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Mesoscopic Rydberg-blockaded ensembles in the
superatom regime and beyond
T. M.Weber, M. Höning, T. Niederprüm, T. Manthey, O. Thomas, V. Guarrera†, M. Fleischhauer,
G. Barontini† and H. Ott*
The control of strongly interacting many-body systems
enables the creation of tailored quantum matter with complex
properties. Atomic ensembles that are optically driven to a
Rydberg state provide many examples for this: atom–atom
entanglement1,2, many-body Rabi oscillations3, strong
photon–photon interaction4 and spatial pair correlations5.
In its most basic form Rydberg quantum matter consists of
an isolated ensemble of strongly interacting atoms spatially
confined to the blockade volume—a superatom. Here we
demonstrate the controlled creation and characterization
of an isolated mesoscopic superatom by means of accurate
density engineering and excitation to Rydberg p-states. Its
variable size allows the investigation of the transition from
e�ective two-level physics to many-body phenomena. By
monitoring continuous laser-induced ionization we observe a
strongly anti-bunched ion emission under blockade conditions
and extremely bunched ion emission under o�-resonant
excitation. Our measurements provide insights into both
excitation statistics and dynamics. We anticipate applications
in quantum optics and quantum information as well as
many-body physics experiments.

Rydberg superatoms combine single- and many-body quantum
effects in a unique way and have been proposed as fundamental
building blocks for quantum simulation and quantum information6.
Owing to the phenomenon of Rydberg blockade7, the ensemble
collectively forms a system with only two levels of excitation.
Provided a range of interaction larger than the sample size, the
presence of one excitation shifts all other atoms out of resonance;
therefore only one excitation can be created at a time. Changing
the size or the driving conditions restores the underlying many-
body nature, and the presence of several excited atoms with
pronounced correlations becomes possible. This tunability and the
possibility of multiple usage within a single experimental sequence
make superatoms a promising complement to single-atom-based
quantum technology. It is therefore important to understand the
significance of the superatom concept, the implications of its finite
spatial extent and its many-body level structure. Here we investigate
the latter by measuring the mean Rydberg excitation as well as
its time-resolved two-particle correlations in an optically excited,
mesoscopic superatom for varying excitation strength and under
resonant and non-resonant conditions, revealing very different
excitation dynamics.

The realization of superatom-based quantum systems requires
the implementation of arbitrary arrangements of isolated meso-
scopic atomic ensembles in a scalable way. Here we prepare an
individual superatom by carefully shaping the density distribution

of a Bose–Einstein condensate of 87Rb atoms. We first load the
condensate into a one-dimensional optical lattice with a spacing of
532 nm, to suppress the axial movement of the atoms. We subse-
quently compress the atomic sample in the radial direction to reduce
its size below the blockade radius and empty all but three (or more)
lattice sites using a focused electron beam8–10 (Fig. 1a andMethods).
The atom number within the ensemble (N ) can be adjusted between
100 and 500 at a temperature of T = (3.5±0.5)µK and the typical
size of the sample is ≤3 µm in diameter (Fig. 1b). Our preparation
scheme is readily scalable to arrays of superatoms (Fig. 1d).

After preparation we excite the atomic ensemble with a
single-photon transition from the |5s1/2〉 ground state to the
|51p3/2,mj=3/2〉 Rydberg state at a wavelength of 297 nm with a
coupling strength Ω . The single-photon transition circumvents
scattering from any intermediate state, therefore allowing a long
exposure. The key observable is the string of ions produced by
excited atoms that are photoionized by the trap laser11 (with ioniza-
tion rate Γion= (45±5) kHz). Specifically, we detect the initial peak
ion rate as well as the temporal pair correlation function g (2)(τ ),
extracted from the time-resolved ion signal (see Methods). The
ions continuously emitted from the ensemble lead to a slow decay
of the superatom on a timescale between a few milliseconds (see
inset Fig. 2) and seconds. Eventually almost 100% of the constituent
atoms are converted into ions, of which we detect (40± 8)%. For
weak resonant driving the superatom mimics an effective two-level
system where the excitation of more than one atom is suppressed as
a result of blockade. This can be clearly observed in the experiment:
Fig. 2 shows pronounced anti-bunching, in good agreement with a
theoretical rate model (Methods and Supplementary Information).
We extrapolate a value of g (2)(0)=0.08±0.06, taking into account
an uncorrelated background signal (see Methods). The background
constitutes 10–15% of the signal and originates from atoms which
are not removed during the preparation of the superatom. The
anti-bunching amplitude stays constant during the gradual decay of
the superatom, which thus acts as a continuously operating single-
ion source12. The strong suppression of collective oscillations,
indicated by the purely exponential shape of g (2)(τ ), shows that the
system is in the overdamped regime, where the coherent coupling
is overcome by decoherence from the laser linewidth, thermal
motion of atoms and residual field fluctuations as well as intrinsic
dephasing mechanisms13.

The ability to adjust the size of the atomic sample allows a
continuous transition from the superatom limit to a many-body
system, where blockade conditions break down. First, this can be
used to determine the blockade radius. In Fig. 3a the initial ion rate
per atom is shown for increasing axial size l of the sample, keeping
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Figure 1 | Preparation of superatoms and excitation level scheme. a, Starting from a Bose–Einstein condensate in an optical dipole trap with superimposed
optical lattice (left) the atoms are radially compressed (middle) and removed from all but a few lattice sites with the help of a focused electron beam
(right). b, The resulting—almost spherical—atomic sample contains between 100 and 500 atoms at a temperature of 3–4 µK and dimensions smaller than
3 µm (4σ of a Gaussian fit) in each direction. The axial size of this atomic sample can be varied arbitrarily. c, The superatom is excited with a single-photon
transition (λ=297 nm) into the |51p3/2〉 state. E�ective three-level scheme, comprising the ground state, the singly excited state and the doubly excited
state, whose energy has a dependence on r−6 owing to the van der Waals interaction. Black (blue) arrows denote (o�-)resonant excitation and the
blockade radius rB is denoted by the excitation linewidth (grey shaded area). The decay due to ionization and the ion detection are also indicated.
R, interatomic distance. d, A one-dimensional array of superatoms, demonstrating the scalability of our approach.
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Figure 2 | Resonant excitation of an isolated superatom. a, Second-order
temporal correlation function of ions emitted from the resonantly excited
superatom (Ω/2π=6 kHz, blue circles). Data points are fitted with an
exponential function (blue curve), revealing a value of
g(2)(0)=0.08±0.06. The black line and the grey shaded area result from a
rate model (see Methods and Supplementary Information). The inset
shows the data as well as the model curves of the absolute ion rate as a
function of time. The integral below both curves is fixed by the total number
of ions produced. The bars denote the statistical errors from 1,500
experimental runs.

the ground-state atom density constant. Under blockade conditions
the ion rate first decreases as more and more atoms contribute to
the same signal. However, above a critical spatial extent, which we
identify with the blockade radius, the ion rate remains constant.
The corresponding, independently measured, anti-bunching signal
(inset in Fig. 3a) leads to a compatible value of the blockade
radius of (2.7 ± 0.8) µm. At first glance it is surprising that we
observe blockade at all when we resonantly excite to a p-state. In a
p-state the van der Waals interaction is strongly angular dependent
(Fig. 3b). For a small interval of θ , the coefficient C6 is vanishingly
small, potentially leading to a breakdown of the overall blockade.
Thus, to understand the observed blockade effect we need to go
beyond the standardC6 asymptotics. Figure 3b shows the interaction
potential curves for the asymptotic |51p3/2,3/2, 51p3/2,3/2〉 pair state,
obtained by diagonalization of the interaction Hamiltonian (see
Methods). As a result of an avoided crossing with the asymptotic

|51p3/2,1/2, 51p3/2,1/2〉 pair state, which is energetically separated by
an external magnetic field of 35G, the potential curves which have
a negative C6 coefficient for large distances bend into a repulsive
interaction for smaller distances. Thus, the interaction potential for
all angles becomes repulsive, enabling an overall blockade.

To describe the complex interaction potential structure in an
effective but simple way, we assume an isotropic repulsive inter-
action and solve the many-body problem within an approximate
rate equation model with a C eff

6 coefficient as the only free pa-
rameter (see Methods). We chose a van der Waals coefficient of
C eff

6 /2π=16
+48
−10MHzµm6 to compare the model to the experimental

results. The resulting potential curves are indicated by the green
shaded area in Fig. 3b. Throughout this paper, we apply the effective
model with these parameters to our data and find good agreement
over a wide range of laser intensities and detunings.

Our mesoscopic superatom permits inter-atomic distances R of
up to≈3 µm. As a consequence, when the excitation is off-resonant
the blockade conditions can be tuned into an anti-blockade14 and
pronounced bunching of the ion emission can be observed (Fig. 4a).
We find bunching values of up to g (2)(0)=61±8 for large detunings.
This behaviour can be understood from the full level structure of
the mesoscopic superatom, including excited states with more than
one excitation, and is captured well by our rate model: whereas the
transition to the first collective Rydberg state is out of resonance,
subsequent transitions into doubly excited states are shifted into
resonance (Fig. 1c), leading to a cascaded excitation process.

The transition of the mesoscopic superatom from an effective
two-level system to a complex many-level system is also reflected
in its saturation behaviour. In Fig. 4b, we plot the dependence of the
initial ion rate on the Rabi frequency for resonant and off-resonant
(∆/2π= 4MHz) excitation through three orders of magnitude of
the experimental parameter Ω . The excitation probability on reso-
nance initially grows quadratically and starts to saturate around an
ion rate corresponding to the presence of one excitation. Driving the
superatom more strongly, the blockade radius is reduced and above
the saturation thresholdmore excitations can be created, resulting in
an increasing initial ion rate—however, with a smaller slope. Thus,
the blockade is overcome after saturation has been reached. For off-
resonant excitation the signal again shows a quadratic initial slope
at a reduced absolute value, but enters a region where the slope
is steeper than quadratic, showing a strong enhancement of exci-
tations. For strong enough driving, the resonant and off-resonant
excitations eventually reach comparable levels. This happens when
the collective coupling strength

√
NΩ becomes comparable to the
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Figure 3 | Blockade radius measurement and theoretical calculations. a, Initially emitted ion rate per atom for di�erent axial sizes l of the atomic sample
(black circles). The density is kept constant for all sample sizes. We determine the e�ective blockade radius from the intersection of partial linear fits (blue
curves). The inset shows the corresponding dependence of g(2)(0) on l (black circles). The data are compared against a compound theory (red curve) of a
hard-shell model (for l≤ rB) and a statistical decay 1−g(2)(0)=(1−g(2)

l<rB (0))rB/l (for l> rB). The bars indicate the error of the fit for the peak ion rate, the
sample size and the initial g(2)-amplitude. b, Potential curves of the asymptotic |51p3/2,3/2,51p3/2,3/2〉 pair state dependence on the inter-atomic distance R
as obtained from diagonalization of the interaction Hamiltonian for equispaced orientation angles from θ=0 to θ=π/2 (black curves). Red curves indicate
the C6-potentials for θ=0 and θ=π/2. The grey shaded area denotes the region of resonant excitation for a decoherence rate Γd/2π=340 kHz (see
Methods). The green curve and green shaded area show the result of the e�ective rate model with an e�ective van der Waals coe�cient
Ce�

6 /2π= 16+48
−10 MHzµm6. The inset shows the dependence of C6 for the asymptotic |51p3/2,3/2,51p3/2,3/2〉 pair state on θ , as obtained from second-order

perturbation calculations.
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Figure 4 | O�-resonant excitation and saturation of a mesoscopic superatom. a, Pair correlation amplitude g(2)(0) for di�erent detuning (red circles, bars
indicate the error of the fitted initial amplitude), compared against the model results (grey). Inset: g(2)(τ ) for a detuning of∆/2π=21 MHz and
Ω/2π=48 kHz (blue circles, bars indicate the statistical error from 600 experimental runs, the solid line is a fit to an exponential decay). b, Dependence of
the peak ion rate emitted from the superatom on the coupling strengthΩ/2π for resonant excitation (blue circles) and o�-resonant excitation with blue
detuning of∆/2π=4 MHz (black circles) of an ensemble of 125 atoms. Data points are compared against the respective results of the rate model (shaded
areas). Dashed lines show continuations of the respective initial quadratic dependence. The vertical bars denote the error of the fit of the ion decay curve,
the horizontal bars indicate the intensity fluctuations and drifts of the excitation laser.

detuning ∆ and the difference in the first excitation step for the
resonant and off-resonant case disappears. The rate equationmodel
reproduces all experimental findings, despite the major simplifica-
tions made. Only for the largest Rabi frequencies in Fig. 4b does the
model underestimate the excitation rate. Here, the ensemble Rabi
frequency

√
NΩ is larger than the decoherence rate and coherent

many-body dynamicsmight become visible.However, a comparison
of the rate equation model with a fully quantum-mechanical treat-
ment leads to almost identical predictions for the initial ion rate and
g (2)(0) (Supplementary Information). To observe coherent dynam-
ics requires the conditionΩ/Γd>1 and the blockade condition to be
satisfied simultaneously. The experiment is thus limited at present to
incoherent dynamics. Reducing decoherence is one avenue towards
coherent superatom dynamics. An alternative is excitation to higher
Rydberg n levels, which increases the interaction.

The temporal correlation function g (2)(τ ) also provides insight
into the many-body dynamics of the superatom. Figure 5a shows
the dependence of the correlation times τc of g (2)(τ ) on the detuning.
Three different physical regimes can be identified. In Regime I, for
large detunings, the atoms spend most of the time in the ground
state with small probabilities for single and double excitations. The
detection of an ion projects the density matrix onto states with one
excitation less. Only doubly excited states emit a second ion and
contribute to g (2)(τ ). The correlation time of g (2)(τ ) is thus simply
given by the lifetime of the Rydberg excitation. In Regime II, for
smaller detunings, we observe a marked slowdown of the relaxation
dynamics. In this regime strongly correlated Rydberg aggregates
form15,16. An ionization event projects the system onto a state with
increased weight on aggregates of a few excited atoms (Fig. 5b).
The relaxation to the steady state is set by the lifetimes of these
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Figure 5 | Dynamics of the pair correlation function. a, Dependence of the correlation time τc of the pair correlation function on the detuning (same
parameters as in Fig. 4a). The black points are the experimental data and the red line is the theoretical prediction. The correlation times are determined by
an exponential fit (see Fig. 4a). The bars indicate the error of the fit. The horizontal grey line indicates the lifetime of a Rydberg excitation. The vertical
dashed lines demarcate the three physical regimes that can be distinguished (see text). b, Calculated steady-state probability distribution of number of
excitations (black bars) and corresponding non-equilibrium distribution after the detection of one ion (blue bars) for Regime II. Temporal evolution back to
the steady state is reflected in the correlation time of the pair correlation function. c, Corresponding distributions for Regime III to those in b.

aggregates, which exceed that of Regime I, as several atoms have
to decay. In Region III, on resonance, where anti-bunching occurs,
g (2)(τ ) reflects the excitation dynamics after the emission of an
ion. The timescale is below 5 µs, shorter than all relevant single-
particle timescales, and is therefore a signature of the collectively
enhanced excitation rate of the superatom. The corresponding
probability distributions are shown in Fig. 5c. Our analysis shows
that the temporal pair correlation function is a powerful tool to
characterize many-body dynamics and can be used in the future to
study quantum phases of driven dissipative systems17.

Single superatoms based on collective Rydberg excitations have
great potential for applications in quantum optics. They can be
used to build high-fidelity photon absorbers13 and deterministic
ion sources12. An interaction between multiple superatoms can
be realized choosing a Förster resonance, which features a long-
range R−3 dipole–dipole interaction. The increased interaction then
enables us to switch to the coherent collective excitation regime,
allowing deterministic state manipulation. Strings of superatoms
(see Fig. 1d) are an ideal system for the investigation of energy
transfer mechanisms18,19 and one-dimensional spin systems20. Our
approach can be straightforwardly extended to arbitrary patterns
of superatoms in two-dimensional lattice systems8,9. Such quantum
systems can then be a resource for further investigations of
isotropic and anisotropic long-range interactions21, for the quantum
simulation of open spin systems22,23, Bell state measurements24,25 or
interferometric applications26,27.

Methods
Superatom preparation and laser excitation. We start with a Bose–Einstein
condensate of approximately 1,700 rubidium atoms in a crossed optical dipole
trap at a wavelength λ=1,064 nm. The final trap frequencies are
2π×(180/85/185)Hz. A one-dimensional optical lattice is then superimposed by
linearly ramping up a retro-reflected laser beam along the weak axis of the trap
and the axial motion is frozen out. Subsequently, the atomic cloud is radially
compressed by increasing the intensity of one of the two dipole trap beams. A
focused electron beam ((250±100) nm diameter, 20 nA beam current), which is
also used to image the sample, removes the atoms from selected areas8–10. In this
way, we prepare samples of several hundred atoms with ≤3 µm diameter at a
temperature of (3.5±1)µK. After the preparation sequence, a fraction of 10–16%
of the atoms reside in the outer regions of the trap.

The superatom is directly excited to a Rydberg state by illuminating it with
an ultraviolet laser beam at 297 nm with a waist of 100 µm and a laser power up
to 160mW. The light is produced by frequency doubling a stabilized dye laser
(Matisse-DR) in a heated caesium lithium borate (CLBO) crystal installed in a
Pound–Drever–Hall stabilized bow-tie cavity. The frequency of the dye laser can
be tuned via an offset-locked reference laser, resulting in a relative uncertainty of
the ultraviolet frequency of ±0.5MHz. The linewidth of the excitation light is
estimated from dye laser control parameters to less than 200 kHz and the power
noise is below 10%.

Electric fields, ion detection and signal processing. The atomic sample is
surrounded by quadruply segmented copper rings of 40mm diameter at a
distance of 25mm, embodying an octupole electrode configuration28. Applying
corresponding voltages, residual electric fields in the chamber are compensated in
all directions apart from a remaining permanent vertical component of
E0≤0.25V cm−1 that is used to extract the produced ions towards the ion optics
below. The ion optics guide the ions into a dynode multiplier (ETP 14553). The
signal pulses are further processed with a temporal resolution of 100 ns.

Temporal correlation function. We numerically calculate the second-order
temporal correlation function of the ion signal I(t)

g (2)(τ )=
〈I(t)I(t+τ)〉
〈I(t)〉〈I(t+τ)〉

where 〈I(t)I(t+τ)〉 is calculated as the averaged product of counts (0 or 1) in
two bins separated by τ and the normalization 〈I(t)〉〈I(t+τ)〉 is given by the
averaged ion rate. Several factors affect the data evaluation and have to be taken
into account. Artefacts from detector ringing occur for time separations of less
then 400 ns. Coulomb repulsion between the ions during time of flight produces
further correlations on a timescale which depends on the extraction field. For our
parameters, they never occur on timescales longer than 2 µs. We therefore discard
all data points with τ ≤2µs. The background atoms (fraction r) contribute an
uncorrelated signal to the ion emission of the superatom. This leads to a
reduction of the measured amplitude g (2)meas compared to the bare signal from the
superatom g (2)real, which we correct for: g (2)real(0)=(g (2)meas(0)−1)/(1− r)2+1. Note
that g (2)(τ ) is independent of the detector efficiency.

Calculation of the interaction potential. The potential curves are calculated by
diagonalization of the dipole–dipole interaction Hamiltonian in the presence of
an electric and magnetic field. The basis set consists of all pair states which are
closer than 15GHz in energy to the initial |51p3/2,3/2, 51p3/2,3/2〉 pair state. We
consider all possible combinations of s-, p- and d-states, including all
Zeeman levels.
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Effective rate model. The superatom dynamics is described by a Lindblad
equation ρ̇= i(

∑Natoms
j=1 [Hj,ρ]+[Hint,ρ])+

∑
ν
(1/2)(2LνρL†

ν
−{L†

ν
Lν ,ρ}), where

Hj=((Ω/2)|r〉〈g |j+h.c.)+∆|r〉〈r |j and Lν are the jump operators for ionization
(Γion), spontaneous decay into low-lying states which are not ionized (Γsp) and
decoherence (Γd). The decoherence rate represents the cumulative effect of laser
linewidth, thermal atomic motion, fluctuating electric fields and intrinsic
dephasing mechanisms13. The rates of ionization (Γion=45kHz) and internal
spontaneous decay (Γsp=5kHz) are known from independent measurements
and we extract the excitation rate from the saturation measurements shown in
Fig. 4b. For weak driving the ion signal is independent of the interaction term
Hint and given by IΩ�γ =(ΓionNatoms)/(Γion+Γsp)Ω

2γ /(γ 2
+4∆2), with

γ =Γd+Γion+Γsp, and Natoms being the number of atoms within the superatom.
Fits to the saturation measurements at ∆=0 and ∆/(2π)=4MHz yield the
relation between laser intensity and Ω and the decoherence rate
Γd/(2π)≈140kHz and Γd/(2π)≈340kHz, for two different sets of parameters
used in the experiment.

Beyond the regime of weak driving we describe the superatom by classical
rate equations, which is justified by the large decoherence rate present in our
set-up and validated in previous studies of strongly interacting Rydberg
systems using such methods15,29,30. The system of rate equations describes
dynamics in classical configuration space, where individual states are
connected by single-atom transitions at excitation rate (Pi) and deexcitation
rate (Di). These rates depend on the effective detuning of the atom
δi=∆+

∑
j(C eff

6 )/(|ri− rj|6)|r〉〈r |j through Pi=(Ω
2γ )/(4δ2i +γ 2) and

Di=(Ω
2γ )/(4δ2i +γ 2)+Γion+Γsp. The set of many-body rate equations is solved

by stochastic sampling of trajectories. Simulations take into account the spatial
distribution of atoms as measured in the experiment by averaging over many
realizations. Atomic motion is not included within our description and the
intricate p-state interaction is approximated with an effective, isotropic van der
Waals potential C eff

6 /R6.
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