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Abstract

Resonantly enhanced four-wave mixing in double-K systems is limited by ac-Stark induced nonlinear phase shifts.

With counter-propagating pump fields the intensity–phase coupling has minimal impact on the dynamics, but it is of

critical importance for co-propagation. The nonlinear phase terms lead to an increase of the conversion length linearly

proportional to the inverse seed intensity, while without nonlinear phase-mismatch the scaling is only logarithmic. We

here show that the ac-Stark contributions can be eliminated while retaining the four-wave mixing contribution by

choosing a suitable five-level system with appropriate detunings.

� 2002 Elsevier Science B.V. All rights reserved.
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Ever since the cancellation of resonant linear

absorption and refraction via electromagnetically

induced transparency (EIT) [1] was first demon-

strated, quantum and nonlinear optics have suc-

cessfully been exploring the consequences. Many

interesting effects have been proposed and inves-

tigated [2]. One important application of EIT is
optical frequency mixing close to atomic reso-

nances which allows making use of the resonantly

enhanced nonlinear interaction without suffering

from linear absorption and refraction. It has been

predicted that EIT could even lead to a new regime

of nonlinear optics on the level of few light quanta

[2a,2b,3].

In this paper we consider one particular EIT-

based scheme, namely resonantly enhanced four-

wave mixing in a double-K system as shown in Fig.

1. The two fields with (complex) Rabi frequencies
X1 and X2 are initially excited and form the pump

fields, while the other fields with (complex) Rabi

frequencies E1 and E2 are generated during the

interaction process. X1 and E1 are taken to be ex-

actly on resonance while the other two fields are

assumed to be detuned by an amount D. A finite

detuning D, large compared to the Rabi frequen-

cies, Doppler broadening and decay rates from the
excited states, is necessary to maximize the ratio of

nonlinear gain to linear absorption. Decay from
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the two lower levels is considered to be negligible.

Because of energy conservation all fields are in

four-photon resonance. It can be shown further-

more that the contributions of the resonant tran-

sitions to the linear refractive index vanish if the
fields are pairwise in two-photon resonance. Phase

matching will thus favor two-photon resonance

and we assume that this condition is fulfilled.

Resonant four-wave mixing has been analyzed

both theoretically and experimentally with co-

propagating as well as counter-propagating fields

[6–13].

Associated with the finite detuning D are ac-
Stark shifts which lead to intensity dependent dy-

namical phase shifts of the fields. These phase

shifts are of minor consequence in the case where

the fields are counter-propagating [13]. They do

have a detrimental influence, however, on co-

propagating fields. In the following we will con-

centrate on the latter situation and show how to

eliminate these terms, leading to a considerable
improvement in nonlinear frequency conversion.

The standard method used to describe the wave

mixing process in a resonant medium is to derive

density matrix equations for the atomic system,

solve them in the steady state, i.e., assuming adi-

abaticity, and insert the resulting expressions into

the Maxwell–Bloch equations. This yields four

equations of motion for the fields in the slowly
varying amplitude and phase approximation. The

field equations can then be further broken down

into a set of five coupled equations consisting of

four amplitude equations plus the equation of

motion governing the relative phase between the

fields.

This procedure can be rather cumbersome,

particularly when several atomic levels are in-

volved. A much simpler way to derive the field

equations is given by the Hamiltonian approach
introduced in [14], which we will use in the fol-

lowing. This method makes use of the fact that the

polarization P of the medium can be expressed as a

partial derivative of the time-averaged interaction

energy per atom H with respect to the electric field

or, equivalently, the Rabi frequencies Ei

Pi ¼ �Ndi
�h

oH
oE�

i

� �
e�imiðt�z=cÞ þ c:c: ð1Þ

A similar expression holds for the drive field po-
larizations with E replaced by X. Here h. . .i denotes
quantum-mechanical averaging, di the dipole ma-

trix elements of the corresponding transitions, and

N is the atomic density. By introducing moving

coordinates ðf; tÞ with f ¼ z� ct one can directly

obtain the field equations of motion in the slowly

varying amplitude and phase approximation

dEi

df
¼ �i

gi

�h
oH
oE�

i

� �
; ð2Þ

where gi ¼ Nd2
i xi=ð2�hc�0Þ. The evaluation of the

right-hand side of (2) is particularly simple if an

open-system model can be used to incorporate

decay in a complex Hamiltonian H and if the at-

oms adiabatically follow the dynamics of the

fields. If the atoms are initially in an eigenstate of

H with eigenvalue k then hHi can simply be re-

placed by k as the two are equivalent. Thus

knowledge of the eigenvalues of the single-atom
interaction Hamiltonian is sufficient to directly

derive the field equations of motion.

In the basis ðj1i j2i j3i j4iÞT the system shown in

Fig. 1 can be described by the complex interaction

Hamiltonian

H ¼ �h

0 0 �X�
2 �E�

1

0 0 �E�
2 �X�

1

�X2 �E2 D � ic2 0

�E1 �X1 0 �ic1

2
664

3
775: ð3Þ

Taking X as a characteristic magnitude of the

Rabi frequencies involved, to second order in X=D
the relevant eigenvalue of (3) is given by

Fig. 1. Parametric amplification in a generic double-K system.
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k0ðtÞ ¼
1

D
X1X2E�

1E
�
2 þ X�

1X
�
2E1E2

jX1j2 þ jE1j2

"

� jX1j2jX2j2 þ jE1j2jE2j2

jX1j2 þ jE1j2

#
: ð4Þ

This eigenvalue corresponds to the instanta-

neous eigenstate

jk0ðtÞi ¼
jE1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jE1j2 þ jX1j2
q 

� X1

E1

j1i þ j2i
�
: ð5Þ

As can be seen, this state is asymptotically con-

nected to j1i at t ! �1. That is, the eigenstate as-

sociated with k0 corresponds to the ground state j1i
for vanishing E1 and E2. If the pump fields change
sufficiently slowly, such that the product of the

characteristic time scale T and the characteristic

energy separation to the next eigenvalue k1 � k0 is

large, we may assume that all atoms stay at all times

in jk0ðtÞi and hHi in (2) can be replaced by k0ðtÞ. This
yields the following equations of motion [13]:

o

of
E1 ¼ �ig

X�
1X

2
1X2E�

2 � E2
1E2X

�
1X

�
2

D jX1j2 þ jE1j2
� �2

� ig
jX1j2 jX2j2 � jE2j2

� �
D jX1j2 þ jE1j2
� �2

E1; ð6Þ

o

of
E2 ¼ �ig

X1X2E�
1

D jX1j2 þ jE1j2
� �

þ ig
jE1j2

D jX1j2 þ jE1j2
� � E2; ð7Þ

o

of
X1 ¼ ig

X2
1X2E�

1E
�
2 � jE1j2E1E2X

�
2

D jX1j2 þ jE1j2
� �2

þ ig
jE1j2ðjX2j2 þ jE2j2Þ

D jX1j2 þ jE1j2
� �2

X1; ð8Þ

o

of
X2 ¼ �ig

E1E2X
�
1

D jX1j2 þ jE1j2
� �

þ ig
jX1j2

D jX1j2 þ jE1j2
� � X2; ð9Þ

where equal coupling strengths have been as-

sumed. Note that there are no linear absorption

terms in (6)–(9), despite the presence of the decay

terms c in Eq. (3). Thus, the process is a parametric

one, and the total energy of the electromagnetic
fields is conserved. The absence of dissipative loss

terms is of course a consequence of the assumed

adiabatic following of the system in the instanta-

neous eigenstate (5) which has no overlap with the

decaying bare states j3i and j4i. One furthermore

finds that the equations have the following three

constants of motion:

jX1j2 þ jE1j2 ¼ constant; ð10Þ

jX2j2 þ jE2j2 ¼ constant; ð11Þ

jX1j2 � jX2j2 ¼ constant: ð12Þ
This allows the problem to be reduced to two

degrees of freedom, one corresponding to the ex-

change energy between the fields and the other to

the relative phase u ¼ /X1
þ /X2

� /E1
� /E2

be-

tween the fields.

The terms in the second line of each equation in

(6)–(9) are ac-Stark induced, intensity dependent
phase terms. They have a considerable impact on

the dynamics, particularly in terms of the conver-

sion length, i.e., the distance required for one of

the pump modes to attain maximum transfer into

one of the generated modes. To see this we solve

the field propagation problem analytically, using

the methods described in [14,15]. The essence of

this formalism is to reduce a set of Maxwell
propagation Eqs. (6)–(9) to canonical Hamiltonian

equations involving action and angle variables J

and u. The variable JðfÞ characterizes an amount

of energy exchanged between the waves and is

determined via the relations:

X1ðfÞj j2 ¼ X2
10 � JðfÞ; ð13Þ

X2ðfÞj j2 ¼ X2
20 � JðfÞ; ð14Þ

E1ðfÞj j2 ¼ E2
10 þ JðfÞ; ð15Þ

E2ðfÞj j2 ¼ E2
20 þ JðfÞ; ð16Þ

with the initial condition Jðf ¼ 0Þ ¼ 0. Here
X2

i0 ¼ jXiðf ¼ 0Þj2 and similarly for E2
i0. The

dependence of the eigenvalue k0 on the field phases

allow us to reduce the Hamiltonian equations
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further to a single equation for the exchange energy

JðfÞ. A detailed description of this procedure is

given in [15]. Integration of this last equation

eventually yields an implicit solution for the energy

exchange JðfÞ as function of propagation distance f

gf ¼
Z J

0

SðJ 0Þ dJ 0ffiffiffiffiffiffiffiffiffiffiffi
RðJ 0Þ

p ; ð17Þ

where both functions RðJÞ and SðJÞ are polyno-

mials in J.

We consider the case where the two pump fields

are initially of equal intensity, as are the two seed

fields, so that E1 ¼ E2 ¼ E and X1 ¼ X2 ¼ X. Then

the functions RðJÞ and SðJÞ take the form:

R ¼ X4
10E

4
10 sin

2 u0 þ 2X2
10E

2
10 X2

10

�
� E2

10

�
 sin2 u0

2

� �
J � 2X2

10E
2
10 cos

2 u0

2

� �
J 2; ð18Þ

S ¼ D X2
10

�
þ E2

10

�
; ð19Þ

where u0 is the initial relative phase difference

between the fields. If we define the seed field pa-

rameter by � ¼ E2
10=X

2
10 then, in the limit � � 1, the

solution of Eq. (17) is

JðfÞ¼X2
10 ð1
�

� �Þsin2 ffiffi
�

p
cos

u0

2

� �gf
D

 �

�
ffiffi
�

p
sin

u0

2

� �
sin 2

ffiffi
�

p
cos

u0

2

� �gf
D

 ��
: ð20Þ

We see that in this case the conversion length L

and conversion efficiency e ¼ ðjEmaxj2 � jEminj2Þ=
ðjXmaxj2Þ are given by:

e ¼ 1� �; ð21Þ

L ¼ D
g

1ffiffi
�

p p
2 cos u0

2

: ð22Þ

One immediately notices that the conversion

length scales as L � 1=
ffiffi
�

p
, that is, inversely in the

seed field amplitude E0. Consequently for small, let

alone vacuum, seed fields, the conversion distance
will rapidly become infeasibly long. In addition, as

the initial phase angle u0 ! p the conversion

length rapidly approaches infinity and no conver-

sion can take place.

On the other hand, if the phase terms in (6)–(9)

were to be omitted, the quantity

ReðX1X2E�
1E

�
2Þ ¼ jX1X2E�

1E
�
2j cosu; ð23Þ

is another constant of motion. In this case, if one

of the generated fields E1, E2 vanishes initially, i.e.,

if only one of these fields is seeded, then this

constant of motion must be zero. This indicates

that the relative phase u can only jump discon-
tinuously between �p=2, which occurs only at the

end of each conversion cycle, when at least one of

the field amplitudes vanishes. Thus in this case the

phase is essentially decoupled from the evolution

of the field amplitudes. This makes a considerable

difference to the dynamics.

The analytical solution in this case is obtained

in the same way as described above. The polyno-
mials RðJÞ and SðJÞ are given by:

R ¼ E2
10

�
þ J

�2
X2

10

�
� J

�2 � X4
10E

4
10 cos

2 u0; ð24Þ

S ¼ D X2
10

�
þ E2

10

�
; ð25Þ

and the solution for exchange energy can be ex-

pressed via Jacobi elliptic sine and cosine functions

sn½x; p� and cn½x; p�:

JðfÞ ¼ E2
10

A
B
; ð26Þ

with

A¼ 1
�

þ �� 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cosu0

p �
1
�

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
cosu0

p �
sn2 gf

2D


þ v0;p

�
� 1
�

þ �
�
1
�

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
cosu0

p �
;

B ¼ 1

�
þ �

�
cn2 gf

2D


þ v0; p

�

þ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cosu0

p
sn2 gf

2D


þ v0; p

�
;

p � 1� 4�2 cosu0; ð27Þ
where we have taken 0 < cosu0 < 1 for simplicity,

and v0 is a complicated function of � and cosu0,
whose precise form is however unimportant for the

present discussion. The spatial period of oscilla-

tions of JðfÞ is determined by

g
D
L ¼ 4K pð Þ; ð28Þ

with KðpÞ being a complete elliptic integral of the

first kind. In this case, the parameter p is close to
unity, so that KðpÞ can be approximated as

KðpÞ � ð1=2Þ ln½16=ð1� pÞ�. Thus the conversion

efficiency e and the conversion lengthL are given by:
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e ¼ 1þ �� 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cosu0

p
; ð29Þ

L ¼ 2D
g

ln
4

�2 cosu0

� �
: ð30Þ

It is now evident that the conversion distance

scales only as � log �, and the situation is com-

pletely different to the previous case – the con-

version length will always remain short. In

addition, the phase dependent increase in the

conversion length, this time as u0 ! p=2, also only

takes effect logarithmically.
As an illustration of conversion distance depen-

dence on seed field intensity we have calculated

numerical solutions to (6)–(9) with and without the

phase terms, and without making the approxima-

tion that � � 1.We have assumedE1 ¼ E2,X1 ¼ X2

and u0 ¼ p=4. The results are shown in Fig. 2.

Thus, given the obvious advantages inherent in

the omission of these phase terms, the question
naturally arises: does there exist a situation in

which these terms can be made to vanish?

It has been shown by Harris [16] that in a sys-

tem of parallel k transitions with different excited

state energies there exists an optimum detuning

such that the nonlinear index of refraction van-

ishes. Recently the cancellation of ac-Stark shifts

has been discussed in the context of optical mag-
netometry using dark resonances [17]. A similar

idea can be applied here. Noting that both parts of

(4) are linear in D, but only the first part is linear in
each of the fields, suggests a method for canceling

the phase terms and at the same time retaining the

nonlinear interaction part. To see this, consider the

five-level system shown in Fig. 3. Here the fields X2

and E2 are tuned midway between the two reso-
nances j1i ! j3i; j4i and j2i ! j3i; j4i. If the Rabi-

frequencies of the transitions involving level j3i are
denoted by X2 and E2, and those involving level j4i
by gX2 and fE2 respectively, g ¼ l14=l13 and

f ¼ l24=l23 being the ratios of the dipole mo-

ments, the Hamiltonian becomes

H ¼ ��h

0 0 X�
2 g�X�

2 E�
1

0 0 E�
2 f �E�

2 X�
1

X2 E2 �D þ ic3 0 0

gX2 fE2 0 D0 þ ic2 0

E1 X1 0 0 þic1

2
66664

3
77775:

ð31Þ
We find that to second order in X=D or X=D0 the

lowest eigenvalue of (31) is given by

k0 ¼
jE1j2jE2j2 D0 � jf j2D

� �
þjX1j2jX2j2 D0 � jgj2D

� �
DD0ðjX1j2 þ jE1j2Þ

2
4

þ
E1E2X

�
1X

�
2 D0 � f �gD
� �

þE�
1E

�
2X1X2 D0 � fg�D

� �
DD0ðjX1j2 þjE1j2Þ

3
5:

ð32Þ

Fig. 2. Distance required for maximum conversion of the pump

modes into the generated modes as a function of seed field

strength. Initial field intensities taken as jX10j2 ¼ jX20j2,
jE10j2 ¼ jE20j2, with the seed field intensity defined as

� ¼ jE10j2=jX2
10j.

Fig. 3. Modified double-K system. X2 and E2 denote the Rabi-

frequencies for the transitions j1i ! j3i and j2i ! j3i respec-

tively. The corresponding Rabi-frequencies for the transitions

j1i ! j4i and j2i ! j4i are gX2 and fE2, where g ¼ l14=l13 and

f ¼ l24=l23 are the ratios of the dipole moments lij.
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The first term represents intensity-dependent

contributions to the index of refraction, whose

presence results in an increase of the conversion

length. These terms can be made to vanish, how-

ever, if

D0

D
¼ jf j2 ¼ jgj2; ð33Þ

i.e., if the absolute value of the ratio of the dipole

matrix elements from level j1i to levels j3i; j4i is

equal to that from level j2i to levels j3i; j4i. It

should be noted that no condition follows for the

absolute value of the dipole matrix elements

themselve. The detunings D and D0 have then to be

chosen according to (33). In order not to cancel the
four-wave mixing terms in (32) at the same time, it

is furthermore necessary that fg� 6¼ jfgj. Together
with (33) this implies for real values of g and f

g ¼ �f : ð34Þ
In this case the eigenvalue reads

k0 ¼
2

D
E1E2X

�
1X

�
2 þ X1X2E�

1E
�
2

jX1j2 þ jE1j2

"

þ d
2D

D þ D0

DD0
jE1j2jE2j2 þ jX1j2jX2j2

jX1j2 þ jE1j2

#
; ð35Þ

where we have also introduced a deviation d of the

laser detuning from the optimum value determined
by (33), D ! D � d. One sees that precise tuning of

the laser fields is not crucial since usually

jd=Dj � 1.

Conditions (33) and (34) are fulfilled for exam-

ple in alkali atoms with hyperfine splitting. Levels

j1i and j2i can be for example themF ¼ �1 Zeeman

sublevels of the S1=2ðF ¼ 1Þ ground state of sodium

or rubidium (I ¼ 3=2). Levels j3i and j4i are the
mF ¼ 0 Zeeman sub-levels of P1=2ðF ¼ 1Þ and

P1=2ðF ¼ 2Þ. Here we have jf j ¼ jgj ¼ 1 and

f ¼ �g and the optimum detuning is exactly mid-

way between the hyperfine states.

In summary we have shown that the nonlinear

phase contributions arising in resonant forward

four-wave mixing due to the ac-Stark effect can be

exactly eliminated if a five-state system with ap-
propriate couplings and detunings is used. We

have derived a simple effective Hamiltonian for

this system and shown that the conversion length

scales only logarithmically with the inverse seed

intensity whereas with the phase terms present

conversion length scales linearly.
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