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Four-body ring-exchange interactions and anyonic
statistics within a minimal toric-code Hamiltonian
Han-Ning Dai1,2,3†, Bing Yang1,2,3†, Andreas Reingruber2,4, Hui Sun1,3, Xiao-Fan Xu2, Yu-Ao Chen1,3,5,
Zhen-Sheng Yuan1,2,3,5* and Jian-Wei Pan1,2,3,5*

Ring exchange is an elementary interaction formodelling unconventional topological matter. Here, we report the observation of
four-body ring-exchange interactions and the topological properties of anyonic excitations within an ultracold atom system. A
minimum toric-code Hamiltonian, in which the ring exchange is the dominant term, was implemented in disconnected four-spin
plaquette arrays formed by two orthogonal superlattices. The ring-exchange interactions were resolved from the dynamical
evolutions of the spin orders in each plaquette, matching well with the predicted energy gaps between two anyonic excitations
of the spin system. A braiding operation was applied to the spins in the plaquettes and an induced phase 1.00(3)⇡ in the
four-spin state was observed, confirming 1/2 mutual statistics. This work o�ers new prospects for the quantum simulation of
topological phases by engineering many-body interactions.

Exploiting the laws of quantum mechanics, quantum
information processing can be exponentially faster than
its classical counterpart1. To make this technology a reality,

scientists have to solve the crucial problem of decoherence and
systematic errors in real quantum systems, which is very di�cult
due to the requirement for an extremely small error threshold
to enable error corrections2,3. An encouraging solution to this
problem is the Kitaev toric model4 by taking advantage of anyons,
a sort of topological quasiparticles being neither bosons nor
fermions5. In this model, anyons are exploited to encode and
manipulate information in a manner which is resistant to errors,
the so-called topological protection. Schemes for simulating the
Kitaev model with di�erent systems such as photons6, ions7,
superconducting circuits8, and ultracold atoms9–16 have been
proposed. In experiments, non-interacting systems were used to
solely mimic the anyonic statistics through braiding operations17–20.
Furthermore, the toric-code interaction has been simulated by a
digital quantum simulator composed of ions through dissipative
pumping processes21. However, because the background four-
body ring-exchange interacting Hamiltonian9,10 does not exist in
these systems, they cannot protect from noises due to lack of an
energy gap and it is not possible to unambiguously define the
anyonic excitations22.

Interacting ultracold atoms in optical lattices, which can
be well described by the Hubbard models23, are regarded as
a promising system for simulating many-body physics24. By
engineering the Hubbard parameters, one can gain valuable insights
from experimental studies of the one-dimensional Ising and
Heisenberg chains25,26, the resonating valence-bond (RVB) states in
local plaquettes27, the Harper–Hofstadter and Haldane models28–30,
as well as the quantum entanglement properties between atoms31–33,
and so on.However, the ring-exchange interaction, which is relevant
to the toric-code model9 and the quantum link models of U (1)

lattice gauge theory10, remains notoriously di�cult to implement in
experiment due to the nature of its fourth-order spin interaction. It
is usually greatly suppressed compared to the lower-order processes,
such as superexchange interactions34,35.

To experimentally investigate the ring-exchange interactions,
a practical scheme9 was proposed with ultracold atoms in
optical lattices by suppressing the second-order interactions.
Following this proposal9, we first built disconnected four-site
plaquettes, whose sites are singly occupied by atomic spins, through
constructing a two-dimensional (2D) squared optical superlattice.
By carefully suppressing the superexchange interactions between
atomic spins in neighbouring sites with an e�ective gradient
field, the interaction among the four spins is then dominated
by the ring-exchange interaction. This high-order interaction was
observed by measuring the dynamical evolution of atomic spin
configurations in the plaquettes. Furthermore, making use of the
ring-exchange Hamiltonian, we experimentally demonstrate the
fractional statistics of Abelian anyons4 by a braiding operation and
an interference process.

The system under consideration is a four-site plaquette singly
occupied with four bosonic atoms in two internal states |#i and
|"i (Fig. 1a). It can be well described by a two-species single-
band Bose–Hubbardmodel (BHM), characterized by the tunnelling
matrix element Jx(y) along the x(y) direction, an on-site interaction
U and the spin-dependent intra-plaquette gradient �x(y). In the
regime of strong interactions Jx(y) ⌧U and 4J 2x(y)/U ⌧�x(y), both
the bare tunnelling and the superexchange interactions are sup-
pressed, while the fourth-order ring-exchange interactions become
dominant. Hence the four-site Hubbard Hamiltonian is reduced to
(see Supplementary Methods and ref. 9)
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Figure 1 | Experimental scheme and the ring-exchange process in disconnected four-site plaquettes. a, Isolated optical plaquettes with e�ective
magnetic gradients are created by two orthogonal spin-dependent superlattices, and the sites of each plaquette are enumerated in a counter-clockwise
fashion. b, The ring-exchange-driven oscillations take place between the two antiferromagnetically ordered states |",#,",#i and |#,",#,"i. c, The
eigenstates and related energies for modelling a minimal instance of the toric-code model ĤT with the ring-exchange dominating Hamiltonian ĤR in an
optical plaquette.

in which J⇤ ⇡ 40J 2x J
2
y /U

3 describes the e�ective ring-exchange
interaction arising from a fourth-order tunnelling process,
J+ ⇡4J 2x(y)/U denotes a nearest-neighbour Ising-type interaction
along the x(y) direction, and �j are the spin-dependent potential
biases on site j. Therefore, the intra-plaquette gradients along the
two directions are defined as �x = �2 � �1 and �y = �4 � �1.
The corresponding spin operators are defined through the
bosonic creation and annihilation operators â†

� ,j and â� ,j
as Ŝ+

j = â†
",jâ#,j, Ŝ�

j = â†
#,jâ",j and Ŝzj = (â†

",jâ",j � â†
#,jâ#,j)/2,

with the two spin states � = ", #. Due to the spatial symmetry
of the Hamiltonian, the ring-exchange process can take place
only between the two antiferromagnetically ordered states:
|#, ", #, "i and |", #, ", #i, where the commas separate the
occupations of the four sites. Therefore, a system initialized to
|#, ", #, "i will evolve to |", #, ", #i under the ring-exchange
dominating Hamiltonian, and vice versa (Fig. 1b). This process
can be e�ectively described with the representation of Bloch
sphere in a two-level system of H : {|", #, ", #i, |#, ", #, "i},
with |A±i = (|", #, ", #i ± |#, ", #, "i)/p2 set as
±êx , (|", #, ", #i ± i|#, ", #, "i)/p2 as ±êy , and
|", #, ", #i/|#, ", #, "i set as ±êz , respectively. Therefore, the
energy separation of 2J⇤ between the two eigenstates ofHR (Fig. 1c),
that is, |A+i and |A�i, sets the evolution frequency of the coherent
ring-exchange dynamics in the yz-plane of the Bloch sphere.
We use the projection along the z-axis of the Bloch sphere (the
spin imbalance), Nz = hŜz1 � Ŝz2 + Ŝz3 � Ŝz4i/2, to characterize the
ring-exchange dynamics. Here, hŜzj i denote the corresponding
quantum mechanical expectation values of Ŝz on site j.

To study the four-body ring-exchange interactions, we initially
prepare an ultracold ensemble of 87Rb atoms with two relevant

internal states |#i=|F =1,mF =�1i and |"i=|F =2,mF =�2i
in a 2D array of disconnected plaquettes into an antiferromag-
netically ordered configuration |#, ", #, "i (Fig. 2a). The state
initialization is started by preparing a 2DMott insulator in a square
lattice33. Thereafter, the plaquette potentials are generated by two
orthogonal spin-dependent superlattices in the xy plane. Each of
them is created by overlapping two standing waves with periods
of 383.5 nm (short lattice) and 767 nm (long lattice) with a bal-
anced structure. The depths of the short lattices (Vxs and Vys) and
long lattices (Vxl and Vyl) are given in units of the recoil energy
Er =h2/(2m�2), where �=767 nm,m is the mass of the atom and h
is the Planck constant.With a bias magnetic field of 1.39G along the
x̂+ ŷ direction, we use a resonantmicrowave (MW) field⇠6.8GHz
to couple the spin states |#i and |"i. The degeneracy of the transi-
tions |#i! |"i on each plaquette site is removed by setting the
lattice depths Vxs = Vys = 150(1) Er, Vxl = Vyl = 56.3(4) Er and
tuning the short-lattice polarization (with an intersecting angle of
⇡/3 between the polarizations of the incident and retro-reflected
beams, see Supplementary Methods). Thereby a spin-dependent
potential is created, as �1 =�32.6(1) kHz, �3 = 32.6(1) kHz, and
�2 =�4 =0. Hence, we selectively transfer the atoms on sites 2 and
4 into |"i via a resonantMW⇡-pulse of 60.5 µs (Fig. 2a). As a result,
the spin configuration in every plaquette is initialized to the antifer-
romagnetically ordered state |#,",#,"i in parallel. An overall state
initialization e�ciency of 92(2)% is derived by applying another ad-
dressing ⇡-pulse after 200ms holding in the lattice, and measuring
the residual atoms on |"i. The same selective addressing procedure
is used in the spin-imbalance measurement in the later experiment.

The four-spin dynamics can be controlled by the tunnelling
parameters Jx(y), the on-site interactions U and the intra-plaquette
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Figure 2 | Observation of four-body ring-exchange interactions. a, A spin-dependent potential lifts the degeneracy of spins on the four sites. The system is
initialized from |#,#,#,#i to |#,",#,"i by selectively addressing site 2 and 4 with a MW field. b, Spin configurations are read out by first addressing and
flipping the sites 2 and 4, and then imaging the two spin components by taking two in situ absorption images N"(x, y) and N#(x, y) in sequence.
c,d, Measured spin dynamics of Nz(t) (blue circles) in isolated plaquettes in the presence of an e�ective magnetic gradient are shown for two di�erent
settings: Vxs = 16.7(1) Er, Vys = 17.2(1) Er, U=894 Hz, Jx/U=0.12, Jy/U=0.11 (c); and Vxs = 19.2(1) Er, Vys = 18.2(1) Er, U=953 Hz, Jx/U=0.064,
Jy/U=0.075 (d). The measured data for spin imbalance are fitted with a damped sine wave (blue lines). Shown in the insets are the fast decay processes
in the beginning of the dynamics (red circles), matching well the theoretical predictions by including the number of vacancies in the lattice (red lines).
The error bars denote statistical errors, which are 1 s.d.
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Figure 3 | Frequencies of the spin oscillations. The major frequencies
obtained by fitting the spin imbalanced data for various values of Vxs and
Vys (red circles) are compared to the theoretical predictions of the
perturbative analysis (blue solid line), the standard BHM (red dashed line)
and the generalized BHM (red solid line). Error bars denote the
uncertainties obtained from the fitting results.

gradients �x(y). We first ramp down the long lattices to 10 Er, and
set �x = 115(1)Hz, �y = 145(1)Hz. Then the four-spin dynamics
in the plaquette is initiated by rapidly ramping down the short
lattices from 60 Er to lower depths within 500 µs. After letting

the system evolve for a time t , we halt the ring-exchange-driven
dynamics and freeze the spin configurations by simultaneously
ramping up the short lattices to 150 Er in 1.5ms. We detect the
four-spin configurations by applying a site-resolved spin flipping
operation, and taking two absorption images N"(x ,y) and N#(x ,y)
in sequence (Fig. 2b). The two plaquette configurations |",#,",#i
and |#, ", #, "i are respectively recorded. Therefore, the spin
imbalance can be derived by

Nz =
P

ROI(N"(x ,y)�N#(x ,y))P
ROI(N"(x ,y)+N#(x ,y))

(2)

where a region of interest (ROI) in the centre of the atom cloud
containing about 272 plaquettes is selected for data analysis.

Two typical evolution curves are shown in Fig. 2c,d, where the
slow oscillations of Nz(t) reveal the corresponding four-body ring-
exchange interactions. A ring-exchange oscillation frequency of
21.6(4)Hz is obtained under the Hubbard parameters Jx/U =0.12,
Jy/U =0.11. The emergence of some higher-frequency components
indicates that the lower-order processes have not been fully
suppressed. Increasing the barriers of the plaquette, a lower ring-
exchange frequency of 2.9(1)Hz is derived under the condition
of Jx/U = 0.064, Jy/U = 0.075, where the oscillation becomes
smoother and the higher-frequency components become invisible.
The finite amplitudes 0.26(3) of the oscillations are mainly limited
by the Mott filling properties, which give rise to ⇠0.37 of the full
amplitude. Further reductions can be explained by imperfections
in the e�ciencies of the microwave addressing operations and the
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Figure 4 | Coherent control of ring-exchange dynamics and braiding
anyons in a minimal toric-code model. a, Two distinct ring-exchange-driven
evolutions of the spin imbalance with (red circles) and without (blue
circles) implementing the global state operation � x

1 � x
2� x

3 � x
4 at T/4 are

measured, under the setting of Vxs = 18.2(1) Er, Vys = 17.2(1) Er, U=919 Hz,
Jx/U=0.082, Jy/U=0.10, T = 117(1) ms. Fitting the results with damped
sine waves (red and blue lines) and comparing the phase parameters, a
relative phase shift of 1'= 1.00(3)⇡ is derived after the � x

1 � x
2� x

3 � x
4

operation. The error bars denote statistical errors, which are 1 s.d. b, The
braiding operation on quasiparticles: first two m-particles (red circles) are
created by � x

4 ; then a single m-particle is moved around the plaquette by
subsequent application of � x

3 , � x
2 and � x

1 ; in the end, the two m-particles are
annihilated. For the case with the presence of an e-particle in the plaquette,
|A�i, the system picks up a nontrivial phase factor of �1. While for the
case without e-particles, |A+i, no additional phase is acquired.

suppression of the lower-order processes. The background noises
caused by the plaquettes with defects decay to a steady value of Nz
at the beginning of evolution through the bare tunnelling processes
(see insets in Fig. 2c,d and Supplementary Methods). The damping
of the ring-exchange oscillations is induced by coupling with other
states which are not in the subspace of H, as well as dephasing
caused by spatial inhomogeneities of the coupling parameterswithin
the ensemble.

The four-body ring-exchange evolutions are measured at
varying parameters as shown in Fig. 3, with the oscillation
frequencies ranging from 2.9(1)Hz to 36(2)Hz. The deviation
of the experimental data from the perturbation analysis can be
mainly attributed to the imperfect suppression of the lower-order
processes in the standard BHM. However, additional modifications
of the density-induced tunnelling, nearest-neighbour interactions
and pair tunnelling terms will further enhance the e�ective ring-
exchange term by 12–15% (see Supplementary Methods). These
e�ects form the generalized Bose–Hubbard model (g-BHM)36. A
comparison between the experiment and the theoretical predictions
of the g-BHM results in excellent agreement, which confirms
that the dominant dynamics observed here is the four-body ring-
exchange process.

Furthermore, we demonstrate coherent control of the ring-
exchange-driven dynamics by applying a global state opera-
tion � x

1 � x
2 � x

3 � x
4 during the evolution. This operation creates

a phase on the two ring-exchange-related eigenstates as
� x
1 � x

2 � x
3 � x

4 |A±i=±|A±i, which can be derived from a phase
shift in the dynamical evolution of the spin orders9,11. Concretely,
after initializing the system to |#,",#,"i in the experiment, we
let the system evolve to a superposition state (|A+i+ i|A�i)/p2
through a quarter-period of ring-exchange oscillation (Fig. 4a),
where the phase i is a relative phase. Then a single-frequency MW
⇡-pulse of 19 µs with a Rabi frequency of⌦ =26.3 kHz is applied to
flip every site on the plaquette, which is equivalent to performing the
global operation � x

1 � x
2 � x

3 � x
4 on the four-spin states. The e�ciency

of the ⇡-pulse for each site is close to unity, as �x(y) ⌧ ⌦ . The
state |A�i picks up an additional phase factor �1, and the system
ends up in (|A+i� i|A�i)/p2. Afterwards, the state evolves under
the same ring-exchange setting and the dynamical evolution is
recorded (Fig. 4a). A relative phase shift 1' ='R �'0 = 1.00(3)⇡
can be obtained by comparing the two oscillations with and without
implementing the global spin flipping. Thus one gets a resulting
phase factor ei1' = �1.00(3) acquired on |A�i after applying
� x
1 � x

2 � x
3 � x

4 . This clearly reveals again that the ring-exchange
dynamics are well described by the two eigenstates |A±i.

By utilizing the well-controlled ring-exchange dominating
Hamiltonian in our experiment, we can implement a minimal
instance of Kitaev’s toric-code model9. Within the subspace of H,
the Hamiltonian ĤR (equation (1)) is equivalent to

ĤT =�J⇤� x
1 � x

2 � x
3 � x

4 � J+
4

X

hj,ki
� z
j �

z
k (3)

where � x(z)
j are the Pauli operators on site j. It can be regarded

as a quantum link model of U (1) lattice gauge theory10,13 as
well. The first term of this Hamiltonian corresponds to the ring-
exchange interactions, while the second term of four two-body
Ising terms is reduced from the four-body Ising vertex terms of
the toric-code model due to the geometry of an isolated four-
site plaquette. The ground state of this model takes the form
|⇤i= (|",",","i+|#,#,#,#i)/p2, while the first excited state
with an energy of 2J⇤ is |�i= (|",",","i� |#,#,#,#i)/p2
(see Fig. 1c). It can be generated in principle by applying,
for example, the � z

1 operation to the ground state, and is
known as a quasiparticle of ‘electric charge’ (e-particle). Another
type of excitation with an energy of J+ can be generated
by applying a single-qubit rotation on the ground state, for
example, � x

4 |⇤i= (|",",",#i+|#,#,#,"i)/p2, which actually
excites a pair of so-called ‘magnetic vortices’ (m-particles). In
this minimal toric-code model, the two antiferromagnetically
ordered states |A±i are energetically high-lying eigenstates (see
Fig. 1c and Supplementary Methods), that is, |A+i=� x

2 � x
4 |⇤i and

|A�i=� x
2 � x

4 � z
1 |⇤i. Hence, there are four m-particles existing on

the four edges of the plaquette in |A+i, while an additional e-particle
lives at the centre of the plaquette in |A�i (ref. 9). On the basis of the
fusion rules4, when two anyons of the same type are created at the
same position, they annihilate18. For example, � x

1 � x
1 |⇤i=|⇤i.

We then analyse anyonic fractional statistics of quasiparticles
in this minimal toric code. Specifically, the global state operation
� x
1 � x

2 � x
3 � x

4 in the above experiment is equivalent to a braiding
operation � x

1 � x
2 � x

3 � x
4 , which can be described as: first creating a

pair ofm-particles on the two edges of the plaquette, then cyclically
moving one m-particle around the plaquette, and annihilating the
two m-particles in the end (see Fig. 4b). For the case with the
presence of an e-particle in the plaquette, |A�i, the systempicks up a
nontrivial phase factor of�1.While for the case without e-particles,
|A+i, no additional phase is acquired. The nontrivial phase factor
of�1 acquired after the braiding operations denotes the presence of
relative 1/2-anyons in |A�i. It can be clearly seen from the braiding
process that additional energy levels out of the subspace H are

4
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involved, for example, � x

4 |A�i= (|",#,","i� |#,",#,#i)/p2
with an energy di�erence of J+ comparing to |A�i and resulting in
annihilation of a pair of m-particles. Obviously, the Bloch sphere
representation is no longer su�cient to describe the physics of the
braiding process. The observed dynamical phase di�erence is an
unambiguous signature of fractional statistics.

In summary, we have engineered the Hubbard parameters of a
plaquette system and isolated a minimum instance of the toric-code
Hamiltonian from a lattice system. The ring-exchange interaction
has been observed by controlling and measuring dynamical
oscillations between the spin configurations |#, ", #, "i and
|",#,",#i. Applying a braiding operation to the plaquette state, we
found a statistical phase of ⇡, demonstrating the exotic fractional
statistics of Abelian anyons. Optimizing the filling parameters in
the Mott insulator state by novel cooling and loading techniques37,38
will give rise to plaquette arrays with fewer defects and ring-
exchange dynamics with higher contrasts. To achieve stronger ring-
exchange strengths, one may use lighter atoms (say, lithium) to
enhance the tunnelling while using tighter traps and exploiting
Feshbach resonances39 to strengthen the on-site interaction. With
periodic driving40,41 or adiabatically tuning the lattice parameters42,
one may e�ectively couple neighbouring plaquettes with ring-
exchange interactions to form larger systems. Our experiment
o�ers a novel prospect for quantum simulation of topological
phases43,44 by engineeringmany-body interactions in ultracold atom
systems, andwill contribute to the future development of topological
quantum computation11,45–49.

Data availability. The data that support the plots within this paper
and other findings of this study are available from the corresponding
author upon reasonable request.
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