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Abstract. We study the dynamics of a spin–orbit (SO)-coupled Schrödinger
particle with two internal degrees of freedom moving in a one-dimensional
random potential. Numerical calculation of the density of states reveals the
emergence of a Dyson-like singularity at zero energy when the system
approaches the quasi-relativistic limit of the random-mass Dirac model for
large SO coupling. Simulations of the expansion of an initially localized wave-
packet show a crossover from an exponential (Anderson) localization to an
anomalous power-law behavior reminiscent of the zero-energy (mid-gap) state of
the random-mass Dirac model. We discuss conditions under which the crossover
is observable in an experiment and derive the zero-energy state, thus proving its
existence under proper conditions. Finally we describe a possible experimental
realization using an ensemble of cold 87Rb-atoms interacting with external
control lasers and speckle fields.
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1. Introduction

Tightly confined ultracold atomic gases [1] provide an ideal arena for studying a broad
spectrum of one-dimensional (1D) quantum phenomena. Examples range from Hubbard-type
models [2, 3], pairing phenomena in Fermi gases [4, 5] to spin–orbit (SO) coupling for
neutral atoms [6–9] and quasi-relativistic physics [10, 11], generated by the additional use
of external laser fields. The same experimental techniques can also be used to address the
effects of disorder in condensed matter systems in an atomic-physics setting. A prominent
example is the demonstration of Anderson localization [12] of a Bose–Einstein condensate
(BEC) in a 1D wave-guide [13, 14]. One-dimensional Anderson localization is caused by
destructive interference in a weak, disordered potential (referred to as diagonal disorder) and
leads to exponential localization of the particles [15–18]. This behavior may change in half-
filled disordered metals [19], random spin-Peierls and spin-ladder systems [20], or as recently
predicted in photonic systems with electromagnetically induced transparency [21]. Delocalized
zero-energy (mid-gap) states can emerge in these systems showing a power-law behavior for
the correlations due to a Dyson singularity in the density of states (DOS) [22]. Such anomalous
localization originates from the chiral symmetry of the corresponding 1D Hamiltonian and can
be realized in the system with off-diagonal disorder known as a random-mass Dirac model
or the fluctuating gap model (FGM) [23–26]. The singularity in the DOS was discovered in
1953 by Freeman Dyson [27] who calculated the density of phonon modes in a chain of 1D
harmonic oscillators with random masses and random couplings. It emerges at the band-center
and strongly affects the localization properties, leading to a diverging localization length at
E = 0. However, as was shown by Fleishman and Licciardello [31] the E = 0 state is not
extended due to strong fluctuations. In fact, it can be shown that there exists a Dyson singularity
for any distribution of off-diagonal disorder [29, 30]. Interestingly, the FGM can also be mapped
onto a chain of identical atoms with a random XY model [28].

In cold atom systems disorder is typically induced by a random potential and is thus of
diagonal type. Here we show that the combination of a random potential and SO coupling
induced by the motion in space dependent laser fields can give rise to effective off-diagonal
disorder. Light-induced SO coupling has been shown to lead to an effective Dirac dynamics
in [11]. By investigating the density of states of the corresponding disorder model we derive
conditions under which power-law localization can be observed and argue that they are indeed
connected to the emergence of a Dyson singularity in the DOS. We show by simulating the
time evolution of an initially localized wave packet that increasing the SO coupling drives a
crossover from exponential (Anderson) localization to an anomalous power-law localization.
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Figure 1. Left: experimental sketch of the system. The condensate is placed in a
tight cigar-shaped trap and driven by three lasers with Rabi frequencies �1, �2

and �3. Right: internal tripod-type linkage pattern of the atoms exhibiting two
dark-states without any contribution of the excited state |0〉.

We note that a model similar to ours was considered in [32], but only for the case of diagonal
disorder and neglecting the kinetic energy part. As will be shown the latter can be neglected
only under special circumstances and drastically alters the behavior of the system, leading to
much richer physics.

2. Dark-state dynamics for tripod coupling

We consider an ensemble of cold atoms exposed to three laser fields in a tripod-type linkage
pattern [33], as depicted in figure 1. The atoms are characterized by a manifold of three ground
states |1〉, |2〉, |3〉, coupled to a common excited state |0〉 via corresponding control lasers of
wave-number κ . We assume two of the control lasers to be counter-propagating along the x-axis
with Rabi frequencies�1 =� sin θ e−iκx/

√
2 and�2 =� sin θ eiκx/

√
2, whereas the third laser

propagates along the y-axis with �3 =� cos θ e−iκy , and �=

√∑3
i=1 |�i |

2 denotes the total
Rabi frequency. Following [33] we can write the interaction Hamiltonian (h̄ = 1) of the resulting
tripod scheme as Ĥ0 = −

∑3
i=1(�i |0〉〈i | + h.c.). This Hamiltonian has two dark-states, |D1〉 =

1
√

2
e−iκy(eiκx

|1〉 − e−iκx
|2〉) and |D2〉 =

1
√

2
e−iκy cos θ(eiκx

|1〉 + e−iκx
|2〉)− sin θ |3〉, with zero

energy and decoupled from the excited state |0〉. We express a general state of the system in
the dark state manifold according to |χ(r)〉 =

∑2
i=1ψi(r)|Di(r)〉, where ψ1(r) and ψ2(r) are

the wave functions corresponding to the two degenerate dark states. An effective equation for
the center-of-mass amplitudes ψi(r) is then given by [10]

i
∂999

∂t
=

(
1

2m
(p − A)2 + V + 8

)
999, (1)

where p is the momentum operator, m the atomic mass, and Ψ(r)= (ψ1(r), ψ2(r))T a two-
component vector. The gauge potential A, known as the Mead–Berry connection [34, 35], arises
from the coordinate-dependence of the dark-states and is given by Ak,n = i〈Dk(r)|∇|Dn(r)〉.
The external potential has matrix elements Vk,n = 〈Dk(r)|V̂ |Dn(r)〉, where the potential in the
bare basis was assumed to be diagonal, i.e. V̂ =

∑3
i=1Vi(r)|i〉〈i |. The scalar potential reads

8k,n =
∑4

l=3 Ak,lAl,n/2m, where the summation index l = 3, 4 sums over the bright-states that
span the orthogonal complement of the dark-subspace.

Up to this point the motion of the atoms has not been confined by any further potential.
As we aim to study a 1D gas which is subject to an off-diagonal disorder, we apply an
additional strong transverse trapping potential to freeze out the transverse degrees of freedom.
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Figure 2. Dispersion relation in the Schrödinger limit, with the inset representing
the Dirac limit. The red dotted lines correspond to the case of vanishing potential,
i.e. δ = 0, whereas the blue solid lines correspond to δ = mv2

D/8. The mixing
angle is given by θ = 0.

Note that the recoil along the y-direction due to the eiκy-terms is then irrelevant, which
however does not prevent the coupling of the field to the atoms. Equation (1) reduces to
a 1D equation with 2 × 2-matrices A = −κ cos θ σ̂x , V = Diag[V1, V1 cos2 θ + V3 sin2 θ ], and
Φ= κ2/2m Diag[sin2 θ, sin2(2θ)/4], where σ̂i , i ∈ {x, y, z}, are the Pauli matrices, and we have
assumed V1 = V2. Reducing the center of mass dynamics to 1D is a valid approximation as long
as the transversal trap frequency is much larger than any other energy scale in the system such
as temperature, collisional interactions and kinetic energy. Expanding the square in equation (1)
and choosing the external potentials as V1 =1(x)− κ2/2m, and V3 = −1(x)(1 + cos2 θ)/(1 −

cos2 θ)− κ2 cos2 θ/2m, where 1(x) is a detuning we arrive at

i
∂999

∂t
=

(
p2

x

2m
+ vD cos θ px · σ̂x +1(x)σ̂z

)
999, (2)

with vD = κ/m. Note that the potential V3 cannot be realized experimentally in the limit
cos θ = 1. However, by proper choice of the parameters, one can approach this limit sufficiently
closely. Equation (2) describes a massive particle with SO coupling moving in a scalar potential
1(x). The corresponding dispersion relation for a constant potential 1(x)= δ can easily be
calculated and is shown in figure 2 for the case of δ = 0 (red dashed line) and small δ 6= 0 (blue
solid line). By changing the relative intensity of the control lasers one can externally control the
value of cos θ enabling an easy access to tune the effective SO coupling. In case of a smooth
potential and large particle-momenta, i.e. 〈p2

x〉/2m � vD〈px〉 cos θ , the SO coupling becomes
negligible and the problem reduces to two uncoupled massive Schrödinger particles moving in
an external potential. In the opposite limit, i.e. for 〈p2

x〉/2m � vD〈px〉 cos θ , equation (2) reduces
to an effective Dirac equation for a particle with an effective speed of light c∗ = vD cos θ and a
smooth space-dependent mass 1(x)/c2

∗
[10, 11].
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We assume in the following that the random potential is described by local, Gaussian white
noise with

1(x)1(x ′)= 0vDδ(x − x ′), 1(x)= 0, (3)

where the overbar denotes disorder average and all higher order correlation functions factorize.
For vanishing SO coupling one expects exponential localization of the particles according
to the Anderson scenario [13, 14, 22, 36, 37]. On the other hand, any small SO coupling
dominates in the region of small kinetic energy. Neglecting the kinetic energy term proportional
to 〈p2

x〉 in equation (2), rather than the SO coupling, one obtains an effective Dirac equation
for a particle with a spatially random mass. This model, also known as the FGM [25, 26], is
characterized by a Dyson singularity in the DOS [38], which is a consequence of the chiral
symmetry of equation (2) without kinetic energy, and which leads to a power-law dependence
of the correlation function. The absence of any exponential contribution to the correlation
functions can most easily be seen by considering the divergent behavior of the localization
length L loc(E)= 1/γ (E) as a function of the energy E , which is inversely proportional to
the Lyapunov exponent γ (E). The latter one is related to the integrated DOS N (E) by the
Kramers–Kronig relation [39]

γ (E)=
1

π

∫
dE ′

N (E ′)

E ′ − E
, (4)

where

N (E)∼
1

ln2
|E |

. (5)

The DOS ρ(E)= dN/dE of the FGM exhibits a singular behavior when approaching the band-
center, i.e. E → 0, known as the Dyson singularity introduced above [22]. Putting everything
together implies that the localization length ζ(E ≈ 0) exhibits a logarithmic divergence as the
energy E approaches the band center.

Let us now discuss a possible experimental realization based on 87Rb atoms. First, we
discuss how to single out the tripod linkage pattern (cf figure 3(a). We choose the ground-states
as |1〉 = |F = 2,mF = −1〉, |2〉 = |F = 2,mF = +1〉 and |3〉 = |F = 1,mF = 0〉 of the 5S1/2

ground-state manifold of Rb. These states are coupled via σ± polarized (�1,2) or π -polarized
light (�3), respectively, to the excited state |0〉 = |F = 2,mF = 0〉 of the 5P1/2-manifold. To
prevent the coupling fields from driving other transitions we apply an additional magnetic field
to induce a Zeeman splitting of the different mF-states which due to different Landé-gF-factors
will be shifted out of resonance. It should be noted that a generalization to a multiple-state
configuration including all Zeeman-levels or a different choice of states are possible and have
been experimentally realized [42, 43].

Let us now address the generation of the disorder potential. These can be created using
speckle potentials [13, 36] or incommensurate optical lattices [14], which induce spatially
varying ac-Stark shifts. Denoting the amplitude of the speckle potential �ac, it is easy to see
that for far off-resonant dressing of the atoms with �ac the ground-states experience an ac-
Stark-shift proportional to �2

ac/1 (for states |1〉, |2〉) and �2
ac/1

′ (for state |3〉), where 1 and
1′ denote the detunings of the speckle field from the respective resonance. Note that the signs
of the two shifts are opposite for states |1〉, |2〉 and |3〉 if sgn(1)= −sgn(1′) (cf figure 3(b)).
This can easily be achieved in 87Rb as the hyper-fine energy splitting in the 5S1/2-manifold is
substantially larger than in the 5P1/2-manifold. This results in an opposite sign of the potential
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Figure 3. (a) Experimental implementation in 87Rb. A homogeneous magnetic
field creates different Zeeman splittings in the hyperfine manifolds to isolate a
single tripod-linkage pattern. (b) Off-diagonal disorder with V− = V2 is created
by a single field �AC. Opposite, large detunings 1 and 1′ lead to opposite signs
of the ac-Stark shifts of states |1〉 and |2〉 with respect to that of state |3〉. Disorder
is created by a spatially fluctuating amplitude of �AC realized, e.g. by a speckle
pattern.

for the dark-states necessary to generate the mass-disorder for the spinors. Any finite offset of
the mass can be eliminated by an additional two-photon detuning of the coupling fields �1,2,3.
Note that the fields generating the disorder do not contribute to the generation of the dark-states
and hence do not induce any non-adiabatic dynamics in the dark-state subspace. Finally, the
angle θ , which governs the effective strength of the SO coupling, depends only on the ratio of
the Rabi frequencies and as such it is insensitive to overall amplitude fluctuations as long as the
fields are derived from the same source.

3. Density of states for tripod-coupled atoms with disorder

We now consider the role of the DOS of the SO-coupled system with off-diagonal disorder,
equation (2), to investigate what determines the crossover from Anderson-like to anomalous
localization. In the case of a random potential it is not immediately obvious in which parameter
regimes equation (2) leads to Schrödinger- or Dirac-like dynamics. To answer this question we
introduce dimensionless units ξ = 0x/vD and τ = 0t , resulting in

i
∂

∂τ
999 = −

0

2mv2
D

∂2

∂ξ 2
999 − i cos θσ̂x

∂

∂ξ
999 + 1̃(ξ)σ̂z999, (6)

where 1̃(ξ)=1/0. In the following we analyze the DOS in the system described by
equation (6). For a free Schrödinger particle the DOS has a singularity at ω = 0. As can be seen
from figure 2, the presence of the SO coupling shifts the band-edge of the spectrum away from
zero to ωedge = −mc2

∗
/2 = −mv2

D cos2 θ/2. In the Dirac limit mv2
D → ∞ the band edge moves

to infinity. In the pure Schrödinger case weak disorder leads to a smoothing of the band-edge
peak [40], making the DOS analytic, which is associated with the emergence of exponentially
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Figure 4. DOS per unit length for a SO-coupled massive Schrödinger particle
in a random potential with a finite disorder correlation length (see footnote 6)
for various values of the band edge mc2

∗
. As the band edge is moving closer to

ω = 0 the washing out of the Dyson singularity of the free Dirac case (blue line)
becomes more prominent, until the almost purely disordered Schrödinger case
(magenta line) is reached.

localized states (Anderson localization) [41]. To investigate the DOS for our SO-coupled system
in the presence of disorder we numerically simulate equation (6). As will be the case in any
experiment we assume for this a discretized model and furthermore a finite disorder-correlation
length6. (A smaller correlation length is accompanied by slower numerical convergence of the
DOS [25].) The mobility edge in momentum space associated with the finite disorder correlation
length is however chosen large enough not to affect the results. Figure 4 shows the DOS for
different values of the dimensionless quantity10/mc2

∗
, where10 characterizes the rms value of

the Gaussian disorder amplitude in the discretized model. It is related to the continuum quantity
via 0 =12

0/(vDnkinks), with nkinks being the impurity density.
For mc2

∗
→ ∞, i.e. in the Dirac limit, one recognizes a Dyson-like singularity at ω = 0.

The emergence of a Dyson singularity can in general be taken as an indicator for anomalous,
i.e. non-exponential, localization properties [22]. In the random-mass Dirac model or FGM the
Dyson singularity has been shown to lead to power-law correlations [23]. As mc2

∗
∼ mv2

D cos2 θ

decreases the band-edge approaches the singularity and as a consequence the singularity is
smoothed out. It should be noted at this point that a true singularity is present only in the
exact Dirac limit, but as can be seen from figure 4 a pronounced peak survives as long as
the SO coupling, i.e. mc2

∗
, is sufficiently large. Thus one expects in this case a localization

scenario where power-law correlations dominate for very long time scales. To quantify this
we define, following [25], the width 1ωD of the Dyson singularity as the minimum of the
DOS, yielding 1ωD = α0, where α = 0.6257 . . . . Hence, to obtain dynamics associated with
the Dyson singularity the condition

mv2
D cos2 θ � 0 (7)

6 For the numerics we used an exponentially correlated disorder according to 1i1 j =12
01x/Lcorr exp{−|i −

j |1x/2Lcorr} with correlation length Lcorr = 21x , where 1x is the discretization length.
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should be satisfied in order to ensure that the band-edge is sufficiently far away from the
singularity.

The emergence of the Dyson singularity affects the dynamics of the system around ω = 0.
Experimentally this is reflected in a drastically different behavior of the density profile after a
long-time expansion of an initially localized wave-packet. From equation (7) we expect that for
cos2 θ � 0/mv2

D the effective Dirac dynamics along with the creation of anomalous power-
law correlations dominates the system, whereas in the opposite limit we expect Anderson-
like localization. The power-law behavior of correlations will also be reflected in the density
distribution of an expanding wavepacket, which is an important experimentally measurable
quantity. To see this, we note that in the power-law case there is no intrinsic length scale. Thus
we may assume that an initially well localized wave-packet will show the same behavior as
a wavepacket with an initial delta-distribution Ψ(x, t = 0)= δ(x)χ , with χ being a constant
vector of unity length. The time-evolution of this wave-packet is given by999(x, t)=

∑
n[φφφ∗

n(0) ·
χχχ ]φφφn(x) e−iωn t , where φn(x) is the stationary state of a particular disorder realization belonging
to the state of energy ωn. It immediately follows that the long-time evolution is given by
|999(x, t → ∞)|2 =

∑
n |φφφn(0)|2|φφφn(x)|2. The right hand side of this expression corresponds to

the localization criterion defined in [22], and it is thus sufficient to investigate the long-time
behavior of the density in order to determine localization properties. In the Schrödinger limit
all correlations of the type Cn(x)= |φφφn(0)|2|φφφn(x)|2 decay exponentially [22], i.e. Cn(x)∼

e−|x |/L loc , where the localization length L loc is at most of the order of the system size. In the FGM
the typical localization length of correlation functions scales as L loc ∼ |ln ε|2 [24], where ε is
the distance from the band-center. For small energies this length is much larger than the system
size and consequently the correlation functions should be similar to the zero-energy correlation
function decaying with a power law scaling as Cn(x)∼ (0|x |/vD)

−3/2 at large distances [24].
Accordingly, one expects quite different scaling behavior in the two different limits of large and
small SO coupling.

4. Wavepacket dynamics

To confirm the predictions of the previous section we numerically simulated the time-evolution
according to equation (2) of an initially localized wave-packet of the form 999(x, t = 0)=

(2
√

2πL0 erf(L/
√

2L0))
−1/2 exp(−x2/4L2

0)(1, i)T of width L0 in a system of total length 2L .
The results, shown in figure 5, depict the density profile for different SO coupling strengths and
0/mv2

D = 0.1 after a sufficiently long time evolution T . For cos θ = (0.01, 0.05) one can clearly
see the exponentially localized wings of the density reminiscent of Anderson localization in cold
atom systems [13, 14, 37]. Increasing the SO coupling strength leads to an intermediate regime
at cos θ = 0.5 where neither exponential nor power-law localization can be determined. Finally,
for strong SO coupling, i.e. cos θ = 1 a fit with a power-law reveals that the density correlation
scales as the expected 3/2 power-law at large distances in agreement with the predictions of the
FGM.

To understand the 3/2 power-law exponent and show its connection to the formation
of a zero-energy state, we perform a gauge transformation of equation (2) with 999 =

exp(−imc∗x σ̂x)888, giving:

i
∂8

∂t
= −

1

2m

∂2

∂x2
8−

1

2
mc2

∗
8+1(x)[σ̂z cos(2mc∗x)+ σ̂y sin(2mc∗x)]8, (8)
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Figure 5. Density profiles of an initially localized wave packet of size L00/vD =

7.5 after a time evolution 0t = 80 according to equation (6) with 0/mv2
D = 0.1

after averaging over 100 independent realizations. The system size is 2L0/vD =

240 and nkinks = 6.250/vD, i.e. 12
0/0

2
= 6.25. Top left, right: Schrödinger limit

with cos θ = (0.01, 0.05). The green (straight) line corresponds to an exponential
fit showing the expected Anderson localization. The inset shows the same density
in log-log. Bottom left: density in the crossover regime with cos θ = 0.5 in log-
log representation (semi-log in the inset) and a power-law fit (green straight
line) with exponent 3/2. Bottom right: Dirac limit with cos θ = 1 in log–log;
the power-law behavior is clearly visible for large distances ξ � 1.

and subsequently substitute the Ansatz 888= χχχ+ exp (imc∗x)+χχχ− exp (−imc∗x) into
equation (8), yielding

i

(
∂χ+

∂t
eiη +

∂χ−

∂t
e−iη

)
=1(x)(σ̂z cos(2η)χ+eiη + σ̂z cos(2η)χ− e−iη + σ̂y sin(2η)χ+eiη

+ σ̂y sin(2η)χ− e−iη)−
1

2m

(
∂2χ+

∂x2
eiη +

∂2χ−

∂x2
e−iη

)
+ ic∗

(
∂

∂x
χ− e−iη

−
∂

∂x
χ+eiη

)
,

(9)

with η = mc∗x . We can simplify equation (9) by dropping terms proportional to ∂2
xχ± and fast

oscillating exponentials using the assumption 0/mv2
D � cos2 θ . This gives the equation

i
∂χχχ

∂t
= −ic∗τ̂z ⊗ 1

∂χχχ

∂x
+
1(x)

2

(
τ̂x ⊗ σ̂z + τ̂y ⊗ σ̂y

)
χχχ. (10)
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Here we defined the four-component object χ = (χ+,χ−)
T and σ̂i , τ̂i , i ∈ {x, y, z}, act on the

momentum or internal degree of freedom, respectively. Equation (10) is a generalization of
the model considered in [23, 24]. It possesses a zero-energy (mid-gap) state given by χχχ(x)∼

exp{±α̂/2c∗

∫ x
−∞

dy1(y)}χχχ0. The matrix α̂ = (τ̂y ⊗ σ̂z + τ̂x ⊗ σ̂y) has eigenvalues (1,−1, 0, 0).
Choosing χ 0 to be an eigenvector with eigenvalue ±1 we obtain a power-law intensity
correlation scaling as C(x)∼ (0|x |/vD)

−3/2 [23, 24] in full agreement with the numerical
simulations.

5. Conclusions

In summary, we have investigated the 1D dynamics of a SO-coupled massive Schrödinger
particle subject to a δ-correlated disorder potential. For weak SO coupling the system is
equivalent to two independent Schrödinger particles with diagonal disorder. In the opposite limit
the system is described by the random-mass Dirac model with off-diagonal disorder. The model
can be implemented with current state-of-the-art techniques by using atomic dark-states in cold
atom systems. We showed by calculating the systems’ DOS and direct numerical simulation of
the time evolution of an expanding wave packet that there is a crossover from an exponential
(Anderson) localized regime to a power-law regime governed by a Dyson singularity when
varying the strength of the SO coupling relative to the disorder strength. The crossover can
be observed by expansion of an initially localized wavepacket with an appropriately chosen
width of the momentum distribution in a random potential. Future investigations should include
interaction effects, which will allow the study of models such as the relativistic Thirring
model [44] for fermions as well as for bosons with a random mass. Interactions may well
accelerate the crossover to non-exponential behavior as they tend to delocalize particles. It is
also interesting to investigate whether the model can be recast in terms of a critical theory to
study the nature of the crossover.
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