
Optics Communications 223 (2003) 123–135

www.elsevier.com/locate/optcom
Degenerate intracavity parametric processes
with injected signal

M.K. Olsena,*, K. Dechouma, L.I. Plimakb

a Instituto de F�ıısica da Universidade Federal Fluminense, Boa Viagem 24210-340, Niter�ooi, Rio de Janeiro, Brazil
b Fachbereich Physik, Universit€aat Kaiserslautern, 67663 Kaiserslautern, Germany

Received 19 February 2003; received in revised form 13 May 2003; accepted 12 June 2003
Abstract

A common way of increasing the efficiency of optical frequency conversion processes is by the injection of a coherent

signal at the desired frequency. We study the efficiency of this method and its effect on the quantum statistics of the

fields by performing theoretical analyses of the intracavity parametric vð2Þ processes of second harmonic generation and

degenerate optical parametric oscillation with injected signal fields. We find that the threshold behaviour of the optical

parametric oscillator with an injected signal field gives further insight into the normal threshold behaviour, considered

as a limiting case as the signal field goes to zero. An injected signal is also shown to change the critical points of the

systems, which define the region where the maximum of noise suppression and other quantum effects may be expected.

We also investigate the self-pulsing behaviour of second harmonic generation, showing how an injected signal can affect

the oscillations. We show the process of second harmonic generation can be blocked by an injected signal of the ap-

propriate intensity, effectively removing the crystal from the cavity.

� 2003 Published by Elsevier Science B.V.

PACS: 42.50.Ct; 42.65.Ky; 42.50.Dv; 42.50.Lc

Keywords: Quantum optics; Quantum correlations; Fully quantum analysis; Parametric processes
1. Introduction

Intracavity second harmonic generation (SHG)

and parametric downconversion are relatively

simple non-linear optical processes which can ex-

hibit non-classical behaviour and allow for exper-
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imental tests of quantum mechanics. Intracavity

downconversion of a pump field, otherwise known

as the optical parametric oscillator (OPO), has

been shown to exhibit a wealth of non-classical

behaviour, much of which has been described in a

recent review article [1] and in the references con-
tained therein. As the amount of work published

on this topic is enormous, we will mention mainly

some of the more recent publications here, begin-

ning with Andrews et al. [2], which uses a micro-

scopic theory, including dispersion within the
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cavity, that reproduces some below threshold ex-

perimental results of Lu and Ou [3], including the

width of the single-mode correlation function and

the cavity enhancement factor. A theoretical in-

vestigation of the effects of quantum noise on

pattern formation in the degenerate OPO [4] shows
that quantum effects are important in the sus-

taining of patterns in a regime where a linearised

analysis is expected to break down. The changes in

behaviour for an unstable cavity with non-or-

thogonal modes have been investigated, showing

that the threshold behaviour can be affected by the

excess noise inherent in such a system [5]. Noise

reduction in both quadrature and intensity in an
OPO with a triply resonant cavity has also been

measured [6]. Noise reduction in the intensity dif-

ference of the output intensities in both the

degenerate and non-degenerate cases have been

calculated and measured for input powers up to 14

times the threshold value [7].

Intracavity second harmonic generation can

provide a relatively simple source of amplitude
squeezed and sub-Poissonian light [8]. The quan-

tum properties of the fields have been predicted to

play an important role in pattern formation [9].

The competing vð2Þ processes of up and down-

conversion within the same cavity have been the-

oretically and experimentally investigated, finding

that many of the properties are changed when

both are present [10–12]. The presence of a vð3Þ

component, inherent to all materials, can change

the properties of the fields produced by the process

of second harmonic generation [13], as can de-

tuning of the cavity [14]. What we demonstrate in

this paper is that the influence of an injected signal

can also change the behaviour of the intracavity

fields, in both the mean field intensities and in the

quantum statistics, sometimes in a counterintuitive
fashion.

With an injected signal, we find that a classical

analysis gives some physical insight into the well

known near-threshold behaviour of the optical

parametric oscillator (OPO), showing how this

behaviour can be changed markedly by injection

of a signal field, which acts to stimulate the pro-

duction of the low-frequency mode within the
cavity. This system has previously been analysed

as a noiseless amplifier [15], with the statistical
properties being calculated via a linearised fluctu-

ation analysis, even though this is not expected to

reproduce accurately the noise properties near any

critical operating points [16]. Here, we go further,

using a fully quantum analyses with the positive-P

representation [17] in regions where linearisation is
not valid. Even though the equations for the po-

sitive-P representation variables must generally be

solved numerically, they are expected to give cor-

rect predictions for any operator moments, as long

as the stochastic integration converges. In this way

we are able to investigate the effects of the injected

signal on both the mean fields and the quantum

statistics, showing that in some cases a small
change in the inputs can have a noticeably greater

effect on the outputs. This is shown to be the case

for the injected OPO, and for sub/second har-

monic generation near the boundaries of different

operating regions.
2. System and equations of motion

The degenerate parametric oscillator and in-

tracavity second harmonic generation both consist

of a non-linear vð2Þ medium (generally a crystal),

placed inside an optical resonator. The resonator

is pumped at a certain frequency and produces

light at either half or twice this frequency, due to

the second order non-linear susceptibility of the
crystal. When the cavity is pumped at both fre-

quencies, which process will dominate depends on

the relative strengths of the two inputs. The gen-

eral system can be described by the following

Hamiltonian,

H ¼ Hfree þ Hint þ Hpump þ Hdamp; ð1Þ
where

Hfree ¼ �hxaâayâaþ �hxbb̂b
yb̂b;

Hint ¼ i�h
j
2

âay 2b̂b
h

� âa2b̂by
i
;

Hpump ¼ i�h �aâay
h

� ��aâaþ �bb̂b
y � ��bb̂b

i
;

Hdamp ¼ âaCy
a þ âayCa þ b̂bCy

b þ b̂byCb:

ð2Þ

In the above, âa and b̂b are the annihilation operators
for the intracavity modes at frequencies xa and xb,

respectively, with xb ¼ 2xa, the �j are the classical
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pumping rates at each frequency and j represents

the effective non-linearity of themedium. TheCj are

bath operators for each mode and we will assume

that the bath is at zero temperature, which is a very

good approximation for optical systems.
There are now several options available for the

analysis of this system, starting with the Heisenberg

equations of motion for the field operators, which

would give a complete quantum description, but

unfortunately, being non-linear coupled operator

equations, are insoluble for realistic parameters. As

we wish to perform a fully quantum analysis, espe-

cially in the regions where standard linearisation
procedures are not valid, we will use the positive-P

representation [17]. This representation allows for a

statistically complete representation of the density

matrix of the system, the equations ofmotion for the

positive-P variables allowing for the stochastic cal-

culation of any operator moment which can be

written in time-normal order. Proceeding in the

usual way via the master and Fokker–Planck
equations for the system [18], and making the cor-

respondence between the operators âa, âay, b̂b, b̂by and
the c-number variables a, aþ, b, bþ, we find the set of

Itôo stochastic differential equations in the positive-P

representation [17,19],

da
dt

¼ �a � caa þ jaþb þ
ffiffiffiffiffiffi
jb

p
g1ðtÞ;

daþ

dt
¼ ��a � caa

þ þ jabþ þ
ffiffiffiffiffiffiffiffi
jbþ

q
g2ðtÞ;

db
dt

¼ �b � cbb � j
2

a2;

dbþ

dt
¼ ��b � cbb

þ � j
2

aþ2

:

ð3Þ

In the above equations, the pairs a, aþ and b, bþ

represent the intracavity fields at frequencies xa

and xb and the cj are the cavity losses at each
frequency. Note that, as always in the positive-P

representation, the variables with crosses are not

complex conjugate to the uncrossed variables ex-

cept in the mean, due to the independence of the

noise sources, which have the correlations

gj ¼ 0; gjðtÞgkðt0Þ ¼ djkdðt � t0Þ: ð4Þ

In the case of �a ¼ 0 we find the standard

equations for the degenerate parametric oscillator,

while �b ¼ 0 gives the standard equations for sec-
ond harmonic generation. Although the above

equations can only be solved numerically, by av-

eraging over a large number of trajectories, the

solutions to any desired operator moment can be

found as, for example,

lim
N!1

1

N
aþ mðt0ÞanðtÞ ¼ h: âay mðt0ÞâanðtÞ :i; ð5Þ

where : . . . : signifies time-normal order. In this

sense the positive-P representation gives a full-
quantum description of the system, albeit proba-

bilistically. In practice we do not, of course, use an

infinite number of trajectories, but use a suffi-

ciently large number to ensure good convergence

of the solutions.

In what follows, we will use three different

analyses. By removing the noise terms from the

positive-P equations, we are able to find the clas-
sical steady-state solutions for the fields. These

solutions can then be used in a semi-classical lin-

earised fluctuation analysis, in the operating re-

gimes where this can be shown to be valid. We will

now investigate some aspects of these solutions,

and, where they are not reliable, give full quantum

solutions derived from stochastic integration of

the positive-P equations.
3. Injected parametric oscillator

3.1. Classical behaviour

In this section we are interested in cases where

the pump is much more intense than the injected
signal, i.e., �b  �a, while in Section 4 we will ex-

amine cases where �a  �b and cases where the two
pump intensities are of the same order of magni-

tude. Steady state classical solutions for this sys-

tem have previously been given by Protsenko et al.

[15], who used these as the basis for a linearised

fluctuation analysis. We follow a less general ap-

proach here, considering only the case of a doubly
resonant cavity with real pumping (i.e., both pump

and signal have the same phase), in order to em-

phasise the effect of the injected signal on the

threshold behaviour. Setting the noise terms to

zero in Eq. (3) gives two coupled classical equa-

tions for the mean field solutions of the system,



Fig. 1. Classical near threshold solutions for jbssj
2
as a function

of j�bj2 in the degenerate OPO with injected signal, for the pa-

rameters j ¼ 10�2 and ca ¼ cb ¼ 1, which are used in all the

results shown. The injected signal strength, �a, varies from 0

(upper curve), through 0:001�cb, 0:002�cb and 0:005�cb (lower

curve). In this and subsequent graphics, all quantities plotted

are dimensionless.
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da
dt

¼ �a � caa þ ja�b;

db
dt

¼ �b � cbb � j
2

a2:
ð6Þ

Setting the left-hand sides to zero, and considering

that on resonance the two field amplitudes are real

for the in-phase solutions [20], gives the following

solution for ass (with ss labelling classical steady-

state solutions)

ass ¼
�a

ca � jbss

: ð7Þ

We note here that, for �a ¼ 0, the classical pre-
diction is for a critical threshold value of

�cb ¼ cacb=j, below which the system does not os-

cillate. In this case, Eq. (7) is just the normal below

threshold solution for optical parametric oscilla-

tion, and, with �a 6¼ 0, a divergence occurs at the

value bss ¼ ca=j. This is exactly the classically

predicted above threshold value of bss without

injected signal. Substituting ass in the equation for
bss, we find a cubic equation for bss,

2j2cbb
3
ss � 2jð2cacb þ j�bÞb2

ss

þ 2cað2j�b þ cacbÞbss

� 2c2a�b þ j�2a ¼ 0: ð8Þ

This equation may then be rearranged to give the

pump amplitude as a function of the steady-state

intracavity field,

�b ¼
2cbbssðca � jbssÞ

2 þ j�2a
2ðca � jbssÞ

2
; ð9Þ

which diverges at the threshold value bss ¼ ca=j,
indicating that this value cannot be reached in the

stationary regime. With �a ¼ 0, we find the stan-
dard below threshold solution, bss ¼ �b=cb. We

note here that Eq. (9) does not depend on the

relative sizes of the pumping terms, and is equally

valid for both the OPO and SHG with injected

signal, although we must take care with the rela-

tive phases of the input fields. We may equally

solve for the low-frequency pump, finding

�2a ¼
2

j
ð�b � cbbssÞðca � jbssÞ

2
; ð10Þ

which is always positive in SHG (�b ¼ 0) as bss is

negative for a resonant cavity.
The divergence in Eq. (9) causes a type of po-

tential barrier at the value of the uninjected

threshold, with infinite pump power being needed

to reach the threshold value of bss, irrespective of

the (finite) size of the injected signal. This is shown

in Fig. 1), where we plot the intracavity intensity as
a function of the pump power, for values

ca ¼ cb ¼ 1, j ¼ 10�2 (which we use throughout

this article), and different values of �a. It is readily
seen how the threshold value is approached as-

ymptotically. This feature is not seen in classical

predictions without injected signal, where the in-

tracavity field rises monotonically as a function of

the pumping until it reaches the threshold value,
after which it remains constant, with a disconti-

nuity in the derivative at threshold. The clamping

of the high-frequency field at the threshold value

without injected signal, irrespective of increasing

pumping, is traditionally explained using power

conservation [21]. This explanation is still valid,

but we have shown that an additional mathemat-

ical insight is possible when there is an injected
signal present, for which the standard situation of

pumping only at the harmonic frequency is a

limiting case. In fact, the quantum solutions

without injected signal also exhibit a similar be-
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haviour in not reaching the predicted threshold, as

has been previously calculated using the complex

P-representation [22]. This near threshold behav-

iour does not have a classical description as with-

out injected signal the conversion begins as a

spontaneous process, which needs a quantum de-
scription. In the classical analysis, there is no

converted field present below threshold. With an

injected signal, there is always a macroscopic field

at the low frequency, which acts to stimulate the

conversion. As the signal strength increases, the

stimulated processes become stronger, so that

there is no longer a clear threshold for conversion,

although as we will show below, there is still a
clearly defined critical point.

3.2. Linearised fluctuation analysis

In the OPO we are particularly interested in the

quantum properties of the fields in operating re-

gimes where a full quantum analysis is necessary.

In order to define these regions, we first linearise
Eq. (3) around the classical steady-state solutions.

Following the standard procedures [22,23], we

then write an evolution equation for the fluctua-

tions. Beginning with Eq. (3), we consider that the

variables may be written as the sum of a mean

steady-state value and a fluctuation, e.g.,

a ¼ ass þ da; aþ ¼ a�
ss þ daþ, etc. To first order in

the fluctuations, this gives the following set of
equations for d~xx ¼ ½da; daþ; db; dbþ�T,
dd~xx ¼ Ad~xxdt þ BdW ; ð11Þ
where dW is a vector of Wiener increments and

B ¼

ffiffiffiffiffiffiffiffi
jbss

p
0 0 0

0
ffiffiffiffiffiffiffiffi
jb�

ss

p
0 0

0 0 0 0

0 0 0 0

2
664

3
775: ð12Þ

The drift matrix is found as

A ¼

�ca jbss ja�
ss 0

jb�
ss �ca 0 jass

�jass 0 �cb 0

0 �ja�
ss 0 �cb

2
664

3
775: ð13Þ

This whole analysis depends on the fact that we

can consider the fluctuations as being smaller than

the mean values. If the eigenvalues of the drift
matrix develop a positive real part, the fluctuations

need not remain small, the system becomes un-

stable and the linearised analysis loses its validity.

These eigenvalues have previously been given as

functions of the intracavity fields as [20]

k1;2 ¼ � 1

2
½�jjbssj þ ca þ cb�

� 1

2
ð
h

� jjbssj þ ca � cbÞ
2 � 4jjassj2

i1=2
;

k3;4 ¼ � 1

2
½jjbssj þ ca þ cb�

� 1

2
ðjjbssj
h

þ ca � cbÞ
2 � 4jjassj2

i1=2
:

ð14Þ
Without injected signal we have simple expres-

sions for the fields as a function �b, j and ca;b both
above and below threshold. With injected signal,

the solutions required are those of the cubic

equation for bss Eq. (8) and the expression for ass
Eq. (7), which become rather messy and are not

particularly enlightening. Hence in this case it is

easier to proceed numerically, but we will first
define regions where different behaviours may be

expected in a classical analysis.

It has previously been found that there are

several instabilities present in the system when it is

pumped at both frequencies, with a phase diagram

having been developed [20] from an analysis of the

steady-state solutions. We have reproduced this

phase diagram for different parameters in Fig. 2
and will investigate the behaviour in different re-

gions in Section 4. In this figure, there are four

main regions, with the boundaries being found by

analysing the solutions of a cubic equation for real

ass,

a3ss þ
2cacb
j2

�
� 2�b

j


ass �

2cb�a
j2

¼ 0: ð15Þ

Analysing the roots of this equation using Card-

ano�s formula [24] shows that the relation

�b ¼ �cb þ
3

2
j2 cb�a

j2

� �2=3

ð16Þ

defines the boundaries between regions where only

one real solution exists and where there are three.

In our figure, these are the lines dividing region 2

from regions 3 and 4. For the pump and signal in



Fig. 3. Classical solutions for ass as a function of �b in the de-

generate OPO with injected signal, for the parameters j ¼ 10�2

and ca ¼ cb ¼ 1 and �a ¼ 0:01�cb. The multiple solutions are

readily seen, as is the shifting of the threshold for this to a pump

power higher than �cb ¼ 100 without injected signal. The lower

branch is unstable.

Fig. 4. Classical solutions for bss as a function of �b in the de-

generate OPO with injected signal, for the same parameters as

Fig. 3. The upper branch is unstable.

Fig. 2. Phase diagram for the real solutions of sub/second

harmonic generation in the steady state. Region 1 contains self-

pulsing solutions, region 2 contains single-valued solutions,

while regions 3 and 4 contain three solutions.
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phase, it is in region 4 that we find multi-valued

solutions. In this region, there are always eigen-

values of the matrix A with a positive real part, so

that a linearised fluctuation analysis may not be
valid. For the signal out of phase with the (posi-

tive) pump, these solutions are found in region 3.

In region 2 there exists only one real solution,

while region 1 exhibits hard mode oscillations and

is where self-pulsing behaviour is found. The dash-

dotted line defines a boundary below which

downconversion may be thought of as the domi-

nant process and above which second harmonic
generation dominates, as will be described in more

detail in Section 4.3. At the intersection of regions

1, 2 and 3, three different behaviours are possible,

which will be investigated below, as a linearised

analysis is not valid here. In fact, a numerical

analysis of the eigenvalues shows that it is only in

region 2 that we may expect a linearised analysis to

be fully valid, with unstable solutions always being
present in the other regions.

In Figs. 3 and 4, we show the classical steady-

state solutions for the amplitudes as a function of

the high-frequency pump, for parameters

ca ¼ cb ¼ 1, j ¼ 10�2 and �a ¼ 0:01�cb. Without

injected signal, �cb ¼ 100 for the parameters we use

in this article. Looking at Fig. 3, we see that above

a certain pumping value, there are three possible
solutions, while below this there is only one. The
point at which the three solutions develop is also

the point at which the drift matrix of the fluctua-

tions can develop positive real parts of the eigen-

values, and is shifted above the value of critical

pumping for pure downconversion. This is exactly

the region defined by the division between regions



Fig. 5. Quantum solutions for the intracavity intensities in the

degenerate OPO with injected signal, for ca ¼ cb ¼ 1, j ¼ 0:01

and �b ¼ 1:1�cb. The solid lines are for Nað¼ aþaÞ, with the da-

shed lines representing Nbð¼ bþbÞ. The values of �a are (a) 0, (b)
0:01�cb and (c) 0:05�cb. While (b) and (c) reach the steady-state

over this time scale, (a) is still in the transient regime.
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2 and 4 in Fig. 2. In Fig. 4, the stable steady-state

solutions follow the lower line, not entering into

the upper, unstable solutions.

The region of multi-valued solutions occurs

when there are three real solutions for the cubic

equation obtained for ass [20]. Without injected
signal, it manifests itself as the two well-known

above threshold solutions, ass ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�b � �cbÞ=j

p
,

and a solution ass ¼ 0, which is unstable. With

injected signal, we consider the case where �a is

positive and, by rearranging Eq. (16), we find the

condition

cb�a
j2

� �2

þ 8

27

cacb
j2

�
� �b

j

�3

< 0: ð17Þ

Writing �b ¼ m�cb, where m > 1, we find three real

solutions for

�a <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8c3acb
27j2

ðm� 1Þ3
r

: ð18Þ

As an example, for the parameters we use below

(j ¼ 0:01 and ca ¼ cb ¼ 1), with m ¼ 1:1, this gives
a maximum value of �a � 0:017�cb for the existence
of the three real solutions.
Fig. 6. The Y quadrature variances for the two intracavity

fields, for the same parameters as in Fig. 5. The solid lines are

V ðYaÞ and the dash-dotted lines are V ðYbÞ. The irregularity of

the two lower lines is due to the finite number of trajectories

sampled.
3.3. Full quantum analysis

To perform a fully quantum analysis of this

system, we revert to numerical stochastic integra-

tion of Eq. (3), particularly in the regions where a

semiclassical analysis is not expected to be valid.
Without injected signal, it has been calculated that

the maximum of noise compression occurs slightly

above the threshold pumping value [25]. We,

therefore, focussed our attention on this region.

The time development of the intracavity intensities

and Y quadrature variances are shown in Figs. 5

and 6, for �b ¼ 1:1�cb and differing values of the

injected signal. (Note that we define the quadra-
tures as Xa ¼ âaþ âay and Ya ¼ �iðâa� âayÞ, so that

variances in a coherent state are equal to 1.) The

lines (a, b, c) are the result of the averaging of

3.8� 104, 1.03� 105 and 8.3� 105 stochastic tra-

jectories of the positive-P representation equa-

tions, respectively. What we see in both graphs is

that, as the injected signal is increased, the steady-

state values are attained more rapidly. This is
representative of a critical slowing down [23] and
indicates that the injected signal moves the system
away from criticality by moving the onset of po-

sitive eigenvalues of the fluctuation drift matrix to

a higher pump power. It is the onset of these po-

sitive eigenvalues that mathematically defines the

onset of critical instabilities in the system. The
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further the system is from the onset of positive

eigenvalues, the quicker the transients disappear

and it relaxes to its stationary state. We also see in

Fig. 6 that, as the injected signal is increased, there

is less squeezing in the fundamental and more in

the harmonic. The results for (a) and (b) are from
region 4 of Fig. 2, while (c) is from just outside this

region.

What we also noticed is that, a little above the

normal threshold, the variance of the Xa quadra-

ture decreases with injected signal, while the vari-

ance of the Ya quadrature remains almost

unchanged. This can be explained by the fact that,

without injected signal, there are two possible
physical branches for ass, with opposite phase. The
variance in Xa is then approximately equal to hX 2

a i,
as hXai is zero. With in-phase injected signal, the

stochastic integration begins to prefer the upper

branch, with the multi-valuedness in ass being re-

moved as a phase reference is provided for the

physical solution. The branch with the same sign

as the signal begins to dominate, with hXai be-
coming non-zero. With a sufficiently strong signal,

it is only the local distribution around the popu-

lated branch which contributes to the variance,

which then becomes much smaller. As an example,

the results of the stochastic integration show that,

in the steady-state, for �b ¼ 1:1�cb, without injected
signal, V ðXaÞ � 8000 and hXai ¼ 0, with the stable

classical solutions 2ass ¼ �89:4. (For a real field,
hXai ¼ 2ass.) When we inject a signal, �a ¼ 0:01�cb,
we find V ðXaÞ � 5:5 and hXai � 98. In both these

cases, V ðYaÞ � 0:5 and hYai ¼ 0. The injection of

the signal serves to increase the intensity of the

intracavity field at the fundamental, while at the

same time moving it much closer to being in a

minimum uncertainty state, without degrading the

squeezing in the Ya quadrature. Such a source of
bright squeezed light may prove useful for possible

applications.
4. Sub-second harmonic generation

In Fig. 2, we see various operating regimes,

ranging from pure downconversion on the �b axis to
pure second harmonic generation on the vertical

line �b ¼ 0. As is well known, in SHG with real
pumping, it is the Xa quadrature which exhibits

squeezing in the fundamental, while in the OPO it is

the Ya quadrature. In second harmonic generation,

(�a  �b) the amplitude of the fundamental is given
by Eq. (7), which will not exhibit threshold behav-

iour as bss is negative for a resonant cavity with a
positive pump. Combined with Eq. (10), we see that

there will be no divergences in the pumping, with

both field intensities increasing with increasing

pump power. In contrast to below threshold optical

parametric oscillation, which is a spontaneous

process, we do not expect that the injection of a

signal fieldwouldmarkedly increase the efficiency of

the conversion in SHG. This is because downcon-
version depends on the existence of fluctuations as a

trigger, while SHG does not, being able to proceed

in a fully classical description without any noise in

the fields.Of course, such adescriptionwould not be

able to describe the resulting quantum features of

the fields produced. We will concentrate below on

three main aspects of the behaviour. The first is the

change in the fields with small changes in the pa-
rameters at and near the triple point of the phase

diagram. The second is that the injection of a signal

field does change the behaviour of the steady-state

fields in the self-pulsing regime [26,27]. The third

feature, perhaps less expected, is that rather than

enhance conversion, certain values of signal can

actually stop the generation of the second harmonic

altogether.

4.1. Near the triple point

We will now investigate the quantum properties

of the fields near the triple point shown in Fig. 2.

What is interesting in this region is that, with small

changes in the pumping fields, we can move be-

tween three different operational regimes, two of
which possess unstable solutions, in a manner re-

sembling a phase transition. For the parameters

used for stochastic integration in this article,

j ¼ 10�2 and ca ¼ cb ¼ 1, the triple point lies at

ð�tb ¼ �150; �ta ¼ 300Þ. We will not present semi-

classical results here, as the drift matrix for the

fluctuations always has negative real parts to

the eigenvalues in regions 1 and 3 in the vicinity of
the triple point, hence we do not expect linearised

results to be reliable.



Fig. 7. Behaviour of the mean fields at and near the triple point

of Fig. 2. The behaviour in region 1 is quantitatively similar to

that at the triple point, shown as the upper lines for both

Nað¼ aþaÞ and Nbð¼ bþbÞ. The behaviour in region 3 is very

similar to that in region 2, shown as the lower lines.

Fig. 8. Short time behaviour of the Xa quadrature variances at

and near the triple point. The Xb variance only shows a small

amount of transient squeezing for all the parameter regions

considered. The solid line is for the triple point, with the other

lines being numbered by region.
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In Fig. 7 we show the short-time development

of the intracavity fields. The upper lines for each

field were calculated right at the triple point, using

1.13� 105 stochastic trajectories of Eq. (3). Over

the time shown, the solutions for the intensities in

region 1, with �a ¼ 1:05�ta and �b ¼ �tb, averaged
over 1.95� 104 trajectories, were qualitatively

similar to those at the triple point. The lower lines
represent the solutions for region 2, using 2.1� 104

trajectories, for �a ¼ 0:97�ta and �b ¼ 0:95�tb. Solu-
tions obtained for region 3, with 1.5� 104 trajec-

tories and for �a ¼ 0:95�ta and �b ¼ �tb, are again

qualitatively similar. What is not readily apparent

from this graph is that it is only the solution for

region 2 that has entered the steady-state regime

over this time scale. The solutions in region 1, in
the self-pulsing regime of the phase space, con-

tinued to increase slowly up to at least a time of

140c�1, although self-pulsing behaviour was not

seen before this time. It is possible that there

would be a signature of this behaviour in fre-

quency space, as was found for SHG with an ad-

ded vð3Þ non-linearity, appearing before evidence

was visible in the time domain [13]. Note that in
these solutions, jbssj

2
would be in violation of the

threshold value found using Eq. (9) if bss were

positive.
The lack of stationarity is evident in Fig. 8,

which shows the X quadrature variances for the
same parameters as in Fig. 7. What is immediately

obvious is that, although all regimes exhibit a

small amount of transient squeezing as the cavity

begins to be pumped, this is only persistent in re-

gion 2, the region of real solutions. The variances

at the triple point (solid line) and for region 1

continue to grow, while that for region 3 has be-

gun to relax toward its steady-state value over the
time shown. In fact, in the region near the triple

point, both fields are far from being in minimum

uncertainty states for the parameters we have

considered. Considering also the Fano factors

(defined as the normally ordered intensity variance

divided by the expectation value of the intensity),

we see that the closest is the fundamental in region

2, which exhibits a steady-state Fano factor of
approximately 1, and an Xa quadrature variance of

approximately 0.45, but a Ya quadrature variance
of approximately 310. The noisiest fields are found

in region 1, with Fano factors of approximately 40

in both harmonic and fundamental at t ¼ 140c�1,
a variance in Xa of approximately 8, and a variance

in Ya of almost 5000. This demonstrates just how
the properties of the fields can be extremely sen-
sitive to perturbations near critical operating



Fig. 9. Changes to the self-pulsing behaviour in second har-

monic generation due to the injection of a signal field. The

pump is at twice the self-pulsing threshold, �a ¼ 2�spa , and the

injected signal strength used was 0:15�spa . Nað¼ aþaÞ and

Nbð¼ bþbÞ.
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points, with huge changes being found in the

quantum statistics of the fields due to relatively

minor changes in the input fields.

4.2. Self-pulsing regime

Without an injected signal, it is well known that

a Hopf bifurcation exists at a critical pumping

strength [26,27], �spa ¼ ð1=jÞðcaþ2cbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cbðca þ cbÞ

p
.

For higher pump powers, both fields exhibit limit

cycle behaviour, with the steady state being one of

periodic oscillations. With pumping at both fre-

quencies, this behaviour is found in region 1 of

Fig. 2. With pure SHG it happens on a vertical line
beginning at the point ð�b ¼ 0; �a ¼ 600Þ. It is ob-
vious from the phase diagram that the addition of

a non-zero �b can modify the self-pulsing behav-

iour. As can be seen from the phase diagram, a

negative injected signal can actually allow self-

pulsing for a lower pump power, at least until the

triple point is reached. On the other hand, a po-

sitive injected signal always means that a higher
pump power is needed to enter the self-pulsing

regime. It is then natural to expect that any in-

jected signal will change the properties of the fields

in this region.

In Fig. 9, we show the results of stochastic in-

tegration for �a ¼ 2�spa , with and without an in-

jected signal. The results shown are an average of

104 stochastic trajectories. The injected signal
strength used was 0:15�spa , and had a small, but

experimentally detectable effect on the oscillatory

behaviour of the fundamental. The effect on the

harmonic intensity is especially marked and should

be easily detectable. Looking at Fig. 2, both these

parameter regimes are found well within the self-

pulsing area of the graph, at the points

ð�b ¼ 0; �a ¼ 1200Þ and ð�b ¼ 90; �a ¼ 1200Þ, re-
spectively. We note here that the stochastic inte-

gration with this strength of injected signal was

noticeably less stable than without, developing

spiked behaviour at a little more than the maxi-

mum time shown in Fig. 9. This is not likely to be

the result of a bad integration algorithm, but in-

dicates that the positive-P distribution may have

begun to develop a power law tail, so that the
boundary terms could no longer be neglected [28].

This is a well-known problem with the positive-P
representation and solutions have been proposed

[29,30], but a detailed analysis is outside the scope

of this article. Interestingly enough, as �b was in-
creased further so that the parameter regime

moved towards the boundary of regions 1 and 2 of

Fig. 2, the integration eventually became stable

again. Near the boundary and in region 2, where

the injected signal caused the self-pulsing oscilla-
tions to disappear, the integration is completely

stable up to at least t ¼ 200c�1, the maximum that

we were able to investigate.

4.3. Blocking of the harmonic via injected signal

An interesting property of second harmonic

generation with injected signal is that, under cer-
tain circumstances, an injected signal at the second

harmonic can actually act to stop conversion al-

together and can also change the quadrature which

exhibits noise-suppression. In the case where the

cavity losses at the high-frequency mode are much

higher than those of the low-frequency mode, it

has previously been predicted that, for the critical

value of pumping, an injected signal could change
the squeezed quadrature [31]. Here, we show that

this behaviour also exists in a more general sense,



Fig. 10. Results of stochastic integration showing the disap-

pearance of the steady-state second harmonic due to the in-

jection of a signal field, �b ¼ j�2a=2c
2
a. The solid lines represent

the fundamental, Nað¼ aþaÞ, and the dash-dotted lines the

second harmonic, Nbð¼ bþbÞ, for �a ¼ 200. With injection, the

harmonic disappears after a brief transient.

M.K. Olsen et al. / Optics Communications 223 (2003) 123–135 133
over a range of pump values and loss rates. Ex-

amining Eq. (8), we see that for the relative

pumping strengths �Vb ¼ j�2a=2c
2
a, (shown as the

dash-dotted line in Fig. 2) one possible solution is

bss ¼ 0 and we are left with the quadratic equation

j2cbb
2
ss � jð2cacb þ j�bÞbss þ cað2j�b þ cacbÞ ¼ 0:

ð19Þ
In this case the other two solutions are

bss ¼
2cacb þ j�b

2jcb
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bðj�b � 4cacbÞ

4jc2b

s
; ð20Þ

which are complex in region 2 of Fig. 2 and hence

will not manifest themselves. In region 4, with

�b > 4cacb, there are three real solutions, but only
the zero solution is stable. The point ð�b ¼ 4cacb=j,
�a ¼ 2ca

ffiffiffiffiffiffiffiffiffiffiffi
2cacb

p
=jÞ in the phase diagram, which is

the intersection of the dash-dotted line with the

boundary between regions 2 and 4, marks the

transition from one to three real solutions.

Stochastic integration over a wide range of

parameters always chooses the zero solution for

bss, as expected. The stable solution is that with no

intracavity field at the harmonic frequency and the

same field that would exist without the crystal at
the fundamental, or ass ¼ �a=ca. The results show
that it is indeed as if the crystal is not present as far

as the fundamental is concerned, with the statistics

of both fields being those of coherent states. In the

case of the harmonic, this is a coherent vacuum. A

linearised fluctuation analysis in this region indeed

shows that the steady-state spectra are those of the

input fields, with the diffusion matrix being null. A
comparison between the intracavity fields with and

without injected signal is shown in Fig. 10, ob-

tained via stochastic integration of 2.5� 104 tra-

jectories of the positive-P equations, showing that

the steady-state harmonic is indeed vacuum. It is

as if the signal field has turned the crystal trans-

parent to the pump at the fundamental frequency.

What happens mathematically in the classical de-
scription is that bss changes from negative below

the dash-dotted line to positive above it. As the

process is continuous, it must pass through zero

for a particular value of �b.
The dash-dotted line �a ¼ ca

ffiffiffiffiffiffiffiffiffiffiffiffi
2�b=j

p
in Fig. 2

also defines the division of the regions where
squeezing is found in the X quadratures (above)

and where it is found in the Y quadratures (below),

as well as the change of sign of bss, which is po-

sitive below the line and negative above it. As these

different squeezing characteristics are typical of

second harmonic generation and downconversion,
respectively, this line can be thought of as defining

the a division between a region where second

harmonic generation is predominant and a region

where downconversion is predominant. In region

2, a linearised analysis is valid, allowing for a

particularly simple calculation of the spectra via

the formula

SðxÞ ¼ ðAþ ixÞ�1BBTðAT � ixÞ�1; ð21Þ
where A and B are from Eq. (11). The output

spectra for the low-frequency mode are easily
found by multiplying the sum of the appropriate

matrix elements by 2ca and adding one because of

the normal ordering. We show the resulting output

quadrature spectra in Figs. 11 and 12, demon-

strating how the squeezing in the Xa quadrature

decreases as the injected signal strength increases,

until it vanishes at the value �Vb and then begins to

exhibit excess noise. The Ya quadrature exhibits the



Fig. 12. The output spectrum of the Ya quadrature as the sys-
tem changes from second harmonic generation to downcon-

version due to the injected signal field, with �a ¼ 100. �b is

normalised to the value �Vb ¼ :5j�2a=c
2
a.

Fig. 11. The output spectrum of the Xa quadrature as the sys-

tem changes from second harmonic generation to downcon-

version due to the injected signal field, with �a ¼ 100. �b is

normalised to the value �Vb ¼ :5j�2a=c
2
a.
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opposite behaviour, being antisqueezed below �Vb
and squeezed above this value. It is possible that

this behaviour could have some use as a switching

device, or to provide tunable squeezing.
5. Conclusions

We have investigated the intracavity parametric

processes of second harmonic generation and de-
generate downconversion, both with injected co-

herent signal fields, describing a rich variety of

different behaviours. The addition of an injected

signal changes the well-known threshold behav-

iour in the optical parametric oscillator, in a way

which gives further physical insight into the unin-
jected behaviour. Above the standard threshold,

signal injection serves to bring the field at the

fundamental closer to a minimum uncertainty

state while at the same time preserving the

squeezing in the Ya quadrature. As the injection

also increases the intensity, we find a more intense

field than in the uninjected case. This may well

have applications in spectroscopy, for example.
Near the triple point where different operating

regions meet, the behaviour of the fields shows a

sensitive dependence on initial conditions, with

small changes in the input fields able to produce

drastic changes in the intracavity fields, especially

in the quantum statistics. In the self-pulsing regime

of second harmonic generation, an injected field at

the harmonic frequency is shown to effect the self-
pulsing behaviour. We also find that an injected

signal of the appropriate strength at the harmonic

can actually stop the process of second harmonic

generation, with the cavity seeming to be empty as

far as the fundamental is concerned. This behav-

iour occurs on the boundary between downcon-

version and second harmonic generation and

could possibly be used, with variable injection, to
switch squeezing between quadratures, as well as

to change the phase of the harmonic.
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Fabre, Phys. Rev. A 64 (2001) 033815.

[7] A. Porzio, A. Chiummo, F. Sciarrino, S. Solimento, Optics

and Lasers in Engineering 37 (2002) 585.

[8] See, for example,P. Meystre, D.F. Walls (Eds.), Nonclas-

sical Effects in Quantum Optics, A.I.P., New York, 1991.

[9] M. Bache, P. Scotto, R. Zambrini, M. San Miguel, M.

Saffman, Phys. Rev. A 66 (2002) 013809.

[10] M.A.M. Marte, Phys. Rev. A 49 (1994) 3166.

[11] M.A.M. Marte, Phys. Rev. Lett. 74 (1995) 4815.

[12] A.G. White, P.K. Lam, M.S. Taubman, M.A.M. Marte, S.

Schiller, D.E. McClelland, H.A. Bachor, Phys. Rev. A 55

(1997) 4511.

[13] M.K. Olsen, V.I. Kruglov, M.J. Collett, Phys. Rev. A 63

(2001) 033801.

[14] M.K. Olsen, S.C.G. Granja, R.J. Horowicz, Opt. Com-

mun. 165 (1999) 293.

[15] I.E. Protsenko, L.A. Lugiato, C. Fabre, Phys. Rev. A 50

(1994) 1627.

[16] M.J. Collett, D.F. Walls, Phys. Rev. A 32 (1985) 2887.
[17] P.D. Drummond, C.W. Gardiner, J. Phys. A 13 (1980)

2353.

[18] C.W. Gardiner, Quantum Noise, Springer, Berlin, 1991.

[19] P.D. Drummond, K.J. McNeil, D.F. Walls, Opt. Acta 28

(1981) 211.

[20] P.D. Drummond, K.J. McNeil, D.F. Walls, Opt. Acta 27

(1980) 321.

[21] A. Yariv, Quantum Electronics, Wiley, New York, 1989.

[22] D.F. Walls, G.J. Milburn, Quantum Optics, Springer,

Berlin, 1995.

[23] C.W. Gardiner, Handbook of Stochastic Methods, Spring-

er, Berlin, 1985.

[24] M. Abramowitz, I.A. Stegun, Handbook of Mathematical

Functions, Dover, New York, 1972.

[25] P.D. Drummond, K. Dechoum, S. Chaturvedi, Phys. Rev.

A 65 (2002) 033806.

[26] H. Haken, H. Ohno, Opt. Commun. 16 (1976) 205.

[27] K.J. McNeil, P.D. Drummond, D.F. Walls, Opt. Com-

mun. 27 (1978) 292.

[28] A. Gilchrist, C.W. Gardiner, P.D. Drummond, Phys. Rev.

A 55 (1997) 3014.

[29] L.I. Plimak, M.K. Olsen, M.J. Collett, Phys. Rev. A 64

(2001) 025801.

[30] P. Deuar, P.D. Drummond, Phys. Rev. A 66 (2002)

033812.

[31] G.J. Milburn, D.F. Walls, Phys. Rev. A 27 (1983) 392.


	Degenerate intracavity parametric processes with injected signal
	Introduction
	System and equations of motion
	Injected parametric oscillator
	Classical behaviour
	Linearised fluctuation analysis
	Full quantum analysis

	Sub-second harmonic generation
	Near the triple point
	Self-pulsing regime
	Blocking of the harmonic via injected signal

	Conclusions
	Acknowledgements
	References


