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Abstract: Quantum corrections to the Lorentz—Lorenz formula are
given for a dense ensemble of atoms interacting with the quantized ra-
diation field. The influence of these corrections on local-field effects in
two-level systems is discussed in the non-cooperative limit. For initially
inverted atoms we find superluminescence and radiation trapping. Fur-
thermore it is shown that the quantum corrections set strong limitations
to intrinsic optical bistability.
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1. Introduction

The interaction of an ensemble of atoms with the radiation field is usually described in
the semiclassical and dipole approximation by the well-known Maxwell-Bloch equations.
This description fails to be accurate, however, when a dense medium is considered.

Since the early work of Lorentz and Lorenz [1, 2] it is known that the classical
electric field, that couples to an oscillator in a dense medium differs from the macroscopic
(Maxwell) field by a term proportional to the medium polarization. If the medium (or
the host material in compound systems) has a small absorption, but a large index of
refraction, the local field can be substantially different from the Maxwell field [3, 4, 5].
A number of interesting phenomena result from this effect. For example shifts of atomic
absorption lines have been observed [6, 7], nonlinear susceptibilities can be enhanced [8],
and mirrorless (i.e. intrinsic) optical bistability [4, 9, 10] and piezo-photonic switching
from amplification to absorption [11] have been predicted in resonantly driven systems.

On the other hand, when the atomic density becomes large, the quantum nature
of the field is of increasing importance. In his famous work [12] Dicke showed that a
large number of excited atoms within a cubic wavelength emit photons in a cooperative
way. This phenomenon called superfluorescence has been extensively studied since then
[13, 14]. But even if the system does not fulfill the conditions for cooperative evolution
(due to e.g. inhomogenous broadening), the presence of spontaneous photons can not
be neglected. It is known for example that the amplification of spontaneously emitted
radiation can strongly affect the dynamics of a dense excited medium.

Starting from a fully quantized interaction model we have derived in Ref.[15]
a single-atom density-matrix equation in the non-cooperative limit, i.e. when atom-
atom correlations can be neglected. This nonlinear and nonlocal density-matrix equation
contains the semiclassical Lorentz-Lorenz local field as well as the dominant quantum
corrections which lead to additional relaxation terms and level shifts. We here apply
this equation to the case of a dense ensemble of two-level atoms.

In the first part of the paper we discuss the spontaneous decay of an initially
inverted sample of atoms in a thin cylindrical slab. We find, that the radiative de-
cay is strongly accelerated in the initial phase due to the atom-atom interaction via
the quantized field, thus describing superluminescence. For larger times the decay is
however slowed down. The reabsorption of spontaneously emitted photons prevents the
radiation energy from escaping, a phenomenon known as radiation trapping. Both ef-
fects, superluminescence and radiation trapping are here obtained in the framework of
a nonlinear density matrix equation derived from a first-principles calculation.

In the second part of the paper we discuss the influence of the quantum terms on
intrinsic optical bistability in a resonantly driven, dense ensemble of two-level atoms in a
spherical geometry. The nonlinearity of the Bloch equation without quantum corrections
- caused by the dependence of the Lorentz-Lorenz local field on the atomic polarization
- can lead to bistability even without external feedback [9, 10]. It is shown here that the
superluminescence field destroys this bistability to a large extend.

2. One-atom master equation: Lorentz-Lorenz local field and quantum cor-
rections

The interaction between atoms and field can be consistently described by single-atom
Bloch-type equations only if atom-atom correlations are neglected, i.e. in the non-
cooperative limit. This approximation is justified in highly symmetric geometries or
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if the inverse of the so-called superradiance time corresponding to a certain transition
Ty' = Neyp (1)

is smaller than the respective inhomogeneous width [13]. Here N, denotes the number
of excited atoms and p is a geometry factor, which for a pencil-shaped medium of radius
R scales as 302 /87 R?. Throughout the present paper we will assume that this condition
is fulfilled. As shown in Ref.[15] each atom sees in this case a radiation field with a
coherent component given by the Lorentz-Lorenz formula, i.e. the Maxwell field plus
a term proportional to the mean polarization of the probe atom. In addition there is
an incoherent field component which depends on single-atom correlation functions of
the surrounding atoms. When this incoherent component is spectrally broad, one can
derive (nonlinear and nonlocal) single-atom density matrix equations. For a two-level

ffffffff b

! 1b)

Fig.1: Two level system with decay v and cw coherent field €.

system as shown in Fig. 1 with inversion p,, — ppy = w and polarization pgp driven by
a coherent field of Rabi-frequency €2 they read

o = — (v +291) (w(l) — w(()l)) — 2iQ) (pglg — C.C.)
W = L rariath) ol - i @

where the superscript ! denotes the Ith atom, « is the radiative decay rate from |a) to
|b) and A = wy — v the detuning between the atomic and field frequencies. Due to the
Lorentz—Lorenz terms the atomic polarization pgg is not driven by the Maxwell-field
but by the local field with Rabi-frequency

Yz = Q-+ Cyply. (3)
The parameter
NN

where A is the atomic density and A the transition wavelength, is called cooperativity
parameter.
gl

W —
v+ 2

0

(5)
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is the equilibrium inversion, which approaches —1 for g; — 0. The quantum corrections
are described by the quantities h; and g;:

g = —2Rels],
hl = 2Im [Sl] s

P4 t1 t1 t1 .
Sl(tl) = FZ/ dtz/ dtg/ dt4 ewo((tlitz)i(hit‘*)) X (6)
j —o0 —00 —00
X D" (7, t; 7, t3) DT (70, b 7, ta) (o (ta)o] (ts))) -

Here JJJT = |b);;(a|] denotes the positive frequency part of the atomic dipole operator

in a frame rotating with the frequency of the atomic transition. We assume that the
atomic dipoles are oriented in the z-direction. ((zy)) = (zy) — (x)(y), and D" is the
retarded Greens function of the electromagnetic field

ih ok 5  5,0%]68(r—cr)

DU, o ty) = (1) |5 — Ceostag | = @)

with 7 = t1 — to, 7 = |F'1 — 72|, and the angle between 7 and the z-axis ¥.

As can be seen from Eq. (2), ¢; assumes in a two-level medium the form of an
additional incoherent pumping term, and h; the form of an additional detuning. As will
be seen later, h; is, in a two-level system, itself proportional to the detuning A.

Using the quantum regression theorem [16], one can calculate the atomic cumu-
lants <<o;o;f )) from the Heisenberg-Langevins equation for o (o;f) and od, = |a);;(al,
which are formally equivalent to the density matrix equations. Under adiabatic condi-
tions this then yields the coefficients g; and h; in terms of the atomic polarizations pgjb)
and inversions w@), which have to be calculated in a selfconsistent way.

In contrast to the Lorentz-Lorenz term, which is a contact contribution and
thus depends only on the polarization of the probe atom itself, the quantum corrections
depend on the polarization and inversion of all other atoms. Hence one has to take
into account the spatial degrees of freedom, which makes the calculation considerably
more difficult. If we however assume that the sample remains homogeneous, given that
the initial condition and/or the external driving field is homogeneous, we can carry
out the summation over the atomic indices (or in continuum approximation the spatial
integration) in Eq.(6) explicitly. We will use this approximation in the following but will
also remark on its limitations.

3. Physical consequences

In this section we discuss the physical consequences of the nonlinear contributions in the
density matrix equation (2) for two examples. The first one is an ensemble of initially
excited, inhomogeneously broadened two-level atoms in a pencil-like configuration. The
second one is an ensemble of two-level atoms in a sphere of radius R irradiated by a cw
coherent field. In this system intrinsic optical bistability was predicted by a semiclassical
model where only the Lorentz-Lorenz local field was taken into account [9, 10].

3.1  Superluminescence and radiation trapping

A gas of two-level atoms in a pencil-shaped volume is well-known to show superlu-
minescence (amplified spontaneous emission) for higher, and superradiance for very
high densities. As noted before we here restrict ourselves to the first case and neglect
atom-atom correlations and the associated cooperative effects. As an initial condition
we assume that all population is in the upper level |a). In this case we have just one
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equation of motion

Paa = —(V+29)paa + 9. (8)

The effective decay rate g can be calculated in a selfconsistent way if (o~ (¢t — 7)™ (t)))
can be considered quasi—stationary. This is the case, for example, if the medium is
inhomogenously broadenend. After some algebra we eventually arrive at

1424
g
; = 7N — 5 Paa » (9)

2
NICONCED)
3 2 2 2
3 vy 27m= d (v
b Nl = c= |
(1) wova(35) = 55es (35)
for an atom on the cylinder axis with diameter d where Ap is the inhomogeneous
width. The quantum part adding to the detuning vanishes in this case, i.e. h = 0.

Eq. (8) can easily be integrated numerically. The corresponding results for the upper
level population p,, is plotted in Fig. 2 for different density parameters n. One clearly

n

Paa

t/y1

Fig.2: The decay of the the upper-level population pee for a ratio of the radiative

to the inhomogeneous linewidth v/Ap = 0.1 including quantum corrections for different

values of 7.

recognizes an accelerated decay for small times which is a manifestation of amplified
spontaneous emission or superluminescence. For longer times, the decay rate of the
population slows down substantially. This is due to the large intensity of incoherent
radiation in the sample which partially reexcites the atoms. Due to this reabsorption, the
radiation energy is trapped inside the medium. It is notable that the transition between
accelerated and decelerated spontaneous emission happens exactly at p,, = 0.5. This
result could be expected, since the additional quantum term has exactly the form of an
incoherent pump. Such a field always tries to equalize the population in the two levels.

It should be noted that for values of n > 19 = 1 + (7/2Ap)? there is, except
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for paq®*™) = 0 a second stationary solution of Eq.(8).:

1
Paa®® - — T (10)

2 4Apyn-—-1

This slightly unphysical long-time behaviour results from the assumption of spatial ho-
mogeneity, which breaks down in this case. When the absorption length of the medium,
[NA2(—w)]~t, becomes sufficiently small, i.e. comparable to the dimension of the medium,
the spatial dependence needs to be taken into account. Starting from a homogeneous
atomic inversion the intensity of the superluminescence radiation is at the surface smaller
as compared to the center. Hence the incoherent radiation gets trapped in a region with
effective radius deg < d which shrinks in time. Thus 7 decreases and eventually be-
comes smaller than the critical value 7. A proper treatment of the collective decay for
larger values of 7 clearly requires to include the spatial degrees of freedom. This however
goes beyond the scope of the present communication and will be discussed in a future
publication.

3.2 Limitations to intrinsic bistability

The usual thin-medium Bloch equations for the atomic evolution in an external radi-
ation field are linear and therefore permit only a single, well-defined solution. With
a feedback mechanism, however, the effective evolution becomes nonlinear and optical
bistability is possible. An interesting feature of the semiclassical Bloch equations in-
cluding the Lorentz-Lorenz local field is the explicit nonlinearity (see Eqgs.(2) and (3)).
When this nonlinearity is sufficiently large optical bistability is possible even without
external feedback [9, 10]. Since the required atomic density is extremely high, it is con-
ceivable that quantum corrections can substantially change the predicted behaviour. We
therefore analyze here the effect of quantum corrections to the Lorentz-Lorenz formula
on intrinsic optical bistability of driven two-level atoms in a spherical sample of radius
R.

The equations of motion for a two-level system with an additional cw coherent
field detuned by A from the atomic resonance, are given by Egs. (2). In steady state
the quantum corrections can be calculated in a straightforward (but somewhat lengthy)
way. For an atom in the center of the sphere they are given by

=5 (Paa — |pas]?) — QL% ((v/2 + 9) - (A+h)2)p
|F|2 aa ab |F|4 (a—|—ry/2+g) aa

i Q1 pva pab) ( < 1.Pab QLPba))]
— 11
T a2+ < T T > (1)

247 [ _A+h 2|1QL? (v/2 +g) (A+h)

h = —C —2—=5 aa — |Pa +
o |27 (Pea = leal) + T ra a1 21 g)

n 1 <QLpba Lpab> ( < 7Pab QLﬂm) )]
a+7v/2+g I+ ’

where ¢ = R/ and

241 [y 429
g = —Cm

aa

r = (%+g)+i(A+h),
R I
IT'|2 '

Formally, ¢ = 0 corresponds to the semiclassical limit including local field terms but
without quantum corrections. In this case the steady-state density matrix equations
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reduce to a single cubic equation for the excited state population. In Fig. 3 we have
plotted the solution for p,, as a function of the Rabi-frequency 2 for A = 0 and different
values of C. As can be seen, for C > 31/3/2 ~ 2.598 the system becomes bistable.
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Fig.3: The upper-level population peq plotted as function of the driving-field Rabi
frequency 2. Quantum corrections are not taken into account. Different curves correspond
to different cooperativity C. The transition between normal and bistable regime occurs at
C ~2.6.

For o > 0 the set of equations gets more involved and can only be solved
numerically. On resonance where for ¢ = 0 the bistability is strongest we again have
h = 0. The additional term proportional to g acts exactly like an additional incoherent
pump on the system, and it can be expected that already for very low values of ¢ the
bistablity is diminished. In Fig. 4 we show the influence of the quantum terms for C = 2.6
(Fig. 4a) and for C = 4 (Fig. 4b) for increasing values of . The stationary solutions
were obtained by numerically integrating the nonlinear Bloch equations and considering
the long-time limit for different initial conditions. In this way only the stable stationary
solutions were obtained (uppermost and lowermost parts of the curves). The shaded
areas illustrate regions of bistability. We note that already for a radius on the order
of a fraction of the wavelength the incoherent field can destroy bistability completely.
The physical origin of this effect can be explained as follows: Already for very small
radii the number of excited atoms within the sample is large enough for the considered
densities such that the incoherent power Pj,. becomes comparable to the coherent one
P_..1. Since P ,

inc Y

B~ 8nC0 (Q) , (12)
the effect becomes even more pronounced when the cooperativity parameter C is in-
creased. Although spatial inhomogeneity has again been neglected here, it thus seems
questionable that intrinsic bistability can be observed in driven two-level systems with
purely radiative interaction. If, on the other hand, other interaction mechanisms are
present as well, as in the experiment by Rand et al. [17], bistability can be observed.
In Ref. [17], the presence of pair upconversion substantially enhanced the hysteresis
behaviour. With that also the region of Rabi-frequencies for which bistability exists
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Fig.4: The curves of the previous figure, but including quantum corrections for C = 2.6 (a)
and C =4 (b). The parameter p assumes the values 0, 0.002, 0.004.
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was shifted from Q ~ « to larger values by orders of magnitude. Consequently P..p
is substantially increased and bistability is destroyed only for much larger values of
o=R/

4. Conclusions

We have shown that in a dense medium the radiative interaction between atoms due to
spontaneous emission and reabsorption plays an important role and cannot be neglected.
While the size of the Lorentz-Lorenz local field term is essentially determined by the
cooperativity parameter C, the size of the quantum corrections scales as Cop,q. Since
0 = R/ (where R is a typical linear dimension of the sample) is usually much larger
than unity, the quantum corrections very often dominate over the local field terms. As
we have shown for the example of intrinsic optical bistability in a purely radiatively
interacting system, the quantum corrections can substantially change local field effects
if there is an appreciable amount of excited state population. This conclusion does
however not rule out intrinsic optical bistability if other interactions are present or in
multi-level systems. In fact it has been shown in Ref.[18] that utilizing atomic coherence
effects in such systems involving weak transitions, a large index of refraction i.e. large
local field effects can be combined with small excited state population. Such systems
will be studied in our future work.

Acknowledgements

We would like to thank Charles M. Bowden for his continued interest and support of
this work as well as Jonathan P. Dowling, Mikhail D. Lukin, Aaron S. Manka, Axel
Schenzle and Marlan O. Scully for helpful discussions. We gratefully acknowledge the
support by the Texas Advanced Research Program and the Office of Naval Research.
SEFY wishes to thank furthermore the German Academic Exchange Service for their
help through the program HSP II and MF the Alexander-von-Humboldt Stiftung for
financial support.

#2237 - $10.00 US Received July 24, 1997; Revised September 5, 1997
(C) 1997 OSA 15 September 1997/ Vol. 1, No. 6 / OPTICS EXPRESS 168



