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We dedicate this paper to Bruce W. Shore, one of the fathers of the theory of coherent processes in atomic systems, at the occasion of his 70th birthday.
Abstract

We present a detailed analysis of the recently demonstrated technique to generate quasi-stationary pulses of light [M. Bajcsy, A.S.
Zibrov, M.D. Lukin, Nature (London) 426 (2003) 638] based on electromagnetically induced transparency. We show that the use of
counter-propagating control fields to retrieve a light pulse, previously stored in a collective atomic Raman excitation, leads to quasi-
stationary light field that undergoes a slow diffusive spread. The underlying physics of this process is identified as pulse matching of probe
and control fields. We then show that spatially modulated control-field amplitudes allow us to coherently manipulate and compress the
spatial shape of the stationary light pulse. These techniques can provide valuable tools for quantum nonlinear optics and quantum infor-
mation processing.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A very promising avenue towards scalable quantum
information systems is based on photons as information
carrier and atomic ensembles as storage and processing
units [1,2]. While a number of techniques for reliable trans-
fer of quantum information between light and atomic
ensembles have been proposed [3–5] and in part experimen-
tally realized over the last couple of years [5–11], the imple-
mentation of quantum information processing in these
systems remains a challenge. This is because deterministic
logic operations require efficient nonlinear interactions
between few photons or collective excitations correspond-
ing to stored photons. To achieve these long interaction
long interaction times and tight spatial confinement of
the excitations are needed. Even if long-range interactions
between stored photonic qubits are employed as e.g. in
0030-4018/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.optcom.2006.03.075

* Corresponding author.
E-mail address: mfleisch@physik.uni-kl.de (M. Fleischhauer).
the dipole-blockade scheme [12–14] tight confinement is
needed to reach sufficiently high fidelities.

In the present paper we discuss a method that could
allow to manipulate the spatial shape of a collective excita-
tion corresponding to a stored light pulse. It is an extension
of the recently demonstrated technique to generate quasi-
stationary pulses of light [15,16] in electromagnetically
induced transparency (EIT) [17] using counter-propagating
control fields. In [15] a light pulse was first stored in a delo-
calized state of an atomic ensemble by creating and adia-
batically rotating the collective atom-light excitation, the
so-called dark-state polariton [3], from a freely propagating
electromagnetic pulse into a stationary Zeeman excitation.
The adiabatic rotation, which is accompanied by a decrease
of the group velocity, is facilitated by reducing the intensity
of the EIT control field by a process very similar to Stim-
ulated Raman Adiabatic passage [18]. In the form of a pure
Zeeman or spin coherence the excitation is stored and well
protected from the environment for rather long times. At
the same time it is however also immobile, thus preventing
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any manipulation of its spatial shape. In addition, the
absence of any photonic component to the excitation pre-
vents the use of nonlinear optical interactions for making
such excitations interact. Regenerating a small photonic
component of the polariton by means of a weak stationary
retrieval field created by two counter-propagating lasers, a
quasi-stationary pulse of light was created in the experi-
ment of [15] in a second step. Through a mechanism known
as pulse-matching [19,20], the intensity of the regenerated
stationary pulse follows the oscillatory profile of the
retrieve laser intensity. This process allows one to create
a stationary excitation with a finite photonic component,
i.e., an excitation with stationary, localized electromagnetic
energy. One remarkable consequence of this effect is the
possibility to enhance nonlinear optical processes [16].
Another interesting aspect of this technique is that despite
the fact that the photonic component is at all times very
small, the dark-state polariton becomes sufficiently mobile
to follow the profile of the retrieval field. This provides a
potential mechanisms to manipulate and control the spatial
shape of a polariton while keeping most of its probability
weight in well-protected spin coherences.

In the present paper a detailed one-dimensional model
of the generation of quasi-stationary pulses of light by
counter-propagating lasers will be presented and its predic-
tions compared to numerical simulations. It will be shown
that in the weak-probe limit the dynamics of the regener-
ated light pulse is described by a set of coupled normal-
mode equations [21] from which exact expressions for the
temporal behavior of the pulse width can be obtained. It
is shown that for sufficiently large values of the optical
depth (OD), these equations reduce to a simple diffusion
equation, with the diffusion coefficient proportional to
the group velocity divided by the optical depth. It is shown
furthermore that control fields with spatially varying inten-
sity profiles allow to manipulate the spatial shape of the
stationary light pulse. Using a frequency comb of retrieve
(a) (b)

(c)

Fig. 1. Level scheme for storage of light pulse E+ by intensity reduction of cont
light pulse with two counter-propagating components E± by applying two co
retrieved light pulse (dashed line) and the control fields (solid line) is indicated
fields, a very narrow stationary mode profile can be gener-
ated by a filtering process. Alternatively using retrieve
fields with an intensity difference that varies linearly in
space in the region of interest will lead to a stationary field
with a Gaussian spatial profile and an amplitude exponen-
tially decaying in time. A linear dependence of the intensity
ratio can be obtained e.g. by using paraxial retrieval beams
with spatially displaced foci. Finally we demonstrate by
numerical examples that moving the laser foci allows to
shift and to compress the stationary pulse of light.
Although a quantitative estimate of the fidelity of such a
compression process is not given here, this shows that sta-
tionary pulses of light have a great potential for the manip-
ulation of the spatial shape of stored photons.
2. Stored-light retrieval with counter-propagating control

fields

2.1. Model

Let us consider an ensemble of K-type three-level atoms
with one excited level |ai and two lower levels |bi and |ci.
As shown in Fig. 1a the transition |ci � |ai of the atoms is
coupled to an external drive field of frequency xc and wave-
number kc characterized by the Rabi-frequency X+(z, t).
Respectively the transition |bi � |ai is coupled to a weak
probe field of center frequency x and wavenumber k

described by E+(z, t). The excited state |ai decays
radiatively with rate c. All other decay and dephasing
processes are neglected. Under conditions of two-photon
resonance, i.e. for d = xcb � (x � xc) = 0, xcb being the res-
onance frequency of the lower-level transition, the control
field creates electromagnetically induced transparency
(EIT) [17] for the probe field. Associated with this is a reduc-
tion of the group velocity vgr of a light pulse within a certain
frequency range close to two-photon resonance:
rol field X+ in an EIT system (a), and subsequent generation of a stationary
unter-propagating control fields X± (b). The total field distribution of the

in (c).
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vgr ¼ c cos2 h; tan2 h � g2N

jXþj2
: ð1Þ

Here g ¼ d=�h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hxab=2�0

p
is the probe-field coupling

strength proportional to the dipole matrix element d of
the |ai � |bi transition, and N is the density of atoms. An
adiabatic rotation of h = h(t) from a value close to zero
to p/2 leads to a slow-down and eventually to a full stop
of the probe pulse, which is associated with a transfer of
its quantum state to a delocalized collective spin (Zeeman)
excitation. An adiabatic rotation of the mixing angle from
p/2 back to zero (or some other value different from p/2) at
a later time leads to the retrieval of the stored light pulse
[3,6,7] which then propagates in the original direction with
a group velocity determined by Eq. (1). If for the retrieval a
drive beam is used with a different direction, the stored
light is emitted into a direction determined by phase-
matching [22,23].

A very intriguing variant of the retrieval process was
suggested and experimentally demonstrated in [15].
Rather than using a single coupling field, two counter-
propagating retrieval beams of the same frequency and
intensity were used. As indicated in Fig. 1b this leads to
the generation of two counter-propagating probe fields
E±(z, t) which form a quasi-stationary standing wave pat-
tern as indicated in Fig. 1c. As shown in [15,16] the inten-
sity profile of the retrieved field |E+ + E�|2 shows an
interference pattern which is similar to that of the control
field |X+ + X�|2. The initial envelope of this pattern is
identical to the stored light field. Due to a process known
as pulse matching [19–21], the probe-field envelope tends
to approach that of the control fields with increasing time.
As a consequence there is a diffusion-like behavior of the
retrieved field envelope. In the following we want to the-
oretically analyze the underlying physics of this phenom-
enon within a one-dimensional model. This will then
allow us to discuss a number of interesting generaliza-
tions. For this we consider the interaction Hamiltonian
in a slowly-varying time frame

H ¼�–h
Z

dz½Drccðz;tÞþðdþDÞraaðz;tÞ

þðXðz;tÞracðz;tÞþh:a:ÞþgðEðz;tÞrabðz;tÞþh:a:Þ�; ð2Þ

where D = xac � xc and d = xcb � (x � xc) are the one-
and two-photon detuning. The rlm’s are continuous ver-
sions of the slowly-varying (in time) single-atom flip
operators

rlmðz; tÞ ¼ lim
Dz!0

1

Dz

X
i2Dz

ri
lmðtÞ; ri

lm � jliiihmj: ð3Þ

In the above sum, the atom index i runs over all atoms
with positions within the interval (z � Dz/2, z + Dz/2).
X(z, t) and E(z, t) are the (positive-frequency) complex
Rabi-frequency of the drive field and the dimensionless
slowly-varying complex amplitude of the probe field
respectively. Both can be decomposed into two counter-
propagating contributions
Xðz; tÞ ¼ Xþ0ðz; tÞeikcz þ X�0ðz; tÞe�ikcz; ð4Þ
Eðz; tÞ ¼ Eþðz; tÞeikcz þ E�ðz; tÞe�ikcz: ð5Þ

Note that a fast oscillating term with the retrieve wave-
number kc was split off also from the probe field. Making
use of the commutation relations

½rabðz; tÞ;rlmðz0; tÞ� ¼ dðz� z0Þðdblramðz; tÞ� damrlbðz; tÞÞ; ð6Þ
and considering the perturbative regime of a weak probe
field, where we can set rbb(z, t) � N � const., we find the
following Langevin equations of motion for the atomic
operators:

_rba ¼ �ðiðdþ DÞ þ cÞrba þ igNðEþeikcz þ E�e�ikczÞ
þ iðXþ0eikcz þ X�0e�ikczÞrbc; ð7Þ

_rbc ¼ �idrbc þ iðX�þ0 e�ikcz þ X��0eikczÞrba: ð8Þ

We have dropped the Langevin noise operator in the
equation for the optical coherence rba associated with the
decay rate c, since we want to work in the adiabatic limit
in which this term is negligible [24]. The above equations
suggest the decomposition of the optical coherence in two
counter-propagating components rbaðzÞ ¼ rðþÞba ðz; tÞeikczþ
rð�Þba ðz; tÞe�ikcz. Substituting this into Eqs. (7) and (8) and
making a secular approximation, i.e. collecting terms with
the similar oscillatory terms ðe�ikczÞ and neglecting fast
oscillating contributions ðe�i2kczÞ, yields

_rð�Þba ¼ �ðiðdþ DÞ þ cÞrð�Þba þ igNE� þ iX�0rbc; ð9Þ
_rbc ¼ �idrbc þ iX�þ0r

ðþÞ
ba þ iX��0r

ð�Þ
ba : ð10Þ

In the following we assume X��0 ¼ X�0. Note, that it is
also possible to not make the secular approximation, as
is discussed briefly in Appendix A.

If the temporal changes of the slowly varying field
amplitudes are slow compared to c�1, we can adiabatically
eliminate the optical coherence. Under these conditions we
find

rð�Þba ðz; tÞ ¼
igNE�ðz; tÞ þ iX�0ðz; tÞrbc

iðDþ dÞ þ c
; ð11Þ

which leads to the effective equation of motion for the spin
coherence

_rbc ¼ � idþ X2
0

iðDþ dÞ þ c

� �
rbc �

gNðEþXþ0 þ E�X�0Þ
iðDþ dÞ þ c

;

ð12Þ
where X2

0 ¼ X2
þ0 þ X2

�0. Eqs. (11) and (12) are the main
equations for the temporal evolution of the atomic system.
They describe the dynamics of the spin coherence adiabat-
ically followed by the optical coherences. The second set of
equations needed for the description of the system are the
wave equations for the two probe field components E±.
In slowly-varying envelope approximation and within the
one-dimensional model considered here, they read�
ot � coz

�
E�ðz; tÞ ¼ �iDxE�ðz; tÞ þ igrð�Þba : ð13Þ
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Here Dx = x � xc, and free-space dispersion k = x/c and
kc = xc/c was assumed.

2.2. Effective field equations in the adiabatic limit

In order to solve the shortened wave equations for the
probe fields coupled to the atomic spins, we now apply an
adiabatic perturbation to the time evolution of the atomic
spin coherence, Eq. (12). In lowest order of this expansion
we ignore the time derivative of the spin coherence rbc alto-
gether. This approximation is however not sufficient, since
it does not capture important effects such as the group
velocity and is only valid if the characteristic pulse times
are large compared to the travel time through the medium.
In order to describe finite group velocities, the first order
correction needs to be taken into account. This yields

rbc � �
gNðEþXþ0 þ E�X�0Þ

X2
0 þ idC

þ iðDþ dÞ þ c

X2
0 þ idC

� �2
gNðXþ0otEþ þ X�0otE�Þ; ð14Þ

where we have disregarded time derivatives of X±0 and
have introduced the complex parameter C � c + i(D + d).
Substituting this result into the expression for the optical
coherence rba and subsequently into the wave equations
(13) eventually leads to the coupled field equations

ðot � cozÞE� ¼ � iDxþ g2N
C

� �
E�

þ g2NX�0ðXþ0Eþ þ X�0E�Þ
C X2

0 þ idC
� �

� g2NX�0ðXþ0otEþ þ X�0otE�Þ
X2

0 þ idC
� �2

: ð15Þ

These equations can be written in a more transparent
form by introducing the mixing angles h and /

tan2 h � g2N

X2
0

; tan2 / � jX�0j2

jXþ0j2
; ð16Þ

and by assuming a small two-photon detuning, i.e.
X2

0 � jdCj:

ðot þ c cos2 hozÞEþ ¼ �iðDx cos2 hþ d sin2 hÞEþ
þ sin2 h sin /ðsin /otEþ

� cos /otE�Þ � cos2 h
g2N
C

	 sin /ðsin /Eþ � cos /E�Þ ð17Þ

and

ðot � c cos2 hozÞE� ¼ �iðDx cos2 hþ d sin2 hÞE�
� sin2 h cos /ðsin /otEþ

� cos /otE�Þ þ cos2 h
g2N
C

	 cos /ðsin /Eþ � cos /E�Þ: ð18Þ
One recognizes that the two field components propagate
with an effective group velocity vgr = ccos2h similar to
Eq. (1). The first bracket on the right hand side of Eqs.
(17) and (18) represents a phase-mismatch, which however
vanishes for a two-photon detuning chosen such that

d ¼ �Dxcot2h � �Dx
vgr

c
: ð19Þ

If |vgr|
 c the two-photon detuning is very small and
does not lead to a violation of the EIT condition. In
the retrieval process the probe field will build up with a
center frequency such that the phase-matching condition
(19) is fulfilled.

2.3. Normal modes and pulse matching

The structure of the two field equations (17) and (18)
suggests the introduction of the two normal modes [21]

ES � cos /Eþ þ sin /E�; ED � sin /Eþ � cos /E�; ð20Þ
which we denote as sum and difference normal mode. In
terms of these modes the propagation equations read

ðot þ vgr cosð2/ÞozÞES þ vgr sinð2/ÞozED

¼ þvgrðoz/Þðsinð2/ÞES � cosð2/ÞEDÞ; ð21Þ
ðot � c cosð2/ÞozÞED þ c sinð2/ÞozES

¼ � g2N
C

ED � cðoz/Þðcosð2/ÞES þ sinð2/ÞEDÞ: ð22Þ

Here we have assumed that the mixing angles h and / can
be space dependent but are constant in time. At the same
time, in lowest order of the adiabatic expansion, the atomic
spin coherence follows the evolution of the sum normal
mode ES, hence we find from Eq. (14)

rbc ¼ �
ffiffiffiffi
N
p

tan hES: ð23Þ
One recognizes from Eqs. (21) and (22) that apart from

the coupling between the normal modes ES and ED, the dif-
ference mode ED is strongly absorbed due to the term g2N/
C on the right hand side. As a consequence the amplitudes
of the retrieved fields approach a configuration where
ED! 0, i.e. a configuration where the probe amplitudes
match those of the drive fields:

Eþ
E�
! cot / ¼ Xþ

X�
: ð24Þ

This phenomenon called pulse-matching is well-known for
EIT systems [19,21,20].

One recognizes that for almost identical control fields,
i.e. X+ � X� the group velocities of the sum mode ES

and difference mode ED are very small due to the cos(2/)-
term. They are zero if the strength of the two counter-prop-
agating control beams is exactly the same. If X+ is bigger
than X� the sum mode moves to the +z direction and vice
versa. Finally even if the ratio of the control field envelopes
is spatially constant, i.e. if oz/ = 0, a small amplitude of the
difference mode will be generated out of the sum mode due
to the term proportional to ozES until ES is constant in
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space. This coupling will give rise to the slow spatio-tempo-
ral evolution discussed in the following sections.
Fig. 2. Numerical simulation of storage and partial retrieval of a light
pulse, where in the retrieval process two counter-propagating drive beams
with equal and spatially homogeneous intensities have been applied. For
the storage and retrieval we have used cos2 h+ = 0.5 * [1 � tanh(0.1 *
3. Quasi-stationary pulses of light from spatially

homogeneous retrieval beams

Let us first consider the case of two spatially homoge-
neous control fields with equal intensity, i.e.

cosð2/Þ ¼ 0; oz/ ¼ 0: ð25Þ

This can be realized e.g. by two laser beams of the same
intensity with a negligible curvature of the phase fronts, i.e.
in the plain wave regime. In this case the propagation equa-
tions for the sum and difference mode (21) and (22) sim-
plify to

otES ¼ �vgrozED; ð26Þ

otED ¼ �cozES �
g2N
C

ED: ð27Þ
(t � 65))] + 0.5 * 1/3 * [1 + tanh(0.1 * (t � 300))], where tan2 h� ¼ g2N=
X2
�0. For cos2 h� only the second term was used. The color code

represents the amplitude of the forward (E+) and backward (E�)
propagating components of the probe field. The parameters used for the
numerical simulation are: d = D = Dx = 0 and c = 1 and the initial width
of the Gaussian wave-packet was Dz(t = 0) = 10.
3.1. Adiabatic elimination of difference normal mode and

diffusion equation for resonant probe fields

Let us consider the case where the drive field detuning D
is chosen such that the probe fields are resonant, i.e.
D + d = 0. Since for an optically dense medium the phase
matching condition 19 requires only a very small two-pho-
ton detuning, this is essentially equivalent to the case of res-
onant drive fields. Then C = c + i(D + d) = c and Eq. (27)
shows that the difference normal mode is damped with a
rate g2N/c = c/labs, where labs is the absorption length of
the medium in the absence of EIT. For a medium with suf-
ficiently high optical density OD = l/labs the absorption
length is typically on the mm scale and thus the decay time
is on the order of a few picoseconds. The typical pulse times
in light storage experiments are however much larger. Thus
an adiabatic elimination of the difference normal mode, i.e.
neglecting otED as compared to (g2N/c)ED, seems justified.
Such an elimination leads to

ED ¼ �labs

o

oz
ES: ð28Þ

Making use of this approximation we find for the sum nor-
mal mode ES a simple diffusion equation

o

ot
ES ¼ vgrlabs

o2

oz2
ES ¼ D

o2

oz2
ES: ð29Þ

In the retrieval process two counter-propagating probe
field components are created with an initial envelope given
by the stored spin excitation. These components then
undergo a diffusion process with a diffusion constant
D = vgrlabs given by the product of group velocity and
absorption length. This is illustrated in Fig. 2 where
false-color images show the two field distributions
E+(z, t) and E�(z, t) for a storage process followed by a
partial retrieve with two homogeneous, counter-propagat-
ing drive beams of equal amplitude. The data are obtained
from a numerical solution of the wave equation (13) as well
as the full set of atomic density matrix equations in secular
approximation. The predicted diffusive behavior is nicely
reproduced.

In the diffusion process the width of the probe field dis-
tribution as well as that of the collective spin excitation (see
Eq. (23)) increase according to

Dz2ðtÞ ¼ Dz2ðt0Þ þ 2Dðt � t0Þ: ð30Þ
Associated with this is a decrease of the excitation den-

sity. Since in a diffusion process the spatial integral of the
field is constant but not the integral of the square of the
field, representing the number of photons, there is also a
(non-exponential) decay of the total number of excitations.
After the control fields are switched on again, the sum
mode has a Gaussian shape with width Dz(0), and the total
excitation, i.e. in the retrieved fields and the collective spin,
evolves according to

ntotðtÞ ¼ ntotð0Þ
Dzð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dz2ð0Þ þ 2Dt
p : ð31Þ

Thus in order to have negligible losses, the time over
which a stationary pulse can be maintained is limited by

t
 Dz2ð0Þ
D
¼ Dz2ð0Þ

vgrlabs

; ð32Þ

which is exactly the characteristic time for the spread of the
initial wave-packet.
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3.2. Small optical depth

If the optical depth of the medium is small, the adiabatic
elimination of ED may be no longer justified. It is still
possible however to find analytic results for the moments
of the stationary light field. First of all one finds from
Eqs. (26) and (27) that like in the diffusion limit discussed
above, the integral of ES is a constant of motion since
ED(z = ±1) = 0:

d

dt
AðtÞ ¼ d

dt

Z 1

�1
dzESðz; tÞ ¼ 0: ð33Þ

Assuming an initially symmetric spin excitation around
z = 0, the width of the retrieved light beam is given by the
second moment of the sum mode dðtÞ � Dz2ðtÞ ¼R1
�1 dzz2ESðz; tÞ=A, which is coupled to the first moment

of the difference mode gðtÞ �
R1
�1 dzzEDðz; tÞ=A:

d

dt
dðtÞ ¼ 2vgrgðtÞ; ð34Þ

d

dt
gðtÞ ¼ � c

labs

gðtÞ þ c: ð35Þ

The solution of these equations can easily be found and
reads

dðtÞ ¼ dð0Þ þ 2Dt þ 2D
labs

c
1� gð0Þ

l abs

� �
e�ct=labs � 1
� �

: ð36Þ

One recognizes that a small absorption length labs only
affects the short-time evolution. In Fig. 3 a comparison
between the analytical prediction for d(t) obtained from
Eq. (36) with vgr! vgr(t) and a numerical simulation of
the Maxwell–Bloch equations is shown. Apart from a short
initial time period, where due to the time dependence of
vgr(t) non-adiabatic couplings lead to small deviations,
there is a nearly perfect agreement between analytic predic-
tion and numerical simulation.
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Fig. 3. Comparison of the analytic prediction, Eq. (36), with numerical
simulation of the coupled Maxwell–Bloch equations. The data are based
on the simulation of Fig. 2 and the inset shows the behavior of Dz2(t) on a
larger time scale. The linear dependence of the square of the sum-field
width reflects the diffusive character of the process.
3.3. Non-equal but constant drive intensities

If the intensities of the counter-propagating retrieve
beams are not equal but constant in time and space, one
has

cosð2/Þ 6¼ 0; oz/ ¼ 0: ð37Þ
As a consequence the equation of motion of the sum

normal mode attains, after adiabatic elimination of the dif-
ference mode, a finite drift term

ðot þ vgr cosð2/ÞozÞES ¼ vgrlabs sin2ð2/Þo2
z ES: ð38Þ

Transforming into a moving frame with z 0 = z �
vgr cos(2/)t and t 0 = t leads again to a diffusion equation
with a modified diffusion constant eD ¼ vgrlabs sin2ð2/Þ.
Thus in the case of non-equal, but constant drive intensi-
ties, the diffusive behavior of the quasi-stationary light is
superimposed by a drift motion with a small velocity
vgr cos(2/). This can be understood in a very intuitive
way. If one of the drive fields is stronger than the other
one, Raman scattering occurs with higher probability into
the probe mode co-propagating with the stronger drive
field which causes a drift motion of the quasi-stationary
wave-packet.

4. Stationary pulses of light generated by spatially modulated

retrieve fields

In this section, we discuss two techniques to manipulate
the shape of stationary pulses with the ultimate goal of
confining the pulse to very short spatial dimensions. Ini-
tially the pulse is stored as a spin coherence with a spatial
envelope that extends over many wavelengths. We have
seen in the previous sections that the (partial) retrieval of
the stored light pulse by counter-propagating control fields
leads to quasi-stationary pulses of light. The shape of these
stationary pulses is determined by the envelope of the ini-
tial spin coherence as well as the control-field envelopes
through the mechanism of pulse-matching.

This suggests two different mechanisms to manipulate
the shape of the stationary pulse of light. In the first
method the atoms are illuminated by a frequency comb,
i.e. with control beams that have multiple frequency com-
ponents of equal intensity in the forward and backward
direction. In this way many corresponding frequency com-
ponents are generated for the signal field. These compo-
nents interfere to create a very sharp spatial envelope,
which is matched to the sharp spatial envelope of the con-
trol field, potentially confined over only a few wavelengths
(see Fig. 4).

A second method employs a spatial modulation in the
difference of the forward and backward retrieve intensities.
In the last section we have seen that unequal retrieve inten-
sities can lead to a drift motion of the stationary field with
an effective group velocity vgr cos(2/). If e.g. vgr cos(2/)
would be negative for positive values of z and positive for
negative values of z, the associated drift motion would tend
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Fig. 4. (a) Atomic level structure with multiple-frequency control field
Xðz; tÞ ¼

P
kXke�iDk ðt�z=cÞ, and generated signal field Eðz; tÞ ¼

P
kEkðz; tÞ

e�iDk ðt�z=cÞ. (b) Generated signal field envelope (dotted line) shows tight
localization due to constructively interfering frequency components
(frequency comb). The solid line represents the spin excitation, i.e. the
envelope of the initially stored electromagnetic excitation, and the dashed
line shows the periodically modulated absorption.
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to spatially compress the stationary field. As will be shown
this can compensate the diffusive spread found in the last
section. This situation, indicated in Fig. 5, can be achieved
when / (and in general also h) are z dependent.

4.1. Shaping of stationary light pulses using the optical comb

technique

Let us first consider the case when the atomic sample is
irradiated with several counter-propagating control fields,
with detunings Dk, and (complex) Rabi frequencies X±k,
such that the slowly-varying total Rabi frequency reads
Xðz; tÞ ¼

P
kðXþke�iDkðtþz=cÞ þ X�ke�iDkðt�z=cÞÞ. Dk = xk � xab

is the detuning from the atomic resonance. For simplicity
we here consider a degenerate level scheme, i.e. xab = xac.
We assume equal intensities of the corresponding forward
and backward components |X+k| = |X�k|. Corresponding
to these driving fields are signal field slowly varying ampli-
tudes E±k(z, t), so that the total signal field envelope is
Eðz; tÞ ¼

P
kðEþkðz; tÞe�iDkðt�z=cÞ þ E�kðz; tÞe�iDkðtþz=cÞÞ.

Assuming |Dk50|� |Xk50| so that we can ignore cou-
pling of the frequency components through off-resonant
processes, we may also expand the optical polarization as
z + z z

gr

+

v   cos(2  )

Fig. 5. Paraxial retrieve lasers with spatially varying, Gaussian intensity
profiles with focal points at z+ 5 z� create a spatially varying effective
group velocity vgr cos(2/(z)).
rbaðz; tÞ ¼
P

kðr
ðþkÞ
ba ðz; tÞ e�iDkðt�z=cÞ þ rð�kÞ

ba ðz; tÞ e�iDkðtþz=cÞÞ.
Within the weak-probe and secular approximation and
assuming two-photon resonance of all associated pairs of
fields we obtain the following equations of motion

_rð�kÞ
ba ¼ �ðiDk þ cÞrð�kÞ

ba þ igNE�k þ iX�krbc; ð39Þ

_rbc ¼ þ
X

k

iX�þkr
ðþkÞ
ba þ iX��kr

ð�kÞ
ba

h i
: ð40Þ

Here again the Langevin noise operators associated with
the spontaneous decay from the excited state in Eq. (39)
have been neglected as they do not contribute in the adia-
batic limit. The atomic polarizations rð�kÞ

ba drive the probe
field components E±k through the shortened one-dimen-
sional wave equations

ðot � cozÞE�kðz; tÞ ¼ igrð�kÞ
ba : ð41Þ

Solving Eq. (39) adiabatically for rð�kÞ
ba yields

rð�kÞ
ba ¼ igN

Ck
E�k þ

iX�k

Ck
rbc; ð42Þ

where we have introduced the notation Ck = c + iDk.
Substituting this result into Eq. (40) for the ground-state
coherence leads to

_rbc ¼ �
X

k

jXþkj2 þ jX�kj2

Ck
rbc � gN

X
k

X�þkEþk þ X��kE�k

Ck
:

ð43Þ
Letting D0 = 0 and |Dk50|� c, |X±k|, we find that the

spin coherence is driven only by the resonant fields, i.e.

_rbc � �
X2

0

c
rbc � gN

X�þ0Eþ0 þ X��0E�0

c
; ð44Þ

where X2
0 ¼ jXþ0j2 þ jX�0j2. In a similar way as in Section

2.2 we can solve this equation in first order of an adiabatic
expansion. This yields

rbc ¼�gN
Eþ0X

�
þ0þE�0X

�
�0

X2
0

þ c

X4
0

gN X�þ0otEþ0þX�0otE�0

� �
:

ð45Þ
Substituting this result into the equations for the resonant

fields E±0 leads to similar equations as in Section 2.

ðot � c cos2 hozÞE�0 ¼ �
sin2 h

X2
0

X��0ðX�0otEþ0 � Xþ0otE�0Þ

� cos2 h
g2N

X2
0c

X��0ðX�0Eþ0 � Xþ0E�0Þ:

ð46Þ

Taking into account that |X�k| = |X+k| these equations
can be written in a simpler form introducing sum and
difference normal modes ES ¼ ðX�þ0Eþ0 þ X��0E�0Þ=X0,
ED = (X�0E+0 � X+0E�0)/X0:

otES ¼ �vgrozED; ð47Þ

otED ¼ �cozES �
g2N
c

ED: ð48Þ



Fig. 6. Prefactor of the drift term for the configuration with two separated
foci. The focal points of the two Gaussian beams are located at z� ¼
�20c=g

ffiffiffiffi
N
p

. The linear regime considered in this section is clearly visible.
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The second term on the right hand side of Eq. (48) leads to
a fast decay of the difference mode, such that in the long-
time limit the resonant probe-field amplitudes are matched
to the corresponding drive-field amplitudes

X�0Eþ0 ¼ Xþ0E�0 ¼ �
X�0Xþ0

gN
rbc: ð49Þ

As in Section 2, the sum normal mode undergoes a dif-
fusion process under conditions when the difference normal
mode can be adiabatically eliminated. As a consequence
the spin excitation, which adiabatically follows the sum
normal mode, does the same, i.e.

otrbcðz; tÞ ¼ Do2
z rbcðz; tÞ; ð50Þ

with D = vgrlabs.
For the non-resonant probe-field components E±k, k 5 0

one finds the shortened wave-equations

ðot � cozÞE�kðz; tÞ ¼ �
g2N
Ck

E�k �
gX�k

Ck
rbc: ð51Þ

The second term on the right hand side does not depend on
E±k. As a consequence, assuming a sufficiently dense med-
ium, the off-resonant probe amplitude may be adiabatically
eliminated leading to

E�k ¼ �
X�k

gN
rbc: ð52Þ

Noting that a similar relation holds for the resonant
components in the long-time limit, Eq. (49), we finally
arrive at

Eðz; tÞ ¼
X

k

Eþkðz; tÞe�iDkðt�z=cÞ þ E�kðz; tÞe�iDkðtþz=cÞ� �
¼ �

X
k

Xþke�iDkðt�z=cÞ þ X�ke�iDkðtþz=cÞ� � rbcðz; tÞ
gN

¼ �Xðz; tÞ rbcðz; tÞ
gN

: ð53Þ

Thus the electric field envelope E(z, t) becomes matched to
the control field envelope X(z, t) modified by the spin
coherence rbc(z, t). This allows to control the stationary
pulse shape through control of the retrieve amplitudes
and phases.

Note that the condition for this analysis to hold is lspin/
labs� max{Dn/c}. Taking the length of the initial spin exci-
tation lspin to be such that the pulse just fits inside the med-
ium lspin � l, this condition implies that the maximum
frequency detuning Dmax for which the stationary pulse
can adiabatically follow the control field through pulse

matching, is given by Dmax � cOD, where OD ¼ g2Nl
cc ¼

l=labs is the on-resonance optical depth. Thus spatial features
as small as the optical depth can be imposed on the station-
ary pulse through the frequency comb technique.

It should be noted, however, that the generation of spa-
tially narrow stationary fields by means of the frequency-
comb technique is a filtering process rather than a
compression of excitation. In fact the total number of probe
photons created by a frequency comb is much less than in
the case when only the resonant components X±0 of the
retrieve laser are present. The excitation density at the cen-
ter of the stationary photon wavepacket is the same in both
cases, while in the wings it is substantially smaller for the
case of the frequency comb as compared to the case of
homogeneous retrieve beams.

4.2. Shaping of stationary light pulses using a spatially

varying group velocity

Let us now discuss the second method indicated in Fig. 5
in detail. Assuming again single and two-photon resonance
and an optically thick medium, we can adiabatically elimi-
nate the difference normal mode from (22). This yields

ED � � sinð2/ÞlabsozES � cosð2/Þlabsðoz/ÞES; ð54Þ
where we have assumed that / changes only little over the
absorption length labs and thus |(g2N/c)|� |(oz/)sin(2/)|.
Substituting this into (21) gives

o

ot
ES ¼ A0ES þ

o

oz
½A1ES� þ

o2

oz2
½DES�; ð55Þ

where D = vgrlabs is the diffusion constant introduced be-
fore, and the coefficients A0 and A1 read

A0 ¼ �vgr½ðoz/Þ sinð2/Þ þ 2labsðoz/Þ2 sin2ð2/Þ
� labsðoz/Þ2 cos2ð2/Þ � ðo2

z /Þ cosð2/Þ sinð2/Þ�; ð56Þ
A1 ¼ �vgr½1þ 4labsðoz/Þ�: ð57Þ

The constant term proportional to A0 in Eq. (55) can be re-
moved by the substitution

ES ¼ eES expfA0tg; ð58Þ
which results into a Fokker–Planck equation for eES:

o

ot
eES ¼

o

oz
½A1
eES� þ

o2

oz2
½DeES�: ð59Þ

In the following we will discuss the spatio-temporal evolu-
tion of ES resulting from this equation.

Non-equal drive fields lead to an effective group velocity
vgr cos(2/) for the sum normal mode. If this group velocity
is tailored in such a way that it is negative for positive values
of z and positive for negative values of z, there is an effective
drift towards the origin. This force may compensate the
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dispersion due to the absorption of large-k components of
the probe field found in Section 3. We thus consider as
the simplest example the special case of a linearly varying
intensity difference of the two drive fields with a constant
sum X2

0 ¼ const.:

cosð2/Þ ¼ jXþj
2 � jX�j2

X2
0

� � z
l
; sinð2/Þ � 1: ð60Þ

This situation is realized e.g. if the two control fields are
paraxial, Gaussian laser beams with focal points at
z± � ±2l (see Fig. 6). The linear approximation is of course
only valid for |z|
 l. In this case Eq. (59) turns into the
Fokker–Planck equation of the Ornstein–Uhlenbeck pro-
cess [26] for which exact analytic solutions are known

o

ot
eES ¼

o

oz
½vgr

z
l
eES� þ

o2

oz2
½DeES�: ð61Þ

Here we have neglected contributions proportional to labs/l
as compared to unity. The Ornstein–Uhlenbeck process has
a stationary Gaussian solution with width

ffiffiffiffiffiffiffiffiffi
llabs

p
. Noting

that now A0 = �vgr(oz/) = �vgr/2l this gives with Eq.
(58) in the long-time limit:

ESðz; tÞ ¼ eESðzÞ expfA0tg

! exp � z2

2llabs

	 

exp � vgrt

2l

n o
: ð62Þ

The use of retrieve lasers with non-equal and spatially
varying intensities thus acts like an effective cavity for the
probe field with a ring-down time l/vgr given by the time
a photon travels between the intensity maxima of the two
drive lasers.

The initial-value problem of the Ornstein–Uhlenbeck
process can be solved by making use of the eigensolutions
{Un(z), kn} of the corresponding backward equation [26]

o2

oz2
UnðzÞ �

vgr

D
z
l

o

oz
UnðzÞ þ

kn

D
UnðzÞ ¼ 0: ð63Þ

Eq. (63) is the differential equation of the Hermite polyno-
mials Hn and thus the eigenvalues kn and eigenfunctions
Un(z) read

kn ¼ n
vgr

l
; n 2 f0; 1; 2; . . .g; ð64Þ

UnðzÞ ¼ ð2nn!Þ�1=2Hn
zffiffiffiffiffiffiffiffiffiffiffi

2llabs

p
� �

: ð65Þ

The general solution of the initial value problem then reads

ESðz; tÞ ¼
X1
n¼0

cnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ1n!pllabs

p exp � z2

2llabs

	 

H n

zffiffiffiffiffiffiffiffiffiffiffi
2llabs

p
� �

	 exp � vgrðnþ 1=2Þt
l

	 

: ð66Þ

The coefficients cn are determined by the initial field
ES(z, 0):

cn ¼
Z 1

�1
dzESðz; 0ÞH n

zffiffiffiffiffiffiffiffiffiffiffi
2llabs

p
� �

ð2nn!Þ�1=2
: ð67Þ
It is interesting to note that, apart from the additional
overall damping term and a factor of two in the exponent,
Eq. (66) is very similar to a damped harmonic oscillator
with oscillator length

ffiffiffiffiffiffiffiffiffi
llabs

p
. If the stored light pulse is a

Gaussian and if the separation of the foci of the two
retrieve lasers is chosen such that the width of the stored
light pulse is less than the effective oscillator lengthffiffiffiffiffiffiffiffiffi

llabs

p
, only the fundamental mode U0 gets excited in the

retrieve process. In this case a spatially constant field distri-
bution is created. The field has however a finite lifetime
determined by the decay rate ceff = vgr/l. As a consequence
the total excitation decays in time according to

ntotðtÞ ¼ ntotð0Þ expf�vgrt=lg: ð68Þ
In order to have negligible losses, the time over which the
stationary pulse can be maintained is limited by exactly
the same expression as in the diffusion case

t
 l
vgr

¼ Dz2ð0Þ
vgrlabs

: ð69Þ

If the separation of the focal points in the retrieve pro-
cess is much smaller than l2

spin=labs the generated stationary
light pulse has a much narrower width than the original
spin excitation (lspin). However in this case a large number
of higher-order Gauss–Hermite modes are excited (see Eq.
(67)), which decay much faster than the fundamental mode.
Thus as in the case of the frequency comb very narrow spa-
tial distributions of the stationary field can be created,
however only through a filter process.

In Fig. 7 a numerical simulation of the retrieval using
two control beams with separated foci is shown. Initially
a Gaussian probe pulse is stored in a collective spin excita-
tion. The center of the stored probe pulse is in the middle
between the two foci, indicated by the two white lines
and the width of the pulse is on the order of

ffiffiffiffiffiffiffiffiffi
llabs

p
. Thus

mainly the fundamental mode U0 is excited, which can be
seen from the constant spatial shape of the retrieved
wave-packet.

5. Spatial compression of stationary pulses of light

We have seen in the last section that the use of retrieve
lasers with spatially modulated intensities does allow the
generation of stationary light pulses with very narrow spa-
tial shapes. The underlying process is however a filter pro-

cess and thus accompanied either by reduction of the
photonic component in the polariton or by large losses.
Nevertheless both techniques open interesting possibilities
for the spatial compression of a stored photon with small
losses. If a stationary light pulse is created e.g. with sepa-
rated foci of the drive lasers as explained in the previous
section, and the distance between the focal points is
reduced as a function of time in an adiabatic way, the spa-
tial width of the stationary pulse follows. This results in a
spatial compression of the probe excitation. As the effective
decay rate of a stationary pulse ceff increases with decreas-
ing pulse width, the control fields should be switched off



Fig. 7. Storage of a Gaussian pulse and subsequent retrieval with two
control beams with spatially changing intensity difference. The maxima of
the intensities of X± are indicated by the two white lines. Close to the
midpoint between these lines the normalized intensity difference
ðjXþ0j2 � jX�0j2Þ=X2

0 varies linearly with z. The generation of fields with
constant spatial shape is apparent. The parameters are that of Fig. (2).
In addition Gaussian beam profiles X±(z) = 1/w±(z) with w�ðzÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2ðz� z�Þ=p
p

have been assumed.
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immediately after the compression. Fig. 8 shows a numer-
ical example for such a process. After retrieval of a stored
pulse with separated foci, whose position is indicated by
white lines, the distance between the focal points is
reduced. One can see very clearly that the field density as
well as the density of the spin excitation is substantially
increased in this process. This suggests that by changing
the spatial profile of the control field in time, either using
the optical comb technique or displaced foci, spatial com-
pression can be achieved.

In Fig. 9 the temporal evolution of the peak density and
the total excitation (i.e. photon number of the stationary
field plus spin excitations in the atomic ensemble) are
shown for the example of Fig. 8. One recognizes that when
the peak density increases the total number of excitations
Fig. 8. Retrieval of a stored pulse and spin excitation using drive fields with se
the focal points is indicated by white lines. One clearly recognizes a compress
parameters are the same as in Fig. (7) except for c = 0.05. The foci move like
starts to decrease very rapidly. Clearly an optimization is
needed to maximize fidelity and compression. In order to
find optimum conditions and to estimate the maximum
possible compression from the theoretical model, it is nec-
essary to include non-adiabatic couplings into the descrip-
tion. Finally, it is not clear if spatial compression of this
kind can be used to enhance further nonlinear optical pro-
cesses using the techniques of Ref. [16]. This analysis is
beyond the scope of the present paper and will be discussed
in detail elsewhere.

6. Summary and outlook

In the present paper we have discussed the generation
and coherent control of stationary pulses of light by stor-
age of a light pulse in a collective spin excitation via EIT
and subsequent partial retrieval of this excitation with
counter-propagating retrieve lasers. We have shown that
for equal and spatially homogeneous intensities of the for-
ward and backward retrieve beams a quasi-stationary
wavepacket of the probe light is generated with an initial
envelope given by the spin excitation. For an optically
parated foci and subsequent reduction of their separation. The position of
ion of the probe field associated with an increase of the field density. The
: z±(t) = 20 � 10 * 0.5 * [1 + tanh(0.0125 * (t � 700))].
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thick medium the dynamics of the wavepacket is
described by a diffusion equation with a diffusion constant
given by the product of group velocity and absorption
length without EIT. The physical mechanisms for the dif-
fusion of the stationary pulse is the well-known phenom-
enon of pulse matching of probe and retrieve field
components in EIT. We have shown furthermore that
spatially modulated retrieve lasers can be used to manip-
ulate the shape of the stationary light pulse and in partic-
ular to spatially compress the excitation. Making use of a
frequency comb for the retrieve fields a very narrow spa-
tial distribution of the probe field can be generated. Like-
wise the use of retrieve fields with spatially varying
intensity difference can lead to a narrow non-dispersing
but exponentially decaying field distribution. In both
cases the narrow field distribution is however created by
a filtering process. Thus these techniques can not straight-
forwardly be applied, e.g. to applications in quantum
nonlinear optics. However, as demonstrated with some
numerical examples, if the retrieve field distribution is ini-
tially matched to the stored spin excitation and its shape
is modified in time in an adiabatic way, the stationary
light pulse and thus the stored excitation can be spatially
compressed. Although we have not analyzed the fidelity
of the compression process quantitatively and have not
optimized it, the present paper shows the potentials of
coherent control of stationary light pulses for quantum
nonlinear optics and quantum information processing
with photons and atomic ensembles.
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Appendix A. Multi-component spatial coherence grating

In this appendix, we analyze the stationary pulse solu-
tions from the point of view of spatial coherence gratings
[27,28], and we show that multiple atomic momentum com-
ponents can be taken into account. These arise due to mul-
tiple scattering of photons in the forward and backward
directions, resulting in distinctly different atomic suscepti-
bilities. For stationary atoms, such as in cold atomic sam-
ples, these multiple scattering momentum components can
be populated and preserve their coherence. In contrast, for
warm atomic vapors, the rapid random motion of the
atoms and their collisions results in a very rapid decay of
spatial coherences with period equal to or shorter than
the optical wavelength.
As discussed in Section 2.1, associated with the forward/
backward propagating fields are slowly varying optical
coherences (polarization) with slowly varying envelopesbP �ðz; tÞ, so that the total polarization can be written asffiffiffiffi

N
p

r̂baðz; tÞ ¼ bP þðz; tÞeikcz þ bP �ðz; tÞe�ikcz. Similarly, the
ground-state spin coherence is defined as Sðz; tÞ ¼ffiffiffiffi

N
p

rbcðz; tÞ. Letting the wave-vector mismatch be
DK = kc � k, and defining E� ¼ E�e�iDKz and P� ¼bP �e�iDKz, the equations of motion for the fields can then
be written as

ðot þ cozÞEþðz; tÞ ¼ iDKcEþ þ ig
ffiffiffiffi
N
p

Pþ; ðA:1aÞ
ðot � cozÞE�ðz; tÞ ¼ iDKcE� þ ig

ffiffiffiffi
N
p

P�; ðA:1bÞ

while the atomic equations of motion are (setting
D = d = 0)

otPþ ¼ �cPþ þ iXþ0Sþ ig
ffiffiffiffi
N
p

Eþ; ðA:2aÞ
otP� ¼ �cP� þ iX�0Sþ ig

ffiffiffiffi
N
p

E�; ðA:2bÞ
otS ¼ iX�þ0Pþ þ iX��0P�: ðA:2cÞ

These equations show that the counter-propagating control
fields X±0 induce a coupling between Eþ and E�, mediated
through the spin coherence S. This leads to the formation
of new eigenmodes of propagation, where as we show be-
low, there is one mode that is very rapidly decaying while
the other decays very weakly in the large optical depth lim-
it. This phenomenon is analogous to the ‘‘pulse matching’’
phenomenon, as first described by Harris [19]. These equa-
tions can be used to obtain the susceptibilities, given by
xab

2
vrr0 ¼ g

ffiffiffiffi
N
p

Pr=Er0 , where r, r 0 = ±.
We now contrast two approaches to compute the sus-

ceptibilities, one approach in which the secular approxima-
tion is made and one where it is not. Writing the
polarization as Pðz; tÞ ¼

P
nP2nþ1ðz; tÞeið2nþ1Þkcz, and the

spin wave be Sðz; tÞ ¼
P

nS2nðz; tÞe2inkcz, we have the effec-
tive Hamiltonian

H ¼ �1

L

Z
dz g

ffiffiffiffi
N
p

EþP
y
1 þ E�P

y
�1

� �h
þ
X

n

Xþ0S2nP
y
2nþ1 þ X�0S2nP

y
2n�1

� �
þ h:c:

i
: ðA:3Þ

The equations of motion for the fields are given by

ðot þ cozÞEþ ¼ iDKcEþ þ ig
ffiffiffiffi
N
p

P1; ðA:4Þ
ðot � cozÞE� ¼ iDKcE� þ ig

ffiffiffiffi
N
p

P�1; ðA:5Þ

while the atomic equations of motion are

otP2nþ1 ¼ �cP2nþ1 þ iXþ0S2n þ iX�0S2ðnþ1Þ

þ ig
ffiffiffiffi
N
p

dn;0Eþ1 þ dn;�1E�1ð Þ; ðA:6Þ
otS2n ¼ �i X�þ0P2nþ1 þ X��0P2n�1

� �
: ðA:7Þ

The susceptibilities vrr0 ðxÞ can be computed from these
coupled equations. Truncating the decomposition of the
polarization at P�ð2nþ1Þ, we can easily show that n = 0
reproduces our earlier result of Section 2.1, whereas letting
n!1 leads to a different limit (see Fig. A.1). We thus find
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that there is a clear difference between the multi-component
case and the case when only the zero momentum compo-
nent of the spin wave contributes. These two situations cor-
respond e.g. to cold atomic samples vs. hot atomic gases, so
that based on the previous considerations we expect that
the stationary light pulse will be very different in cold
atomic samples.

The susceptibilities obtained in the limit n!1 can be
shown [25] to be the same as those found from a coupled
mode approach [29]. Maxwell’s equation in a spatially
modulated medium in 1D is (in the frequency domain)

c2 d2

dz2
Eðz; mÞ þ m2½1þ vðz; mÞ�Eðz; mÞ ¼ 0: ðA:8Þ

Putting Eðz; mÞ ¼ Eþðz;xÞeikcz þ E�ðz;xÞe�ikcz, where x =
m � xc, coupled mode equations can be obtained by letting
the susceptibility be given by the usual EIT susceptibility
[2]

vðz;xÞ ¼ 2g2N
cx0

icC0

CC0 þ jXðzÞj2
; ðA:9Þ

where the control field amplitude is space dependent
XðzÞ ¼ Xþ0eikcz þ X�0e�ikcz, and where C = c � ix, and
C0 = c0 � ix (c0 is the ground state coherence decay rate,
which we ignore for simplicity in this work). Using the
Fourier expansion vðz;xÞ ¼

P
nvnðxÞeinkcz and using cou-

pled mode analysis [29], we can compute the susceptibilities
vr;r0 ðxÞ. The result of this calculation is compared to the re-
sult of the multiple spatial component approach outlined
previously, in Fig. A.1.

Implicit in the derivation of the susceptibilities with a
coupled mode approach, is the assumption of stationary
atoms, so that all intermediate atomic momentum states
are taken into account, in particular high spatial frequency
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Fig. A.1. Self- and cross-susceptibilites (arbitrary units) v±,±(x) vs.
frequency x (in units of |X0|2/c = (|X+|2 + |X�|2)/c), for X+ = X�, X0 =
0.1c, and c0 = 0. Real part (black) and imaginary part (light gray), dotted
line: Maxwell–Bloch equations truncated at P�1, dashed line: coupled
mode equations (analytic result), full line: Maxwell–Bloch equations
truncated at P�ð2nþ1Þ with n = 5.
coherences contribute to this result. All spatial components
of the spin and polarization waves are taken into account,
even those with momentum equal to multiples of the opti-
cal wavevector K. For warm atomic samples, these coher-
ences rapidly decohere due to the random motion of the
atoms and their collisions. Hence, only for cold atoms,
such as those in a Bose–Einstein condensate, these spatial
coherences may play a role and lead to interesting differ-
ences with stationary light phenomenon observed in ther-
mal atomic vapors.

Finally, we argue that for storage and retrieval of exci-
tations, these large spatial wavevector coherences are
mostly irrelevant. As can be seen from (A.6) and (A.7),
the signal field (in modes E�) couples to the polarization
components P�1 with Rabi frequency g

ffiffiffiffi
N
p

, which in the
‘‘slow’’ light limit is much larger than the control field Rabi
frequencies X±0. Therefore, starting from a stored pulse in
the zero-momentum spin coherence S0, most of the ampli-
tude is coupled to the signal field modes E�, while very lit-
tle amplitude ‘‘leaks’’ to the higher momentum coherences.
Thus coupling to higher momentum coherences does not
lead to decay of the spin coherence, as discussed in [25].
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