
            

PAPER • OPEN ACCESS

Many-body dynamics of holes in a driven,
dissipative spin chain of Rydberg superatoms
To cite this article: Fabian Letscher et al 2017 New J. Phys. 19 113014

 

View the article online for updates and enhancements.

Related content
Opto-nanomechanics strongly coupled to
a Rydberg superatom: coherent versus
incoherent dynamics
Alexander Carmele, Berit Vogell, Kai
Stannigel et al.

-

On the adiabatic preparation of spatially-
ordered Rydberg excitations of atoms in a
one-dimensional optical lattice by laser
frequency sweeps
David Petrosyan, Klaus Mølmer and
Michael Fleischhauer

-

Simulating quantum spin models using
Rydberg-excited atomic ensembles in
magnetic microtrap arrays
Shannon Whitlock, Alexander W Glaetzle
and Peter Hannaford

-

This content was downloaded from IP address 131.246.149.4 on 14/11/2017 at 07:07

https://doi.org/10.1088/1367-2630/aa91c6
http://iopscience.iop.org/article/10.1088/1367-2630/16/6/063042
http://iopscience.iop.org/article/10.1088/1367-2630/16/6/063042
http://iopscience.iop.org/article/10.1088/1367-2630/16/6/063042
http://iopscience.iop.org/article/10.1088/0953-4075/49/8/084003
http://iopscience.iop.org/article/10.1088/0953-4075/49/8/084003
http://iopscience.iop.org/article/10.1088/0953-4075/49/8/084003
http://iopscience.iop.org/article/10.1088/0953-4075/49/8/084003
http://iopscience.iop.org/article/10.1088/1361-6455/aa6149
http://iopscience.iop.org/article/10.1088/1361-6455/aa6149
http://iopscience.iop.org/article/10.1088/1361-6455/aa6149


New J. Phys. 19 (2017) 113014 https://doi.org/10.1088/1367-2630/aa91c6

PAPER

Many-body dynamics of holes in a driven, dissipative spin chain of
Rydberg superatoms

Fabian Letscher1,2, David Petrosyan3 andMichael Fleischhauer1

1 Department of Physics andResearchCenterOPTIMAS, University of Kaiserslautern, D-67663Kaiserslautern, Germany
2 Graduate SchoolMaterials Science inMainz, Gottlieb-Daimler-Strasse 47,D-67663Kaiserslautern, Germany
3 Institute of Electronic Structure and Laser, FORTH,GR-71110Heraklion, Crete, Greece

E-mail: letscher@physik.uni-kl.de

Keywords:Rydberg, open system, dissipation, superatom, rate equations, steady state, spin dynamics

Abstract
Strong, long-range interactions between atoms in high-lying Rydberg states can suppressmultiple
Rydberg excitationswithin amicron-sized trapping volume and yield sizable Rydberg level shifts at
larger distances. Ensembles of atoms in opticalmicrotraps then formRydberg superatomswith
collectively enhanced transition rates to the singly excited state. These superatoms can represent
mesoscopic, strongly interacting spins.We study a regular array of such effective spins driven by a laser
field tuned to compensate the interaction-induced level shifts between neighboring superatoms.
During the initial transient, a few excited superatoms seed a cascade of resonantly facilitated excitation
of large clusters of superatoms. Due to spontaneous decay, the system then relaxes to the steady state
having nearly universal Rydberg excitation density 2 3Rr = . This state is characterized by highly
non-trivial equilibriumdynamics of quasi-particles—excitation holes in the lattice of Rydberg excited
superatoms.We derive an effectivemany-bodymodel that accounts for holemobility as well as
continuous creation and annihilation of holes upon collisions with each other.We find that holes
exhibit a nearly incompressible liquid phasewith highly sub-Poissonian number statistics andfinite-
range density–density correlations.

1. Introduction

Strongly interactingmany-body systems subject to external driving and coupled to (possibly tailored) reservoirs
offer a new route to create and stabilize interesting states ofmatter. As a simple example, a quantum state can be
made immune to particle losses if it is the stationary state of an open system coupled to a particle reservoir.
Furthermore, the competition between coherent driving and dissipation can lead to exotic steady states [1, 2]
and phase transitions in openmany-body systems [3–8].

Rydberg atoms [9] are well suited to study the interplay between strong interaction and coupling to coherent
laserfields and dissipative environments. They are thus prime candidates to investigatemany-body physics of
driven, dissipative spinmodels. A prominent andwell studied consequence of the strong, long-range interaction
between atoms inRydberg states is the so-called blockade phenomenon, whereby a Rydberg excited atom
suppresses further excitations within a certain blockade distance [10]. Rydberg blockade in a dilute gas or in a
regular array of single atoms leads to short-range spatial ordering of excitations, as was studied theoretically
[11–14] and demonstrated experimentally [15, 16]. In the so-called anti-blockade regime, successive excitation
of atoms at a certain distance from each other can be resonantly enhanced [17–23], which led to the lively debate
on the possibility of attaining bistable steady states [22–26].

Whenmany atoms are confinedwithin the blockade distance from each other, they form an effective two-
level system—Rydberg superatom—that can accommodate atmost one Rydberg excitation [10, 13, 27]. The
coupling of a superatom to the laser radiation is collectively enhanced, while the steady-state probability of a
single Rydberg excitation can approach unity. This permits the level of control of single collective spins
represented by superatoms far exceeding that for individual atoms.Moreover, being composed ofmany atoms,
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superatoms are relatively insensitive to atomnumber fluctuations and losses. Regular arrays of spins represented
by superatoms can then be preparedwith less experimental effort, which should be contrastedwith the
sophisticated dynamical preparation techniques used to realize defect-free arrays of individual Rydberg atoms
[28, 29]. This, together with the strong, long-range interactions between the Rydberg excitations,makes
superatoms ideal building blocks for realizing dissipativemany-body spinmodels and analyzing their dynamics.

Single Rydberg superatoms have been observed in several experiments [16, 30–34]. A two-dimensional
square lattice of superatomswith nearest-neighbor excitation blockadewas studied in [35], demonstrating the
possibility of phase transition to an anti-ferromagnetic steady state with spontaneously broken lattice symmetry.
In the complementary interaction regime of the Rydberg anti-blockade, little is known about themany-body
dynamics and the steady state of a lattice of superatoms.Herewe study a one-dimensional lattice of Rydberg
superatoms (seefigure 1(a)), inwhich an already excited superatom facilitates resonant excitation of its
neighbor, but the presence of two excited neighbors suppresses the excitation. This systems exhibits interesting
excitation dynamics and a highly non-trivial steady state characterized by an almost universal density 2 3Rr =
of Rydberg excitations with strongly suppressed number fluctuations.We show that this behavior can be
explained in terms ofmobile excitation holes on the background of Rydberg excited lattice. The holes behave as a
nearly incompressible liquid of hard rodswith characteristic two-particle correlations (see figure 1(b)).We
derive and verify an effectivemany-bodymodel for holes. Varying the parameters of the effectivemodel, we find
a crossover between a liquid of holes with density–density correlations peaked at the distance of two lattice
periods, a2 , and the onset of crystalline order with period a3 . In both cases the density of holes is 1 3hr = with
highly suppressed numberfluctuations.

The paper is organized as follows. In section 2, we formulate themodel for a regular array of superatoms and
derive the formalism for the efficient treatment of the system. In section 3we present the results of numerical
simulations of the dynamics of the chain of superatoms (driven spin chain) and introduce the effective hole
model that leads to an intuitive physical picture for the equilibriumphase of the system. Section 4 summarizes
our results. Technical derivations are deferred to the appendices A–C.

Figure 1. (a) Schematics of the chain of effective spins represented by Rydberg superatoms separated from each other by the lattice
constant a. Each superatom j contains on averageN atoms confinedwithin amicrotrap of linear dimension r a a, Bd  , with aB being
the Rydberg blockade distance. Atoms in the ground state (open dots) are excited to the Rydberg state (red filled dots) by a uniform
laser fieldwith Rabi frequencyΩ and detuningΔ.We tuneΔ to compensate the interaction-induced level shift of Rydberg states of
neighboring superatoms leading to resonantly facilitated excitation at distance r afac = . (b) In the steady state of a continuously driven
lattice of superatoms, having nearly universal density 2 3Rr = of Rydberg excitations (red filled circles), the typical two-particle
correlation function g d2 ( )( ) for the excitation holes (blue filled circles) corresponds to a liquid of hard rods of length a2 .
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2. Chain of Rydberg superatoms

In this section, and in appendices A andB, starting from the fully quantummany-bodymaster equation, we
derive rate equations for the chain of laser-driven andmutually interacting Rydberg superatoms. These rate
equationswill then be used in section 3 for numerical simulations of the dynamics and steady state of themany-
body system.

2.1. Themicroscopicmodel
Weconsider an ensemble of cold atoms trapped in a regular array ofmicrotraps [32, 33, 36–38] or a long-
wavelength optical lattice with the period a of severalmicrons. Each lattice site j contains on averageN atoms, see
figure 1(a). A laser field of carrier frequencyω drives the atoms on the transition from the ground state gñ∣ to the
excited Rydberg state eñ∣ with the Rabi frequencyΩ and detuning egw wD = - . In the frame rotatingwith
frequencyω, the coherent excitation dynamics of the atoms is described by theHamiltonian ( 1 = )

V r r, , 1
k

eg
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ge
k

ee
k

k k
k k ee

k
ee
k å ås s s s s= W + - D + Ä
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where k
ks m nº ñ ámnˆ ∣ ∣ is the transition (m n¹ ) or projection (m n= ) operator for the kth atom, and
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∣ ∣ is the interaction potential between pairs of atoms at positions r r,k k¢
 

excited to theRydberg

state eñ∣ . The usual van derWaals interaction corresponds to p=6, while the static dipole–dipole interaction to
p=3 [9].

Atoms excited to the Rydberg state eñ∣ spontaneously decay to the ground statewith the rate sG , and are
dephasedwith a typicallymuch larger rate dG due to atomic collisions andmotion in the inhomogeneous
trapping potential, collisions of the Rydberg electronwith the ground state atoms [39–41], or intermediate state
decay if g eñ  ñ∣ ∣ is a two-photon transition [15, 42]. The dissipative dynamics is described by themaster
equation for the densitymatrix r̂ of the system,
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where L k
a are the Lindblad jump operators for the two relaxation processes assumed acting independently on

each atom k as Ls
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s ge
ks= G ˆ and Ld

k
d ee

ks= G ˆ .

2.2. Rate equations for Rydberg superatoms
In equation (1)we can split the sumover all the atoms into two parts: the sumover the lattice sites j, and the sum
over the atoms kj in each lattice site.We assume that allN atomswithin each lattice site are confinedwithin a
small spatial interval r ad  , such that the interatomic interaction energy C rp

pd( ) exceeds all the relevant
energy scales pertaining to the atoms, namely, the laser Rabi frequencyΩ and detuningΔ, as well as the atomic
spontaneous decay sG and dephasing dG rates and the resulting Rydberg state excitation linewidth
w 2 sgW G with d s

1

2
g º G + G( ) [13]. This allows us to neglect all themulti-atom states containingmore

than oneRydberg excitation per lattice site [10, 13]. If on the spatial scale r 1 md m of such aRydberg
superatom the laser field can be assumed uniform, it would couple the collective ground state G g g gN1 2ñ º ¼ ñ∣ ∣
only to the symmetric single excitation state E g g e gs N k k N

1
1 2ñ º å ¼ ¼ ñ∣ ∣ with the collectively enhanced Rabi

frequency NW, see figure 2(a). There are, in addition, N 1-( ) non-symmetric single excitation states Ens mñ∣ ,
labeled by indexm, decoupled from the laserfield.We can then recast theHamiltonian as
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jº ñá + å ñ áˆ ∣ ∣ ∣ ∣ is the projector onto themanifold ofN single Rydberg excitation states

of superatom at site j, and r rj N k k
1

j j
= å

 
is its center ofmass coordinate.

Within eachRydberg superatom, the dephasing couples incoherently the symmetric single excitation state
Esñ∣ to all N 1-( ) non-symmetric states Ensñ∣ with the rate N N1dG -( ) which approaches dG for N 1 . In
turn, the reverse coupling of the non-symmetric states to the symmetric state has the rate NdG . All single
excitation states decay back to the ground state Gñ∣ with rate sG , see figure 2(a). In appendix Awe derive a simple
rate equationmodel describing the excitation dynamics of a superatom in the limit of strong dephasing d G W.
Starting from the densitymatrix equations for a single Rydberg superatom,we adiabatically eliminate all
coherences and the population of the symmetric excited state, which scales as N1~ . The superatom then
reduces to an effective two-level system, see figure 2(b), and its dynamics is governed by the rate equations for the
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is the effective detuning of superatom jwhich includes the Rydberg level shift due to the interactionwith all the
other superatoms in theRydberg state. Infigure 2(c), and inmore detail in appendix A, we compare the
dynamics of a single superatom as obtained from the exact solution of the complete set of the densitymatrix
equations and the solution of the rate equations.We observe that the rate equationmodel approximates well the
relaxation timescale of a superatom and the steady-state population of the excited state, EE

ex

ex de
r = G

G + G
.

Remarkably, unlike for a single two-level atom, the excitation probability of the superatomunder continuous
(near-)resonant driving and in the presence of strong dephasing g W can approach unity, 1EE

N

N 1
r 

+
 ,

with increasingN.

2.3. Facilitated excitation of superatoms
The laser irradiates continuously and uniformly the 1D chain of superatoms.We set the detuningΔ of the laser
to be equal to the interaction strengthV a C a Vp

p
N= º( ) between neighboring superatoms, VND = .We

neglect the interaction between the next to nearest neighbors. The conditions for validity of our treatment of the
chain of superatoms and the parameters for suitable experimental systems are discussed in appendix B. In this
so-called facilitation regime [18], an already excited superatom shifts the frequency of its nearest neighbor into
resonancewith the laser. The excitation G and de-excitation G rates for the facilitated superatom, having one
and only one, excited neighbor, are

Figure 2. (a)Level scheme of a single Rydberg superatom consisting ofN atoms. The laser field couples the collective ground state Gñ∣
to the symmetric single excitation state Esñ∣ with the Rabi frequency NW. Dephasing of the Rydberg state with rate dG leads to
population of N 1-( ) non-symmetric single excitation states Ensñ∣ . The single excitation states decay spontaneously to the ground
state with rate sG . States withmultiple excitations are not populated due to the strong Rydberg blockade. (b)In the approximate rate
equationmodel, the Rydberg superatom is excited and de-excited with the corresponding rates exG and deG which depend on the
effective detuning effD . (c)Comparison of the excitation dynamics of a single superatom, containingN=50 atoms, as obtainedwith
the rate equationmodel (dashed line) and from the exact solution of themaster equation for the density operator (solid line). The
single-atomRabi frequency 25sW G = and dephasing rate 250d sG G = .
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a0 , 7ex effG = G D = ( ) ( )

b0 . 7de effG = G D = ( ) ( )

On the other hand, a superatom surrounded by non-excited neighbors is non-resonant with the laser and has a
much lower excitation rate

. 8seed ex effG = G D = D( ) ( )
But once excited, it will play the role of a seed for a rapid growth of a cluster of excited superatoms.Naively, such
clusters will grow until they collide and nearly all the superatoms in a lattice will be excited.However,
spontaneous decay of superatomswith rate sG will produce excitation holes—ground state superatoms
surrounded by excited superatoms. A hole cannot be resonantly excited as its Rydberg state is shifted by the
interactionwith two excited neighbors by V2 N, leading to the effective detuning V2eff ND = D - = -D.
Hence, the rate to refill the hole turns out to be the same highly suppressed seed rate seedG .

In the facilitation regime thatwe consider, the typical hierarchy of the relevant rates is ,sseedG G G G   .

3. Themany-body dynamics

Upon turning on the excitation laser, the chain of superatoms under the facilitation conditions described above
will exhibit transient dynamics on the timescale of t s

1~ G- and then settle in a steady state. The excitation
transients will be described later in this section. First we discuss the steady state characterized by the average
Rydberg excitation density of 2 3Rr  and highly non-trivial equilibriumdynamics of the excitation holes.

3.1. Steady-state distribution of holes
By definition, a hole is a ground state superatom surrounded by two excited superatoms.Holes originate from
collisions of growing clusters of Rydberg excitations during the transient and spontaneous decay of excited
superatoms inside the cluster. Infigure 3we show the density of holes in a long lattice of superatoms. After
switching on the excitation laser, within a few lifetimes s

1G- of Rydberg excitations, the density of holes reaches
an equilibrium. For large enough values of the interaction strengthV wN  , and thereby the laser detuning

VND =( ), the steady-state density of holes approaches the value of 1 3hr = .
Infigure 4we show the spatial correlation function g d2 ( )( ) for holes in the steady state. The two-particle

correlation function is defined via

g d
n n

n
,k

h
j

h
j k

h
j

2
2

º
á ñ

á ñ

+

( )
ˆ ˆ

ˆ
( )

( ) ( )

( )

Figure 3.Density of excitation holes hr versus excitation time obtained from the rate equation simulations for various interaction
strengthVN. Parameters areN=50, 25 sW = G , and 250d sG = G , leading to a single-atom excitation linewidth w 570 sG . The
simulations are performed for a chain of L=5000 superatomswith one initial seed excitation and averaged over 500 realizations of
the dynamics. Inset: schematics of the effectivemodel for hole dynamics, as described in section 3.2.Holes are createdwith rate cG ,
annihilated with rate aG and transported (hop from site to site)with rate tG .
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where nh
jˆ ( ) is the hole number operator for site j of the lattice, d akk = with k Î is the distance, andwe assume

that the average hole density nh
j

hrá ñ =ˆ ( ) is spatially uniform.We observe that, to a good approximation, holes
behave as hard rods of length a2 , with the average density of rods being 1/3.

3.2. Effectivemodel for holes
Tounderstand the results of the numerical simulations for the hole density and correlation function, we have
derived an effectivemodel for the equilibriumdynamics of the holes. The derivation, details of which are given
in appendix C, is based on adiabatic elimination of short-lived configurations involving two ormore
neighboring superatoms in the ground state. Such configurations appearwhen an excited superatomnext to a
hole decays to the ground statewith rate sG ( ), but the lifetime of these configurations is very short, t 1~ G

- , due
to the excitation facilitationwith the fast rate sG G  ( ). Hence, in the effectivemodel, holes cannot be located
on the neighboring sites, which gives the physically intuitive picture as towhy they behave as hard rods of
length a2 .

There are three fundamental processes affecting themany-body dynamics of the holes on the lattice, as
illustrated in the inset offigure 3.We describe these processes in terms of the Lindblad jump operators acting in
the corresponding subspace for the holes.

(i)Holes are created by spontaneous decay of excited superatomswith rate c sG = G . The corresponding
Lindblad operator is given by

L n n1 1 , 9c
j

c
j

h
j

h
j1 1s= G - -+

+ -ˆ [ ˆ ][ ˆ ] ( )( ) ( ) ( ) ( )

where jsˆ
( ) is the hole creation/annihilation operator for site j of the lattice, and nh

j j js sº + -ˆ ˆ ˆ( ) ( ) ( ) is the number
operator. The last two terms on the right-hand side ensure that a hole cannot be created next to an existing one.

(ii)When two holes are separated by one excited superatom, one of the holes can be annihilated. This process
is initiated by spontaneous decay of themiddle superatomwhich triggers fast excitation of two superatoms from
one or both sides of the three-site region. The hole annihilation is described by

L a2 , 10a
j

a
j j j1 1s s s= G + -

+
-

-ˆ ˆ ˆ ( )( ) ( ) ( ) ( )

L n b4 , 10a
j

a
j

h
j1s= G -




ˆ ˆ ( )( ) ( ) ( )

with the total annihilation probability given by a sG = G . The remaining hole can then occupy either themiddle
site with half of the total probability, or one of the side sites, eachwith quarter of the total probability.

(iii)Holes can hop from site to site. This process ismediated by de-excitation of the superatomnext to a hole
with rate G followed by facilitated excitation of one of the ground state superatoms. The hole transport is
described by

L n1 , 11t
j

t
j j

h
j1 2s s= G -+


-




ˆ ˆ [ ˆ ] ( )( ) ( ) ( ) ( )

where 2tG = G is the transport rate and the last term ensured that the hole cannot hop to a site next to an
existing hole.

Figure 4. Second order spatial correlation function g d2 ( )( ) for non-excited superatoms obtained from the numerical simulations of
the full superatommodel with 2.15t sG G  and the effective holemodel of section 3.2. Also shown is the correlation function for the
hard rod lattice gas with the rod length a2 andfixed density 1/3 ( 0c aG = G = ).We use an exponential fit at even values of d/a (gray
dashed line) to extract the correlation length 0.86 0.14x =  .
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Infigure 4we compare the spatial correlation function g d2 ( )( ) for ground state superatoms obtained from
the numerical simulations of the full superatommodel and the effective holemodel.We observe very good
agreement between the full and effectivemodels, including g 1 02 ( )( ) .

3.3. Liquid-crystal crossover for lattice holes
Although in the present setup the hole hopping rate cannot bemade arbitrary small, t c a,G G , it is instructive to
analyze how varying tG would affect themany-body steady state.

Consider first the hypothetical case of no hole transport, 0tG  .We can also neglect for now the probability
of refilling the hole, due to smallness of the corresponding rate seedG . Then the only stable configuration
corresponds to holes on every third site of the lattice, since neither the hole creation nor annihilation processes
of equations (9) and (10) affect the system.Due to translational invariance of the lattice, this configuration is
triple degenerate. The hole density–density correlation function g d2 ( )( ) is peaked at d a3= , and the steady-
state approaches a pure state with long-range crystalline order. Since the density of holes is exactly 1 3hr = ,
their number does notfluctuate.We can characterize the number fluctuations of the holes by theMandelQ
parameter

Q
n n

n
1,h h

h

2 2

º
á ñ - á ñ

á ñ
-

ˆ ˆ
ˆ

where n nh j h
jº åˆ ˆ ( ) is the total number of holes. Q 0< signifies sub-Poissonian number distribution, with

Q 1= - corresponding to a precise number of holes with nofluctuations.
Aswe now increase tG , the holes becomemobile and the peak of the correlation function g d2 ( )( ) at d a3= is

progressively reduced, see figure 5. The holes can now approach each other and annihilate, followed by hole
creation on the allowed sites, which causesfinitefluctuation of the hole number. Yet, their statistics remains
highly sub-Poissonian even for large t c a,G G . This is attested by the asymptotic value of Q 0.81- for

t cG G  ¥ extracted from the algebraic fit infigure 5(b). Since the hole creation and annihilation rates are the
same, c a sG = G = G , theirmean density stays close to 1 3hr = . Interestingly, the crystal with periodicity
d a3= does not simplymelt into a liquidwith the same period. Rather, for a large hopping rate, the correlation
function g d2 ( )( ) exhibit period d a2= with short correlation length a1x , see figure 4. Since holes cannot
come closer than two lattice sites, they start to behave asmobile hard rods of length a2 .

Wefinally note that when the interaction strengthVN, and thereby the laser detuning VND = , are not
sufficiently larger than the excitation linewidth, the seed rate seedG is not negligible and holes can refill, leading to

1 3hr < , as can be seen infigure 3.

3.4. Transient excitation dynamics of the system
As promised above, we nowdiscuss the dynamics of the systemof superatoms initially in the ground state upon
switching on the excitation laser. Infigure 6we show the density Rr of Rydberg excitations as a function of time,

for different values of the interaction strengthVN (and laser detuning VND = ). In the long time limit t s
1G- ,

for large enoughV wN  , the system reaches the steady state with the Rydberg excitation density 2 3Rr  ,
consistent with the hole density 1 3hr  analyzed above. For smaller values ofVN, we have in the steady state

2 3Rr > , since holes can be refilledwith appreciable seed rate seedG .

Figure 5. (a)Average density of holes hr , (b)MandelQ parameter for the total number of holes, and (c) amplitudes of the density–
density correlation function g d2 ( )( ) for the periods of d a2= (blue circles) and d a3= (red circles), versus the hopping rate tG .

Dashed lines in all graphs are algebraicfit functions. The shaded areas in (a) and (b) indicate the hypothetical regime of t s
1

2
G < G not

accessible in the currentmodel.
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Consider now the transient regime t0 s
1< G- . In the simulations offigure 6, we put initially one seed

excitation in order to start the facilitated excitation dynamics at awell-defined time, rather than at some
uncertain (within 1 seedG ) timewhen the seed excitation appears with small rate seedG . As seen in thatfigure, after
switching on the laser, the density of Rydberg excitations can peak at a large value and then relax to the lower
steady-state density. Atfirst sight, this observation is surprising, since such a behavior is reminiscent to partially
coherent dynamics of a quantum system, such as, e.g., dampedRabi oscillations, while here our system is
completely governed by rate equations and no coherences are involved.We nowoutline amacroscopicmodel
that will explain the nature of the peak and the associated peak time t0.

We consider three basic states of the system: the ground state (g), the fully excited state (e) and the final steady
state (s). The corresponding probabilities are denoted by pg , pe, and ps. Initially the system is in the ground state,

p 1g = , and to start the dynamics we need a seed excitation. The probability of the seed pseed is governed by the

equation p t pt seed g seed¶ = G( ) . For short times, we can assume p 1g  and obtain linear growth of the seed

probability, p t p t0seed seed seed+ G( ) ( ) . For longer times, this approximation breaks down, but once pg is

depleted, the role of the seed becomes unimportant, as will become clear shortly.
The equations ofmotion for the probabilities of the three basic states are

p p p a2 , 12t g seed g¶ = - G ( )

p p p p p b2 3 , 12t se seed g s seed s¶ = + G - G + G ( )

p p p c3 . 12t ss s seed s¶ = + G - G ( )

Each seed excitation in the lattice triggers fast growth of facilitated excitations in both lattice directions. The
ground state is then being depletedwith the rate 2G and its population is transferred to the fully excited state. In
turn, the Rydberg excitations in the fully excited state decaywith rate sG . Since the steady state corresponds to
configurationswith, on average, every third site non-excited, the decay rate of pe to ps is 3 sG , whichwe have also
verified via numerical simulations of the full systemwith all the superatoms initially excited.We also include in
the above equations the process of refilling the holes with the corresponding rate seedG . Then the solution of these
equations approximates remarkably well themean density of Rydberg excitations t p t p tR e

2

3 sr = +( ) ( ) ( ), even
in the regime of sizable seedG , as can be seen in themain panel offigure 6.

The peak in the excitation density Rr is reachedwhen the ground state probability pg is depleted and the

majority of superatoms are transferred to the excited state, p 1e  . Integration of pt g¶ suggests the peak time

scaling as t V10 seed Nµ G G µ . The scaling of the peak timewith the interaction strengthV wN is verified in
the inset offigure 6.Notefinally that ourmacroscopicmodel neglects cluster collisions, also producing holes,
and thereby slightly overestimates the excitation density Rr obtained from the simulations of the complete
microscopicmodel.

Figure 6.Excitation dynamics of the lattice of superatoms, initially all in the ground state and one seed excitation, as obtained from the
simulations of themicroscopic rate equations (solid lines) andmacroscopicmodel (dashed lines). The parameters and color code are
the same as infigure 3. Inset: scaling of the peak time t0 with the interaction strength VN w . The dashed line corresponds to the
analytic estimate t 20 seedG G .
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4. Conclusions and outlook

To summarize, we have studied the excitation dynamics and steady state of a lattice of Rydberg superatoms
driven by a laser in the facilitation regime.We have shown that the steady state of the systemhas nearly universal
Rydberg excitation density of 2 3Rr = .More interestingly, it corresponds to an equilibriumdynamics of
mobile quasi-particles—excitation holes.We have derived an effective holemodel which involves hole creation
and pair annihilation of holes separated by two lattice sites.We have found that the number fluctuations of the
holes are characterized by theMandelQ parameter Q 0.81- , and their spatial correlations decay on a
distance of a1x comparable to the lattice constant a.

That negative values ofQ, which signify pronounced sub-Poissonian number distribution, have their origin
in the hard rod constraint, has been pointed out already in [11] considering aGibbs ensemble of Rydberg
excitations. In our system, however, the pair annihilation of holes leads to a state withmuch stronger suppressed
fluctuations. In theGibbs state of [11], wewould have to choose a rod length of about d= 0.611 to obtain the
average hole density 1 3hr = , but this would then lead to Q 0.63- which is significantly larger thanwhat we
obtain fromour simulations.

Ourmodel corresponds to an experimentally amenable regimewith a large hole transport rate t c a,G ~ G
comparable to the hole creation and annihilation rates c a s,G = G , which, in turn, are determined by the
spontaneous decay rate of Rydberg excitations. The resulting spatial correlations of the holes have a period of
d a2= and short correlation length ax  . If we freeze the holemotion, t sG G , wewould obtain long-range
order, ax  , with d a3= periodicity. Such a regime can in principle be achieved, but at the expense ofmore
complicated experimental setup involving additional lasers coupling the ground state of superatoms to a
different long lived Rydberg ormetastable state whichwouldmake the holes immobile.

Another interesting direction of research is to consider different lattice geometries, e.g., a two-dimensional
square or triangular lattice. The lattermight simulate dissipative frustrated spinmodels. Finally, the rate
equation approach, amenable to large scale numerical simulations, is applicable in the regime of strong
dephasing. Coherence effectsmight lead to interesting dynamics and yield long-range correlations and
entanglement. However, fully quantummany-body simulations are limited to small system sizes.

Acknowledgments

Thisworkwas supported byDFG through SFB/TR185 (MFand FL) and theH2020 FETProactive project RySQ
(DP). FL is supported by a fellowship through the Excellence InitiativeMAINZ (DFG/GSC 266). DP is grateful
to theUniversity of Kaiserslautern for hospitality and to the Alexander vonHumboldt Foundation for support
during his stay inGermany.

AppendixA. Rate equationsmodel for a superatom

Herewe consider in some detail the dissipative dynamics of a single Rydberg superatom. The superatom consists
ofN two-level atomswithin a volume of linear dimension rd smaller than the Rydberg blockade distance aB.We
define aB as the distance belowwhich the interatomic interaction strengthV r a wB ( ) starts to exceed the

steady-state excitation linewidth of an atom, w 4 2s s
2 2g g g= W G + W G [13, 14]. Here

d s
1

2
g º G + G( ), andwe assume s d

2W GG . Due to the strong Rydberg blockade, the superatom can

accommodate atmost one Rydberg excitation.
The collective ground state of a superatom G g g gN1 2ñ º ¼ ñ∣ ∣ is coherently coupled by the laser to the

symmetric single excitation state E g g e gs N k k N
1

1 2ñ º å ¼ ¼ ñ∣ ∣ withRabi frequency NW, see figure 2(a). In
addition, there are N 1- non-symmetric single excitation states Ens mñ{∣ }which are not directly coupled to the
ground state by the laser. All the excited states Eñ{∣ } spontaneously decay to the ground state Gñ∣ with rate sG .
The dephasing dG of the atomic Rydberg state eñ∣ , with respect to the ground state gñ∣ , leads to incoherent
coupling of any single excitation state Eñ∣ of the superatom to any other such state E¢ñ∣ with rate NdG .Wemay
replace themanifold Ens mñ{∣ }with a single aggregate non-symmetric state Ensñ∣ , obtaining for the superatom an
effective three-level system, G E E, ,s nsñ ñ ñ{∣ ∣ ∣ }.We describe this dissipative systemwith a ‘vector’ of density
matrix elements , , , ,GG E E GE E G E E

T
s s s s ns ns

r r r r r r=
 ( ) which obeys the equation ofmotion

, A1tr r¶ = L  ( )
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where

N N
N

N
N N

N

N N

N N
N

N N

0 i i

0
1

i i
1

i i i 0 0

i i 0 i 0

0
1

0 0
1

. A2

s s

s d d

d s d

g
g

L =

G W - W G

-G -
-

G - W W G

W - W - D -

- W W D -
-

G -G - G

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

( )

ForN=1, we retrieve thewell known optical Bloch equations for a single two-level atom,with the decay rate sG
of the excited state population eer and the relaxation rate s d

1

2
g = G + G( ) of the coherence ger . For a superatom

with N 1> , dephasing induces population 0E Ens ns
r > of non-symmetric state(s), but their coherences remain

decoupled, 0E G E Ens ns s
r r= = . By definition, the superatom can contain atmost one Rydberg excita-

tion, 1GG E E E Es s ns ns
r r r+ + = .

Solving equation (A1) in the steady state, 0tr¶ =


, we obtain the following expression for the total excited
state population of the superatom,

N

N

2

1
. A3

EE E E E E

d
N

N s s

2

2 2

1
2 2

s s ns ns
r r r

g

g

º +

=
W

W + G + G + G + D
+( )( ) ( )

( )

ForN=1, this reduces to the excited state population of a single two-level atom [13],

2
, A4ee

2

2
2

2 2s
r

g
=

W

W + + D
g
G ( )

( )

which is bounded by 0.5ee r even for resonant excitation gD ∣ ∣ . On the other hand, for largeN and small
decay rate ,s d d

2G G W G , the excited state population of the superatom is approximately given by

N

N 1
, A5EEr

+
 ( )

which quickly approaches 1EEr  with increasingN.We emphasize that the steady-state population inversion
of the superatom is brought about by strong driving and dephasing, which tend to equalize populations of all
N 1+ states, i.e.,N single excitation states and the ground state. In contrast, without dephasing ( d sG G ), the
superatom reduces to a two-level system,with the ground state Gñ∣ coherently coupled to the symmetric excited
state Esñ∣ which decays back to the ground state with rate sG , and the resulting steady-state Rydberg excitation
probability is 1 2EE E Es s

r r .
From equation (A3), with strong dephasing d sG G and N 1 , we obtain the excitation linewidth of the

superatom

w N2 . A6sSA
2 2g gW G + ( )

Comparing it with the single-atom excitation linewidthwwhich follows from equation (A4), we notice the
analogy upon replacement N2 1

2
2W  W , rather than N2 2W  W as onewould naively expect from the

collective enhancement of theN-atomRabi frequency NW. This factor of 2 difference stems from the fact that
the Rydberg excitation probability of a saturated superatom approaches unity, rather than 1

2
.

For strong dephasing d G W, the dynamics of a superatom can be described, to a good approximation, by
rate equations whichwe nowderive. In the equations for the densitymatrix elements, we adiabatically eliminate
the coherences E Gs

r , GEs
r , obtaining rate equations t 3 3 3r r¶ = L

 
for populations , ,GG E E E E

T
3 s s ns ns

r r r r=
 ( ) with

N N

N N

0

, A7

s s

s
N

N d N d

N

N d s N d

3
1 1

1 1

c c

c cL =

- + G G

- - G - G G

G -G - G

-

-

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

where

2
.

2

2 2
c

g
g

º
W
+ D

The laser tends to equalize populations GGr and E Es s
r of the ground and symmetric excited states. In turn, strong

dephasing quickly transfers the population of the symmetric state to the non-symmetric states. For largeN, the
reverse transfer from E Ens ns

r to E Es s
r is suppressed by a factor of N1 . The symmetric state then plays the role of
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an intermediate state having small population NE E E Es s ns ns
r r~ . Upon adiabatic elimination of E Es s

r we finally

obtain rate equations t 2 2 2r r¶ = L
 

for the populations ,GG EE
T

2r r r=
 ( ) of the ground and excited states

( 1GG EEr r+  ),

, A82
ex de

ex de
L =

-G G
G -G

⎛
⎝⎜

⎞
⎠⎟ ( )

where the excitation and de-excitation rates are given by

N

N

1

2
, A9dex

c
c g

G =
-
+

G
( ) ( )

N 2
. A10d sde

c
c g

G =
+

G + G ( )

This is illustrated infigure 2(b).
Infigure A1(a)we compare the excitation dynamics of a resonantly driven superatom as obtained from the

solution of the rate equations and the exact solution of themaster equation for the density operator using the
Monte Carlowavefunction approach in the truncated single excitationHilbert space.We observe that the rate
equations provide accurate description of the dynamics of the systemwhen Ng W, while they cannot
account for the (damped)Rabi oscillations between the ground and the excited states when N gW  .
Nevertheless, the rate equationsmodel approximates well the relaxation timescale and the steady-state
population of the superatom.

Infigure A1(b)we show the spectrumof eigenvalues kl of thematrixΛ in equation (A2). The eigenvalue
00l = corresponds to the steady state of the system,while the (negative) real parts of the other eigenvalues,

Re kl[ ] for k 1, 2, 3, 4= , characterize the relaxation rates of the superatom towards the steady state. In that
figure, we also show the total relaxation rate of a superatom towards the steady state as given by the rate
equationsmodel, tot ex deG = G + G , which compares favorablywith the exact relaxation rate for a broad range of
parameters.

Appendix B. Excitation facilitation conditions and experimental considerations

With the interatomic potential V r C rp
p=( ) (assuming repulsive interaction C 0p > ) and the single-atom

excitation linewidthw, the Rydberg blockade distance is defined as a C wp
p

B
1º ( ) . Ourmodel assumes that

Figure A1. (a)Excitation dynamics of a single superatom, containingN=50 atoms, as obtained from the rate equationmodel
(dashed lines), and the exact solution of the densitymatrix equations in the single excitationHilbert space (solid lines). The laser is
resonant 0D = and has the single-atomRabi frequency 25 sW = G , while the dephasing rate is 50, 250, 1000d sG G = in the left,
middle, right graphs, respectively. (b)Real part of eigenvalues kl ofΛ in equation (A2), versus the transverse atomic relaxation rate γ.
The (blue) dashed line shows the total relaxation rate of a superatom tot ex deG = G + G obtained from the rate equationmodel.
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each superatom can accommodate atmost one Rydberg excitation.We therefore require the spatial extent of a
superatom to be small compared to blockade distance, r aBd  .

Clearly, the superatom excitation probability ismaximal at resonant driving and is suppressedwhen the laser
is detuned bymore than its excitation linewidth w w N 2SA  .We consider a one-dimensional chain of
superatoms driven by spatially uniform laserwith detuningΔ.We set the laser detuning to be equal to the
interaction strength between neighboring superatoms separated by the lattice constant a, V aD = ( ). Then an
already excited superatomwill facilitate the excitation of the nearest neighbors by shifting the Rydberg energy
level into resonancewith the laser field. On the other hand, we require that wSAD > in order to suppress
excitation of superatoms that have either twonon-excited neighbors or two excited neighbors. Since w wSA > ,
the facilitation distance r Cp

p
fac

1= D( ) , and thereby the lattice constant a rfac= , are smaller than the blockade
distance aB.

The interaction potentialV(r) is a convexmonotonic function.Our approach is validwhen the interaction-
induced Rydberg level shifts of all the atoms of the facilitated superatom arewithin the superatom linewidthwSA.
Linearizing the interaction potential around the facilitation distance rfac, we obtain the following condition on
the spatial extent rd of the superatom

r
p

r

C w p

w
a

1 1
. B1

p

p

fac
1

SA

SAd =
D

+

( )

Finally, in our treatment of the 1D lattice of superatoms, we neglect the interaction shifts of the next neighbors,
V a w2 SA( ) . This can be rewritten as a condition on the power-law scaling p of the interaction potential,

p wlog 2 log . B2SA D( ) ( ) ( )

To relate the forgoing discussion to a realistic experiment, we consider a lattice ofmicrotraps each
containing N 50 cold Rb atoms. The atomic ground state g S F M5 2, 2F1 2ñ º = = - ñ∣ ∣ is coupled, by a
two-photon transition via the intermediate state P F M5 3, 3F3 2 = = - ñ∣ (or P6 3 2) [15, 42], to the highly
excited Rydberg state e nS1 2ñ º∣ with the principal quantumnumber n 90 . The decay rate of state eñ∣ is

5sG  kHz.With the corresponding Rabi frequency 25 2 20s pW = G = ´ kHz and the dephasing rate
250d sG = G , we have the single-atom and superatom excitation linewidths w 570 2 450s p= G = ´ kHz and

w w5SA = .We chose the detuning 2 10pD = ´ MHz.With the van derWaals coefficient C 2 16.86 p= ´
THz mm 6 [43], we have the lattice constant a 11 mm , while the size of the superatom should be
r 0.4 md m as per equation (B1)with p=6. This implies large atomic density 1015 cm−3, whichwould lead to
strong Rydberg state dephasing [39–41] (assumed included in dG ), and to collisional dephasing and loss of the
ground state atoms from themicrotraps (see below). Alternatively, we can employ the Rydberg state eñ∣
corresponding to the stretched Stark eigenstate in the static electric field in the perpendicular to the array
direction [9]. Such states possess large permanent dipolemoments ( n a e3

2
2

0~ ) leading to strong dipole–dipole
interactions.With n=60we obtain the dipole–dipole coefficient C 2 28.53 p ´ GHz mm 3 resulting in the
lattice constant a 14 mm for the sameΔ as above. The size of the superatom can nowbe larger, r 1 md m~ as
per equation (B1)with p=3, requiring lower atomic density 5 1013´ cm−3 at which the collisional dephasing
and losses are small. In both cases of p=6 and 3 the condition (B2) is satisfied.

Wefinally note that loss of several atoms from the superatomswith N 1 will not significantly affect the
systemdynamics on the equilibration timescale of t s

1 G- .

AppendixC.Derivation of the effective dynamicalmodel for holes

Consider a small chain of superatoms shown in figureC1.We focus on a subset of the system containing three
superatoms that can be in the ground state or excited to the Rydberg state.We denote the probability of each
configuration a b c, ,{ }by pabc, where a b c, , 0, 1= for non-excited (0) and excited (1) superatomon the
corresponding site. Starting with all the superatoms excited, 1, 1, 1{ }, we can create a hole on any one site, e.g.,
0, 1, 1{ }, with the spontaneous decay rate sG . The reverse process of exciting a hole can be neglected due to
smallness of the transition rate , sseed ,G G G  . Next, an excited superatomneighboring a non-excited one can
be de-excited, e.g., 0, 1, 1 0, 0, 1{ } { }, with rate G. An excited superatombetween two non-excited ones can
be de-excited, e.g., 0, 1, 0 0, 0, 0{ } { }, with the spontaneous decay rate sG . Finally, the probability of
configurationwith two ormore neighboring non-excited superatomswill quickly decay, e.g.,
0, 0, 1 1, 0, 1{ } { }or 0, 1, 1{ }, with the the facilitated excitation rate G.We thus obtain the following set of
equations for the probabilities of various configurations (see figureC1 upper panel),

p p3 , C1t s111 111¶ = - G ( )

p p p p , C2t s s011 011 111 001¶ = - G + G + G + G ( ) ( )
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p p p p p2 , C3t s101 101 111 001 100¶ = - G + G + G + G   ( )

p p p p , C4t s s110 110 111 100¶ = - G + G + G + G ( ) ( )

p p p p , C5t s010 010 011 110¶ = -G - -( ) ( )

p p p p p2 , C6t 001 001 000 011 101¶ = - G + G + G + G +   ( ) ( ) ( )

p p p p p2 , C7t 100 100 000 110 101¶ = - G + G + G + G +   ( ) ( ) ( )

p p p p p2 . C8t s000 000 001 100 010¶ = - G + G + + G ( ) ( )

The probability of full excitation p111 decays to zero on the timescale t s
1> G- . The probabilities in the last three

equations relaxwith the very fast rates 2~ G and can be adiabatically eliminated. Setting there p 0t abc¶ = , and
substituting the resulting solutions in the other equations, we obtain

p p p p , C9t s s011
1

2 011
1

2 101
1

4 010¶ = - G + G + G + G ( ) ( )

p p p p p , C10t s101 101
1

2 010
1

2 011 110¶ = -G + G + G + ( ) ( )

p p p p , C11t s s110
1

2 110
1

2 101
1

4 010¶ = - G + G + G + G ( ) ( )

p p p p , C12t s s010 010 011 110¶ = -G + G +( ) ( )

wherewe assumed p p p,001 100 010
s s

G

G

G

G
   and 2G G  .

By adiabatic elimination of the states with neighboring ground state superatoms, we projected the system
onto a reduced configuration space. From the above rate equations, we can deduce three fundamental processes
affecting the holes (seefigureC1 lower panel):

(i) creation of holes with the rate c sG = G ,

(ii) annihilation of one of the two holes separated by one excitationwith the rate a sG = G ,

(iii) transport of holes between neighboring sites with rate t
1

2
G = G.

The corresponding jumpoperators, involving the constraints that no two neighboring holes are allowed, are
given in section 3.1.
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