of
the system has a unit cell of p lattice sites, the enlarged unit
cell consists of pd sites, and the new Brillouin zone is corre-
spondingly reduced. The fictitious Hamiltonian expressed in
this reduced Brillouin zone has thus in general pd bands:

Hfict(t ) = η
∑

k

pd∑

µ,ν=1

â†
µ(k) mλ

µν (k, t ) âν (k) (53)

where mλ
µν (k, t ) = ⟨*0,λ(t )|ĉ†

µ(k)ĉν (k)|*0,λ(t )⟩ is the
covariance matrix of single-particle correlations in the
λth ground state. In general the bands of Hfict will be
separated by gaps and the fictitious fermion system will have
a nondegenerate gapped ground state when the number of
auxiliary fermions is chosen appropriately.

The coupling Hamiltonian (14) that realizes the fictitious
Hamiltonian for the auxiliary chain can also be rewritten in
the reduced Brillouin zone:

Hη = η
∑

k

pd∑

µ,ν=1

ĉ†
µ(k)ĉν (k)â†

µ(k)âν (k). (54)

Due to the degeneracy only a d-fold cycle of the parameters
of the original system returns the fictitious Hamiltonian back
to itself. Thus we expect that there is a quantized transport in
the auxiliary system only after d pump cycles. This property
is in full agreement with the corresponding property of the
many-body Zak phase, Eq. (51). As shown by Niu, Thouless,
and Wu [15], the topological invariant of an interacting system
with a degenerate many-body ground state is an integral of
the Berry curvature over an enlarged torus, extending the time
integration to τ d:

νs = 1
2π

∫ τd

0
dt

∫ π/L

−π/L
dθ Im

〈
∂t*

s
0,λ

∣∣∂θ*
s
0,λ

〉
. (55)

Let us now consider, as a specific example with degener-
ate ground states, the one-dimensional extended superlattice
Bose-Hubbard model (ExtSLBHM) [34,35]. The single-
particle part of the Hamiltonian is identical to the RMM,
Eq. (36), only for bosons. In addition there are interactions
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FIG. 4. (a) Extended superlattice Bose-Hubbard model with NN
(V1) and NNN (V2) interactions. Particle transport at quarter filling
in the boson system (b) and the auxiliary fermion system (c) for
η = 0.1, U = 4000, V1 = 2V2 = 200, t1,2(t ) = 50[1 ± cos(2πt/τ )],
,(t ) = 100 sin(2πt/τ ), and τ = 200.

between particles at the same lattice site with strength U NN
and NNN couplings V1 and V2, respectively [see Fig. 4(a)]:

H = −t1
∑

j,even

â†
j â j+1 − t2

∑

j,odd

â†
j â j+1 + c.c.

+,
∑

j

(−1) j â†
j â j + U

2

∑

j

n̂ j (n̂ j − 1)

+V1

∑

j

n̂ j n̂ j+1 + V2

∑

j

n̂ j n̂ j+2 (56)

where n̂ j = â†
j â j denotes the particle number at lattice site j.

For strong interactions this model has Mott-insulating phases
at fractional fillings, e.g., at average filling ρs = 1/4 per site.
The corresponding ground state is doubly degenerate and
topologically nontrivial. Adiabatically varying the staggered
potential ,(t ) and the hoppings t1(t ) − t2(t ) in a loop enclos-
ing the origin realizes a topological Thouless pump. Since the
ground state is doubly degenerate, a single cycle transfers one
ground state into the other one. Here two cycles are needed for
an integer quantized particle transport, which reflects the frac-
tional topological charge of this model [35,36]. If we prepare

0 0.2 0.4 0.6 0.8 1
t/

0

0.2

0.4

0.6

0.8

1

Q

Q7,8
Q8,9
Q9,10
Q10,11
Qave

FIG. 5. Particle transport in the auxiliary system across different
bonds between adjacent lattice sites as a function of time during a
single cycle of the Thouless pump for parameters of Fig. 4. While
the net transport through different bonds varies due to the density-
wave structure of the ground state, the average net transport ,Qave

is exactly 0.5, reflecting the fractional topological charge of the
ExSLBHM.

the system in one of the two ground states |*0,±⟩, with spon-
taneously broken translational invariance, the corresponding
fictitious Hamiltonian m±

µ,ν has a single-particle gap, and an
insulating many-body ground state exists at average filling of
auxiliary fermions of ρaux = 1/4 per lattice site.

In order to calculate the particle transport in such a state
from the full Hamiltonian, we use time-evolving block dec-
imation (TEBD) simulations [37–39], which are based on a
representation of the many-body wave function in terms of
matrix-product states (MPSs) [40]. Since MPS simulations
are much more difficult for periodic boundary conditions, we
here choose a finite system of 2 × 18 sites with open boundary
conditions. Furthermore we used the approximate real-space
coupling Hamiltonian (49). The results of our simulations for
strong interactions are shown in Figs. 4(b) and 4(c), where
the particle densities in the ExtSLBHM [Fig. 4(b)] and the
auxiliary fermion chain [Fig. 4(c)] are shown as a function
of time during a single cycle of the Thouless pump. One
recognizes that exactly 1/2 of the particle was transported in
both chains, reflecting the fractional topological charge of the
ExtSLBHM. We here have chosen η < 0 corresponding to an
attractive interaction between the particles in the two chains.
Note that due to the use of open boundary conditions we
cannot simulate the full period of two pump cycles since then
a particle would be driven into excited states. Due to the open
boundary conditions the ExSLBHM has an occupied edge
state at the left end at t = 0, where , = 0, and an occupied
edge state at the right after a single cycle, i.e., at t = τ . For
the chosen parameter, which corresponds to the atomic limit,
the parallel transport in both chains becomes clearly visible.

The time evolution of the pump can be seen in more detail
in Fig. 5, where we have shown the particle transport in the
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auxiliary chain across different bonds as a function of time.
One recognizes that the net transport averaged over one en-
larged unit cell is exactly 0.5 as expected.

VI. OUTLOOK TO FINITE-TEMPERATURE SYSTEMS

A. Fictitious Hamiltonian of a free-fermion system at T > 0

It is interesting to note that the discussion in Sec. II B for
free fermions carries over to a finite-temperature state of the
original system. As can be seen from Eqs. (6) and (7) the
fictitious Hamiltonian remains gapped in thermal states as
long as T < ∞, i.e., β > 0. For the eigenvalues ϵ̃fict

n (k) in a
thermal equilibrium state of (1) holds:

ϵ̃fict
n (k) = η

2

[
1 − tanh

(
β(ϵn(k) − µ)

2

)]
, (57)

i.e., the spectrum is no longer flat for T ̸= 0. If the chemical
potential µ is in the middle of a band gap of Hamiltonian (1)
of size ,, the fictitious Hamiltonian is also gapped:

,fict
gap = |η| tanh

(
β,

4

)
. (58)

Increasing the temperature leads to a reduction of the gap size,
which approaches zero only at infinite temperature (β = 0).
Most importantly the Zak phase of the fictitious Hamiltonian
has the same topological winding as that of the ground state
of the original Hamiltonian. From this it was concluded in
Ref. [14] that noninteracting fermions at any finite tempera-
ture are topologically equivalent to the ground state.

Let us consider again the Rice-Mele model, Eq. (36).
One easily calculates the finite-temperature covariance ma-
trix, which has the following nonvanishing terms:

⟨ĉ†
A(k)ĉA(k)⟩ = 1

2
− ,

2εk
tanh

(
βεk

2

)
,

⟨ĉ†
B(k)ĉB(k)⟩ = 1

2
+ ,

2εk
tanh

(
βεk

2

)
,

⟨ĉ†
A(k)ĉB(k)⟩ =

(t1 + t2eik )
2εk

tanh
(

βεk

2

)
,

⟨ĉ†
B(k)ĉA(k)⟩ =

(t1 + t2e−ik )
2εk

tanh
(

βεk

2

)
.

This then leads to a fictitious Hamiltonian which, apart from
an uninteresting overall energy shift, is again of the structure
of the RMM with parameters directly related to those of the
original model:

t1,2 → t̃1,2(k) = η

2εk
tanh

(
βεk

2

)
t1,2,

, → ,̃(k) = η

2εk
tanh

(
βεk

2

)
,.

Its spectral gap is shown for different temperatures in Fig. 6.
One recognizes that except for the singular point of the
original RMM (, = t1 − t2 = 0) the fictitious Hamiltonian
remains gapped for all values of T .
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FIG. 6. Minimum energy of the upper band ε̃+ = min[ϵ̃+
0 (k)]

and maximum energy of the lower band ε̃− = max[ϵ̃−
0 (k)] of the

fictitious Hamiltonian of a Rice-Mele model H = ϵ0HRM at different
temperatures T , where HRM is from Eq. (36) and ϵ0 sets the overall
energy scale. Apart from the singular point of the original RMM
(, = t1 − t2 = 0), the fictitious Hamiltonian remains gapped for all
temperatures. (Note that for T = 0 the bands are flat but there is a
point singularity at the origin, which cannot be resolved in the graph.)

B. Topological invariant of the fictitious Hamiltonian:
Many-body polarization

We have argued in the previous sections that the topolog-
ical properties of the ground state of noninteracting lattice
fermions are mapped to those of the covariance matrix and
the fictitious Hamiltonian, respectively, and both are charac-
terized by the same topological invariant. This invariant can
be detected via a quantized transport in an auxiliary system
using the topology-transfer scheme discussed in this paper.
In the case of an equilibrium state of the fermion system with
nonzero temperature, or even in a nonequilibrium steady state,
the fictitious Hamiltonian is still well defined and one can
ask for its topological properties encoded in the Zak phase
(Wilson loop) of its lowest band. As was shown in Ref. [14]
the latter can in fact be used to generalize the concept of topol-
ogy to finite-temperature and nonequilibrium steady states of
noninteracting or Gaussian fermionic systems. It is interesting
to note that the topological invariant of the fictitious Hamilto-
nian for any pure or mixed Gaussian state is identical to the
many-body polarization of the system, introduced by Resta
(see Refs. [41,42]):

φfict
Zak = 2πP ≡ Im ln Tr{ρÛ }. (59)

Here Û = e2π iX̂ is the unitary momentum shift operator,
which shifts the lattice momentum of every particle by one
unit. X̂ = 1

L

∑L
j=1

∑p
s=1( j + rs)n̂ js is the center of mass of all

particles in the lattice consisting of L unit cells, with the lattice
constant set to 1. n̂ js denotes the particle number in the sth site
(s ∈ {1, 2, . . . p}) of the jth unit cell and periodic boundary
conditions are considered. 0 " rs " 1 describes the position
of the site within the unit cell.
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VII. SUMMARY AND CONCLUSION

In the present paper we have shown that topological prop-
erties encoded in the covariance matrix of single-particle
correlations of a one-dimensional lattice system can be trans-
ferred to a second, auxiliary chain of noninteracting fermions,
weakly coupled to the first. The coupling is constructed in
such a way that the auxiliary particles experience an effec-
tive mean-field Hamiltonian, called the fictitious Hamiltonian,
which is given by the covariance matrix of the first system. As
a consequence an adiabatic cyclic variation of parameters of
the original system induces a transport of auxiliary fermions in
an insulating ground state. The charge pump is quantized and
the transport is determined by the Zak-phase winding number
of the fictitious Hamiltonian, which is an integer-valued topo-
logical invariant. For noninteracting fermions this number is
just the TKNN invariant corresponding to either all occupied
or all unoccupied bands. We illustrated the topology transfer
for a simple topologically nontrivial system of noninteract-
ing fermions, the Rice-Mele model, coupled to an auxiliary
fermion chain, for which exact solutions for the state evolution
can be derived. The coupling between the two chains, required
for the topology transfer, is diagonal in momentum space and
thus difficult to implement. We showed that it can however
be well approximated by an interaction that contains only lo-
cal density-density couplings and correlated nearest-neighbor
hoppings.

In the presence of interactions in the original system, the
transport induced in the auxiliary chain is still quantized
and given by the winding number of the fictitious Hamil-
tonian, which therefore defines a topological invariant for
the interacting system. While without interactions insulat-
ing states require integer fillings of fermions per unit cell,
here gapped ground states can exist with fractional fillings
and degeneracies. In such a case multiple loops in parame-
ter space are needed for the eigenfunctions of the fictitious
Hamiltonian to return to themselves, indicating fractional
topological charges. We illustrated this for the example of the
ExtSLBH model with nearest- and next-nearest-neighbor in-
teractions coupled to a chain of noninteracting fermions. The
ExtSLBHM possesses a doubly degenerate Mott-insulating
state at quarter filling of bosons. It has a fractional topological
charge of 1/2 since only a twofold cyclic variation of the
single-particle terms in the Hamiltonian leads to a winding
of the many-body Zak phase by 2π . Using numerical TEBD
simulations we showed that a coupling of the ExtSLBHM to a
chain of noninteracting fermions induces the same fractional
transport in the auxiliary system. This suggests that the Zak-
phase winding of the fictitious Hamiltonian is identical to the
many-body topological invariant of NTW. While this is true
in many cases, we could not derive a general relation to this
invariant and such a relation may not exist in general. Nev-
ertheless if the winding number of the fictitious Hamiltonian
is nontrivial, it provides an observable invariant which allows
one to classify topological properties of an interacting system.

The matrix describing the fictitious Hamiltonian of non-
interacting fermions in thermal equilibrium is topologically
equivalent to the corresponding matrix of the ground state.
Thus, as sketched in the last section of the paper, the discussed
transfer scheme may also provide a tool to directly observe

topological invariants of finite-temperature states, such as the
ensemble geometric phase in noninteracting [14,24] or inter-
acting systems [43].
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APPENDIX

Here we give a proof that the mixed-term contribution in
Eq. (33) vanishes. We consider

ε = i
2π

∫ τ

0
dt

∫ π/L

−π/L
dα

(〈
∂α*(0)

0

∣∣∂t*̃
〉
−

〈
∂t*̃

∣∣∂α*(0)
0

〉

+
〈
∂α*̃

∣∣∂t*
(0)
0

〉
−

〈
∂t*

(0)
0

∣∣∂α*̃
〉)
.

Pulling out the derivatives in the bra vectors gives

ε = i
2π

∫ τ

0
dt

∫ π/L

−π/L
dα

(
∂α

〈
*(0)

0

∣∣∂t*̃
〉
− ∂t

〈
*̃

∣∣∂α*(0)
0

〉

+ ∂α

〈
*̃

∣∣∂t*
(0)
0

〉
− ∂t

〈
*(0)

0

∣∣∂α*̃
〉)

= i
2π

∫ τ

0
dt

(〈
*(0)

0

∣∣∂t*̃
〉
+

〈
*̃

∣∣∂t*
(0)
0

〉)π/L
π/L

− i
2π

∫ π/L

−π/L
dα

(〈
*̃

∣∣∂α*(0)
0

〉
+

〈
*(0)

0

∣∣∂α*̃
〉)τ

0 .

Making use of the orthogonality of the state vectors
⟨*(0)

0 |*̃⟩ = 0 one thus finds

ε = i
2π

∫ τ

0
dt

(〈
*(0)

0

∣∣∂t*̃
〉
− c.c.

)π/L
−π/L

− i
2π

∫ π/L

−π/L
dα

(〈
*̃

∣∣∂α*(0)
0

〉
− c.c.

)τ

0 .

Since upon a full cycle in either t or α the perturbed ground
state |*(1)

0 ⟩ has to return to itself apart from a phase factor,
one has

∣∣*(0)
0 (α, τ )

〉
= eiϑ (α)

∣∣*(0)
0 (α, 0)

〉
,

∣∣*̃(α, τ )
〉
= eiϑ (α)

∣∣*̃(α, 0)
〉
,

∣∣*(0)
0 (π/L, t )

〉
= eiλ(t )

∣∣*(0)
0 (−π/L, t )

〉
,

∣∣*̃(π/L, t )
〉
= eiλ(t )

∣∣*̃(−π/L, t )
〉
,

which yields

〈
*(0)

0 |∂t*̃
〉∣∣

π
L

= i
∂λ(t )
∂t

〈
*(0)

0

∣∣*̃
〉∣∣

π
L

+
〈
*(0)

0

∣∣∂t*̃
〉∣∣

− π
L

=
〈
*(0)

0

∣∣∂t*̃
〉∣∣

− π
L
, etc.,

where in the second line we have used again the orthogonality
⟨*(0)

0 |*̃⟩ = 0. This finally gives

ε = 0. (A1)
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