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1. INTRODUCTION

Since the early days of quantum electrodynamics, it
has been well known and appreciated that the radiative
decay of an isolated atom, as well as the radiative inter-
action between different atoms, can be strongly
affected by the environment. As was first noted by
E.M. Purcell [1, 2], the presence of conducting walls
can strongly accelerate or suppress spontaneous emis-
sion. Inhibited emission [3], enhanced decay [4], and
the suppression of blackbody absorption [5, 6] have
been observed with Rydberg atoms in cavity systems.
Alterations of the spontaneous emission rate have also
been observed near dielectric interfaces [7] and in
quantum-well structures [8]. Furthermore, photonic
bandgap materials with an engineered density of states
of the radiation field can lead to suppression or acceler-
ation of spontaneous decay [9, 10].

In this paper we discuss QED effects of single atoms
and pairs of atoms in the presence of artificial materials
showing negative refraction. Negative-index materials
were first predicted by V. Veselago [11], who showed
that simultaneous negative values of the dielectric per-
mittivity 

 

ε

 

 and the magnetic permeability 

 

μ

 

 imply a
negative index of refraction. These so-called left-
handed materials attracted much attention when J. Pen-
dry noticed that the possibility of a vanishing optical
path length between two separated points using media
with a negative index of refraction allows for a perfect
lens with a resolution not limited by diffraction [12].
Such a lens, formed by an infinite parallel slab of loss-
less left-handed material of thickness 

 

d

 

, collects all
plane waves from a point source on one side of the slab
in a focal point on the other side. If the refractive index
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of the material is 

 

n

 

 = –1, the distance between the two
focal points is 2

 

d

 

, while the optical path between them
vanishes. We will show here that the same effect can
lead to a drastic modification of the radiative decay of a
two-level atom placed in front of a conducting surface
(the Purcell effect) and to the radiative interaction
between two atoms even if the involved distances are
large compared to the resonance wavelength. We show
that spontaneous emission from an atom at a distance
2

 

d

 

 from the surface of a perfect mirror can be com-
pletely suppressed for dipole orientations in the plane
of the mirror, if the space between the atom and the mir-
ror contains a slab of 

 

n

 

 = –1 material with thickness 

 

d

 

.
Thanks to this, an effect otherwise occurring only
within a distance that is small compared to the transi-
tion wavelength would become observable for macro-
scopic distances. We will show furthermore that two
atoms put into the focal points of an ideal Veselago–
Pendry lens behave as if both were at the same position;
i.e., they show perfect Dicke sub- and superradiance
[13].

After summarizing the basic properties of left-
handed materials and analyzing the conditions for their
existence for the case of realistic, i.e., causal and in gen-
eral lossy magnetodielectrics in Section 2, we will dis-
cuss the alteration of the spontaneous emission rate of
an atom embedded in a left-handed material in Section 3.
It will be shown that the modification of the spontane-
ous emission rate due to the changed density of states is
no longer given by the index of refraction 

 

n

 

 as in dielec-
tric materials [14], but by the product 

 

μ

 

n

 

, which
remains positive also for lossless negative-index mate-
rials [15]. In Section 4, we will then analyze the radia-
tive decay of a single two-level atom in front of a per-
fect mirror with a layer of negative-index material, as
well as the radiative coupling of two atoms in the focal
points of a Veselago–Pendry lens in Section 5. Finally,
in Section 6 we will discuss limitations due to finite
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absorption, to a finite transversal extension of the lens,
and to dispersion, which necessarily accompanies neg-
ative refraction.

2. ELECTRODYNAMICS OF MEDIA 
WITH NEGATIVE REFRACTIVE INDICES

Macroscopic electrodynamics in linear isotropic
media is completely characterized by two material
functions, namely, dielectric permittivity 

 

ε

 

 and mag-
netic permeability 

 

μ

 

. 

 

ε

 

 and 

 

μ

 

 relate the vector of the
polarization 

 

P

 

 to that of the electric field 

 

E

 

 and, corre-
spondingly, the vector of magnetization 

 

M

 

 to that of the
magnetic field 

 

B

 

. The most general expressions for 

 

P

 

and 

 

M

 

 in linear isotropic magnetodielectrics read as
follows:

(1)

and

(2)

where 

 

κ

 

0

 

 = 1/

 

μ

 

0

 

. 

 

χ

 

D

 

 and 

 

χ

 

M

 

 are the electric and mag-
netic susceptibilities, respectively. For causality, the
susceptibilities have to be zero for 

 

τ

 

 < 0. The dielectric
permittivity 

 

ε

 

(

 

ω

 

) then reads

(3)

Correspondingly, the magnetic permeability 

 

μ

 

 = 1/

 

κ

 

 is
given by

(4)

Causality requires that the poles of 

 

ε

 

(

 

ω

 

) and 

 

μ

 

(

 

ω

 

) are in
the lower half of the complex plane. 

 

ε

 

(

 

ω

 

) and 

 

μ

 

(

 

ω

 

) usu-

P r t,( ) ε0 τχD r τ,( )E r t τ–,( )d

∞–

∞

∫=

M r t,( ) κ0 τχM r τ,( )B r t τ–,( ),d

∞–

∞

∫=

ε r ω,( ) 1 τχD r τ,( )e
iωτ

.d

0

∞

∫+=

κ r ω,( ) 1 τχM r τ,( )e
iωτ

.d

0

∞

∫–=

 

ally have a resonance structure in 

 

ω

 

-space, e.g.,

(5)

and

(6)

For a sufficient strength of the resonance, i.e., for 

 

ω

 

Pe

 

,

 

ω

 

Pm

 

 being large, both Re[

 

ε

 

] and Re[

 

μ

 

] may become
negative for certain frequencies.

Suppose that, at a particular frequency, 

 

ε

 

 = 

 

μ

 

 = –1
holds. Then, the question arises: what are the implica-
tions for the refractive index 

 

n

 

(

 

r

 

, 

 

ω

 

)? From the defini-
tion of 

 

n

 

(

 

r

 

, 

 

ω

 

)

(7)

one might conclude

(8)

However, as pointed out by Veselago [11], since 

 

ε

 

 and

 

μ

 

 are complex functions, one has to decide which com-
plex root to take. Noting that the imaginary part of

 

n

 

(

 

r

 

, 

 

ω

 

) characterizes the absorption of the medium, for
a passive medium Im[

 

n

 

(r, ω)] ≥ 0 should hold, which
fixes the root. As can be seen from Fig. 1, the correct
choice is

(9)

Here, εR, μR and εI , μI denote the real and imaginary
parts of ε and μ, respectively. With this one finds the
following for the case of ε = μ = –1:

(10)

It is easy to see from Eq. (9) that a negative real part of
the refractive index occurs if and only if [16]

(11)

In Fig. 2, we have illustrated the frequency dependence
of the index of refraction for the single-resonance
model given in Eqs. (5) and (6). For frequencies around
ω = 1.05ωTe, the negativity of Re[n] is clearly recogniz-
able.

The example in Fig. 2 shows a strong dispersion of
the material functions ε(ω) and μ(ω). In fact, as was
pointed out already by Veselago, this is a general prop-
erty of negative-index materials. Considering the
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Fig. 1. n2 for Re[ε], Re[μ] both being negative. The two
possible complex square roots are indicated by circles.
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energy of the electromagnetic field in a nondispersive
medium,

(12)

one recognizes that negative values of ε and μ would
lead to a negative energy. Therefore, a negative index of
refraction is necessarily associated with dispersion, in
which case the energy of the electromagnetic field
reads

(13)

which is positive even for negative ε and μ if the disper-
sion is normal and sufficiently large, such that

(14)

In the following, we want to discuss some of the
peculiar aspects of light propagation in negative-index
materials. Making use of the boundary conditions
between media with positive and negative refractive
indices, namely, E⊥ and H⊥ being continuous, as are D||

and B||, one finds that an incident plane wave is
refracted to the same side of the normal, as shown in
Fig. 3. This behavior is fully consistent with Snell’s
law:

(15)

One striking feature of negative refraction is that the
wave vector of the refracted wave kr points backward,
which is due to conservation of momentum parallel to
the surface. As a result, the vectors k, E, H form a left-
handed tripod instead of the usual right-handed one.
Materials with a negative index of refraction are, there-
fore, also called left-handed media (LHM).

On the other hand, the Poynting vector S = E × H
clearly forms a right-handed tripod with E and H and,
therefore, points in the correct direction, namely, away
from the surface, as it should be due to conservation of
energy (dashed arrows in Fig. 3).

Besides strong influences on the Doppler and Cher-
enkov effects [11], the most prominent effect of the
negative refraction is probably the so-called perfect
lens formed by a slab of a LHM. It was Veselago [11]
who, when first studying the properties of lenses
formed by a left-handed material, found that an infi-
nitely extended slab of a LHM collects, in a focal point
on the other side of the slab, all plane waves coming
from a point source not too far away from the surface
(Fig. 4). For a slab of thickness d, the distance between
the two focal points is d(1 – n), where n is the refractive
index of the LHM. Noting that the optical path length
between points P1 and P2 is

(16)
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Fig. 2. Re[n(ω)], Im[n(ω)], Re[ε(ω)] and Re[μ(ω)] using
Eqs. (5) and (6). Parameters: ωPe = ωPm = 0.46ωTe; ωTm =
1.05ωTe; γe = γm = 0.01ωTe.
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Fig. 3. Boundary between positive and negative refraction.
In a material with a negative refractive index, the refracted
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Fig. 4. Perfect lens formed by a infinitely extended slab of
a LHM. The optical length between the foci P1 and P2 is
zero.
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the perfection of the lens becomes clear. The lens sim-
ulates a situation in which point P2 is at the same spatial
position as point P1. When traveling a zero path, no
information about the source can get lost, including that
contained in the evanescent waves. Therefore, the per-
fect lens allows an unlimited resolution of the source
[12].

3. SPONTANEOUS EMISSION OF AN ATOM 
EMBEDDED IN A MEDIUM WITH NEGATIVE 

REFRACTION

It is a well known fact that the natural linewidth Γ of
a dipole allowed transition is not an intrinsic feature of
an atom, but rather depends on the local environment.
Based on an analysis of the density of states of the radi-
ation field, Nienhuis and Alkemade predicted the fol-
lowing for an atom embedded in a homogeneous trans-
parent dielectric with refractive index n [14]:

(17)

where Γ0 is the free-space decay rate:

(18)

where d is the dipole moment and ωA is the atomic tran-
sition frequency. It was seen later that Eq. (17) does not
give the correct behavior of Γ, since the macroscopic
description of the surrounding medium fails in the
immediate environment of the probe atom. To correct
this in leading order of the medium density, local-field
corrections need to be included. Several models have
been established for this. The one that best describes a
substitutive probe atom in a cubic-lattice host is the so-
called real-cavity model [17], in which

(19)

Here, �real = 3ε/(2ε + 1) is the Glauber–Lewenstein fac-
tor, which accounts for near-field effects. This model
assumes the atom to be located at the center of a small

Γ Γ0n,=

Γ0

d
2ωA

3

3π�ε0c
3

--------------------,=

Γ nΓ0�real
2

.=

empty cavity surrounded by the dielectric body, which
is treated macroscopically (see Fig. 5).

When considering atoms embedded in negative-
index materials, Eqs. (17) and (19) are obviously not
correct, since Γ would become negative in this case.
This is because these expressions are derived only for
dielectric surroundings [17, 18], where the contribution
of the magnetic dipoles of the material was neglected.

Following Fermi’s golden rule, the rate of spontane-
ous emission of an electric dipole transition is given by
the imaginary part of the retarded Green function G of
the electric field at the position rA of the atom and at the
transition frequency ωA [15]:

(20)

Here, di is the Cartesian ith component of the dipole
moment. The influence of the surroundings on the
mode structure is contained in the Green tensor G.
Thus, in order to include the effect of the magnetic
dipoles of the left-handed medium, the Green tensor
needs to be calculated for the case of a magnetodielec-
trics. Thus, the solution of the equation

(21)

needs to be determined for given boundary conditions.
Note the term κ(r, ω) = 1/μ(r, ω), which is absent in the
pure dielectric case [18].

Since within the Glauber–Lewenstein model the
atom is located in free space, the solution of Eq. (21) for
the real cavity (Fig. 5) can be expressed as a sum of the
free-space Green function and a scattering term that
accounts for the boundary of the magnetodielectric:

(22)
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(23)

and
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Fig. 5. Real-cavity model: the atom is located at the center
of an empty cavity surrounded by the dielectric body.
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Due to the symmetry of the geometry, the scattering
term can be expanded in a series of vector Bessel func-
tions:

(25)

(26)

(27)

where fl has the meaning of a cosine function for even l
and of a sine function for odd l. The jn are spherical

Bessel functions of the first kind, and the  are the
associated Legendre polynomials. The rather lengthy

expansion factors (k) and (k) are given in [19].

In the limit r, r'  0, all terms except that with 
become zero. The rate of spontaneous emission of a
two-level atom embedded in a medium of arbitrary ε
and μ then reads

(28)

with

(29)

Here,  =  is the normalized radius of the cav-

ity. This function can be shown to be strictly positive,
as it should be for the rate of spontaneous emission. In
the limit of vanishing imaginary parts of μ, ε, and n,
Eq. (28) reduces to

(30)

which is the sought generalization of the formula of
Glauber and Lewenstein (Eq. (19)) for pure dielectrics
in the case of lossless but otherwise arbitrary magneto-
dielectric media. For μ = 1, Eq. (30) reduces to the
dielectric case.

The influence of the LHM on the rate of spontane-
ous emission for a resonance model using the example
of Eqs. (5) and (6) is shown in Fig. 6. Because of the
surrounding medium, the natural linewidth in the vicin-
ity of the resonance can be either strongly enhanced or
suppressed.
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4. SUPPRESSION OF SPONTANEOUS EMISSION 
OF AN ATOM IN FRONT OF A MIRROR: 

MODIFIED PURCELL EFFECT

In this section, the modification of the Purcell effect,
i.e., the suppression of the spontaneous emission of an
atom in front of a mirror by a medium with negative
refraction, will be discussed. For this, we consider the
setup shown in Fig. 7. The atom is placed at a distance
2d from the surface of the perfect mirror, and the space
between the atom and the mirror is filled half by a vac-
uum and half by a medium with n = –1. In the absence
of the medium, the emission rate of the atom is signifi-
cantly affected only if the distance between the atom
and the mirror is small compared to the transition wave-
length [20]. In this case, the radiative decay for a tran-
sition with a dipole moment parallel to the plane of the
mirror vanishes, while that for an orthogonal dipole
moment is enhanced by a factor of two. Since, in the
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Fig. 6. Rate of spontaneous emission for the real-cavity
model for resonant functions (5) and (6). ωPe = ωPm =
0.46ωTe; ωTm = 1.05ωTe; γe = γm = 0.01ωTe.
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Fig. 7. Atom in front of a LHM attached to a mirror. The
optical length between the atom and the mirror is zero. The
spatial regions z > 0, –d ≤ z ≤ 0, and z < –d are denoted by
the numbers 0, 1, and 2, respectively.



140

LASER PHYSICS      Vol. 15      No. 1      2005

KÄSTEL, FLEISCHHAUER

presence of the negative-index material, as in Fig. 7, the
optical length of the path from the atom to the mirror
equals zero, the question arises as to whether the LHM
leads to properties comparable to the case of the atom
sitting on the mirror surface. To obtain an answer to
this, we note that the rate of spontaneous emission of an
atom in a linear and isotropic, but otherwise arbitrary,
environment is given by Eq. (20). Thus, we only need
to calculate the Green function corresponding to the
specific setup.

The retarded Green function corresponding to a slab
with a homogeneous and linear magnetodielectric
medium can be calculated by a plane-wave decomposi-
tion. Following [21], one finds, for the two positions r
and r' in vacuum on the same side of the slab,

(31)

where z ≤ z' has been assumed. Since it is needed later,
we also give the Green function for the case in which r
and r' are in vacuum on different sides of the slab:

(32)

The superscripts 0, 1, 2 in the Green functions denote
the position zones of r and r': z > 0, –d ≤ z ≤ 0, and
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+ ê kz–( )e
iK r⋅ ) � ê kz–( )e
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ik r⋅ ĥ kz–( )e
iK r⋅

+( ) � ĥ kz–( )e
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z < −d, respectively. For later convenience, G20 is given
under the assumption of medium 2 being a vacuum. We

here have used the definitions k2 = ω2/c2, kz = ,

and d2k⊥ = dkxdky . Furthermore, K ≡  +  – ,

and we have introduced the orthogonal unit vectors  =

k × / |k × | and  =  × k/ |k |, where p = 1 for a nor-
mal medium and p = –1 for a LHM. RTE, RTM and TTE,
TTM are the reflection and transmission functions of the
three-layer medium for transverse-electric and trans-
verse-magnetic modes. They read

(33)

(34)

and, correspondingly,

(35)

(36)

Here, k1z =  and  = ε(ω)μ(ω)ω2/c2. Rij and
Sij are the reflection coefficients at the boundaries
between media i and j for the TE and TM modes,
respectively:

(37)

Setting R12 = –1 and S12 = 1 to account for the per-
fect mirror, we obtain the natural linewidth by substitut-
ing the corresponding result for G00 into

(38)

The result is shown in Fig. 8 for the case in which the
atomic dipole moment is parallel to the surface of the

mirror. The thickness of the LHM is set to d = 100 .

When the atom is put at a distance d before the LHM,
which we want to denote as the focal point, the rate of
spontaneous emission is completely suppressed:

(39)

The spatial dependence of the linewidth shown in Fig. 8
is the same as for an atom in front of a mirror located at
z = 0 without a LHM [20]. For atomic dipoles with an
orthogonal orientation to the mirror, the spatial depen-
dence is also the same as in the case in which there is
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R
TE R01 R12e

i2k1zd+

1 R01R12e
i2k1zd+

---------------------------------------,=

R
TM S01 S12e

i2k1zd+

1 S01S12e
i2k1zd+

-------------------------------------,=

T
TE 2μkz

μkz k1z+
---------------------

1 R12+

1 R01R12e
i2k1zd+

---------------------------------------e
i k1z kz–( )d

,=

T
TM 2εkz

εkz k1z+
--------------------

1 S12+

1 S01S12e
i2k1zd+

-------------------------------------e
i k1z kz–( )d

.=

k1
2

k⊥
2

– k1
2

Rij

μ jkiz μik jz–
μ jkiz μik jz+
----------------------------, Sij

ε jkiz εik jz–
ε jkiz εik jz+
---------------------------.= =

Γ
2ωA

2
did j

�ε0c
2

--------------------Im Gij
00 rA rA ωA, ,( )[ ].=

λ
2π
------

Γfocus
||

0.=

~ ~
~ ~

–15 –10 –5 0 5 10 15
z [λ/2π]

–d
0

0.2

0.4

0.6

0.8

1.0

1.2

Γ ||/Γ0

Fig. 8. Spatial dependence of the normalized rate of sponta-
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no LHM, but where the mirror is at z = 0 (see [20]). In
the focus, this leads to an enhancement of the decay rate
by a factor of two:

(40)

The behavior shown in Fig. 8 can be understood in the
following way: the combination of layers of vacuum
(n = +1) and of negative-index material (n = –1) with
equal thicknesses d makes the space between atom and
mirror appear to be of zero (optical) length. Thus, the
atom at the focal point is equivalent to the atom being
on the mirror surface. This result suggests the possibil-
ity of experimentally studying spontaneous emission
suppression of atoms near a mirror without the neces-
sity of actually putting the atoms on the surface.

5. SUB- AND SUPERRADIANCE
OVER MACROSCOPIC DISTANCES

The observation of the last section, namely, that a
combination of a layer of positive and negative refrac-
tion can make a spatial volume appear to have a vanish-
ing optical thickness, suggests a different interesting
application. If two atoms are put at the focal points of a
Veselago–Pendry lens, as indicated in Fig. 9, they
should show a radiative coupling with a strength as if
they were at the same position in space.

We now want to analyze this situation in detail. For
this, we start with the interaction Hamiltonian of two
atoms at positions r1 and r2 with the quantized electric

field  in the dipole and rotating-wave approxima-
tions:

(41)

Eliminating the electromagnetic field using the usual
Born–Markov approximations leads to a two-atom
Liouville equation of the form

(42)

where  = |1〉ll〈2 | is the atomic flip operator of the lth
atom from the lower state |1〉 to the upper state |2〉. The
second and third terms in Eq. (42) describe the sponta-
neous emission and Lamb shift of the two individual
atoms with decay rates Γ(ri , ri) and respective level
shifts δω(ri , ri), (i = 1, 2). However, they also contain
terms describing the radiative interaction between the
atoms containing a dissipative cross coupling propor-
tional to Γ(r1, r2) and a conditional level shift propor-
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tional to δ(r1, r2). The single-atom and cross-coupling
rates are given by an expression similar to Eq. (20):

(43)

The level shifts read

(44)

The single-atom Lamb shift δω(ri , ri) is not accurately
described within the present theory and will be ignored
in the following. One recognizes from Eqs. (43) and
(44) that the radiative interaction between the two
atoms is determined by the imaginary part of the
retarded Green function between the positions r1 and r2
of the two atoms. In free space, the value of G rapidly
decreases if the relative distance |r1 – r2 | becomes
larger than the transition wavelength λ. Consequently,
the radiative interaction is negligible except for very
small distances. As will be shown now, this situation
changes if the atoms are put at the focal points of a
Veselago–Pendry lens.

In order to see the effect of the radiative coupling, it
is convenient to use as a basis for the two-atom system,
besides the total ground state |11〉 and the doubly-
excited state |22〉, the symmetric and antisymmetric
combinations of one atom being excited (|2〉) and one
atom being in its ground state (|1〉):

(45)

(46)

In terms of these basis states, we arrive at the following
density-matrix equation:

(47)

(48)
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Fig. 9. Two atoms put at the focal points of a Veselago–Pen-
dry lens with n = –1. Focal points are all pairs of positions
at the two sides of the slab with distance 2d. The spatial
regions z > 0 (vacuum), –d ≤ z ≤ 0 (LHM), and z < –d (vac-
uum) are denoted by the numbers 0, 1, and 2, respectively.
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(49)

(50)

where we have disregarded the level shifts and where
Γij is an abbreviated notation for Γ(ri , rj). One recog-
nizes from the above equations that the decay channels
through the symmetric and antisymmetric superposi-
tions differ by the cross-coupling contribution ±Γ12 if
the two atoms are in free space at the same point Γ12 =
Γ11 = Γ22. In this case, the antisymmetric state does not
decay at all, while the symmetric one decays with twice
the single-atom decay rate. This is the situation of
Dicke sub- and superradiance [13].

Let us now calculate the rates Γ11, Γ22 and Γ12, i.e.,
the imaginary part of the Green function for the situa-
tion of Fig. 9. Since at the boundary between vacuum
(n = +1) and LHM (n = –1) there is no reflection, i.e.,
RTE = RTM = 0, one finds, for the case of both positions
being on the left side of the lens (region “0”),

(51)

The same result holds, of course, for both positions being
on the right side of the lens (region “2”). A correspond-
ing calculation for r being on the left side (region “0”)
and r' being the other focal point of the lens r + 2dez

yields

(52)

where TTE = TTM =  and k1z = –kz. Equations (35)
and (36) have been used. Thus, we recognize that the
imaginary part of the Green function between the two
focal points is identical to that at the same position. As
a consequence, Γ12 = Γ11 and there is perfect sub- and
superradiance, despite the fact that the distance
between the focal points can be much larger than the
resonance wavelength. Figure 10 illustrates the depen-
dence of the ratio Γ12/Γ11 on the spatial displacement of
the second atom from the focal point of the first.
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One recognizes from Fig. 10 that, for the imaginary
part of the Green function of the ideal Veselago–Pendry
lens, the following holds:

(53)

It should be noted here that a relation similar to Eq. (53)
does not exist for the real part of the Green function. If
this were true, then the electric field pattern at the two
focal points would be identical, in violation of
Maxwell’s equations. It should also be noted that rela-
tion (53) holds only within a certain range of frequen-
cies ω, due to the necessarily dispersive nature of the
LHM. The limitations arising from this will be dis-
cussed in the following section.

6. LIMITATIONS

In Sections 4 and 5, two systems involving perfect
left-handed materials were discussed. We here turn to
the following question: what are the limitations of the
observed effects under more realistic conditions, i.e.,
when taking into account absorption losses, a finite
transversal extension of the LHM slab, and dispersion
of the medium?

6.1. Absorbing LHMs

First of all, to describe a more realistic LHM, one
has to take absorption into account. This can easily be
done by substituting the refractive index n = –1 of the
perfect LHM by n = –1 + inI , i.e., by adding an imagi-
nary part.

For the mirror system of Section 4, Fig. 11 shows
the dependence of Γ||/Γ0 on the absorption coefficient nI

for different thicknesses of the LHM. As can be seen,
the suppression of the spontaneous emission for atomic
dipoles parallel to the mirror decreases with increasing
absorption, as was expected. The sensitivity to absorp-
tion is approximately exponential in nId.

In Fig. 12, the same is shown for the system with the
lens. As was expected, Γ12/Γ11, and, therefore, the effect
of the sub/superradiance is reduced with increasing
absorption coefficients nI . The dependence on the
thickness of the lens is again exponential.

6.2. Finite Transverse Extension of the LHM

In experimental implementations, the slab of LHM
will always have a finite transversal extension. We
therefore analyze here the dependence of the LHM-
induced effects on the transversal radius of the medium.
The thickness of the LHM is denoted by d, and the
transverse extension by a (Fig. 13). Because of the
finite radius, the 1D character of the geometry is no
longer given, and the Green function cannot be calcu-
lated analytically. A numerical solution for the Green
function is also very difficult. Noting, however, that
only propagating modes with k⊥ ≤ k contribute to the

Im G r 2dez– r ω, ,( )[ ] Im G r r ω, ,( )[ ].=
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imaginary part of the Green functions, one can obtain
an estimate of the effect in the short-wavelength or ray-
optics limit (d � λ).

For the system with the mirror, this means that, for
the integrand over k⊥ in the definition of the Green
function (Eq. (31)), one should use the expression for

 only for values

(54)
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This corresponds to angles α of the propagating modes

that are less than sin α =  = k⊥/k (Fig. 13). For

larger angles, the result depends strongly on whether or
not the mirror also has a finite transversal extension.
When the mirror has the same transversal radius a, one
has to use Gvac (dashed line in Fig. 14); otherwise, the

expression for  needs to be taken, but with n = 1
substituted for n = –1 (solid line Fig. 14).

For the system with the lens, an estimate of the
effect of a finite transverse radius is given here only for
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Fig. 10. Γ12/Γ11 as a function of the spatial shift, parallel “x” and orthogonal “z” to the surface of the LHM, of one atom out of the
focus of the other one. In the focal point (0, 0), perfect sub- and superradiance is obtained. Here, the dipoles of both atoms are ori-
ented in the x direction.
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Fig. 11. Γ||/Γ0 as a function of the imaginary part of the
refractive index nI for Re[n] = –1 and different thicknesses
d of the lens, d = 100λ/2π (solid line), d = 10λ/2π (dashed),
and d = 1λ/2π (dotted).
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of the lens, d = 100λ/2π (solid line), d = 10λ/2π (dashed),
and d = 1λ/2π (dotted).
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a symmetric setup, i.e., when the distance of both atoms
to the surface of the lens is d/2. Under this assumption,
the desired result can be obtained more easily than for
the mirror case, since the atoms are macroscopically
separated. In this case, the Green function Gvac(r1, r2) is
essentially zero, and the integration over k⊥ can effec-
tively be limited to the values

(55)

with the integrand being the usual expression for
G20(r1, r2). As can be seen from Fig. 15, even for a mod-
erate ratio a/d a sub/superradiance that is close to 100%
can be obtained.

6.3. Dispersion Effects

The spontaneous emission is given by the imaginary
part of the retarded Green tensor at the transition fre-
quency (Eq. (20)). Therefore, the predictions of Sec-
tions 4 and 5 hold as long as the frequency range with
n = –1 is large compared to the natural linewidth Γ.

The previous discussion suggests that, if the LHM
used for the lens in Section 5 has arbitrarily small losses
in the frequency range of interest and also has a suffi-
cient large transversal extension, sub- and superradi-
ance is possible for two atoms at an arbitrary distance.
For causality reasons this is, of course, not possible.
The resolution of this seeming contradiction lies in the
necessary dispersion of a left-handed material, as was
discussed in Section 2. The positivity of the electro-
magnetic energy in a lossless LHM requires that

(ωRe[�(ω)]) ≥ 0 and (ωRe[μ(ω)]) ≥ 0, which

implies the following for n(ω0) = –1:

(56)

As a consequence of the dispersion of the refractive
index, the frequency window Δω over which G20(ω) ≈
G00(ω) narrows with increasing thickness of the lens.
When Δω becomes comparable to the natural linewidth
of the atomic transitions Γ11, the Markov approxima-
tion implicitly used for the derivation of Eq. (42) is no
longer valid. To give an estimate of when this happens,
we note from Eqs. (32)–(37) that, for d � λ, the term in
G20 that is most sensitive to dispersion is the exponen-
tial factor eiK · (r – r') . Taking into account a lin-
ear dispersion of n(ω) in this exponential factor accord-
ing to n = –1 + α(ω – ω0), with a real value of α, while
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keeping the resonance values for TTE, TTM and RTE,
RTM, one finds the following for the Green tensor:

(57)

As can be seen from Fig. 16, the spectral width Δω of
the Green function is, in this approximation, of order

(58)
Since as mentioned above, for a lossless LHM, α ≥
1/ω0, one arrives at

(59)
This leads to an upper bound on the distance of the
atoms. The requirement Δω � Γ11 leads to

(60)

This condition can easily be understood. It states that
the distance between the two atoms must be small
enough such that the travel time of a photon from one
atom to the other is small compared to the free-space
radiative lifetime.

7. SUMMARY
In the present paper, we have studied the interaction

of an isolated atom or a pair of atoms with the quantized
electromagnetic field in the presence of media with
negative indices of refraction. An expression for the
rate of spontaneous emission of an atom embedded in a
LHM was derived (see also [15]), which is a generali-
zation of the Glauber–Lewenstein result [17] to magne-
todielectric media. We have shown that the negative
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optical path length occurring in left-handed materials can
be used to induce strong QED effects over large dis-
tances, which in vacuum otherwise occur only on sub-
wavelength-length scales. Considering an isolated atom
in front of a perfect mirror with a layer of LHM of thick-
ness d, we found an interesting modification of the Pur-
cell effect. Spontaneous emission was found to be com-
pletely suppressed for an atom placed at a distance 2d
from the mirror in vacuum. It was shown, furthermore,
that two atoms at the focal points of a Veselago–Pendry
lens that consists of a parallel slab of ideal LHM display
perfect sub- and superradiance. A principle limitation of
the involved length scales is given only by the intrinsic
dispersion of left-handed materials, which prevents
strong radiative coupling over distances larger than the
propagation distance of light, corresponding to the free-
space radiative-decay time. We anticipate that the unusual
property of LHM of leading to negative optical path
length will have a number of interesting applications,
e.g., zero-optical-length resonators. On the other hand,
much of the present discussion is still only of academic
interest, since no low-loss negative-index materials are
known for the interesting case of optical frequencies.
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Fig. 16. Im[G20(ω)] following from Eq. (57) for lossless
LHM with n = –1 + α(ω – ω0) for α = 45/ω0 for dk0 = 1
(dashed) and 0.2 (dotted). Also shown is the numerically
calculated spectrum for a specific causal model for n(ω)
with resonances of ε(ω) and μ(ω) below ω0. n(ω) was cho-
sen such that Re[n(ω0)] = –1 and α = 45/ω0. The central
structure is well represented by the linear-dispersion
approximation (Eq. (57)). Furthermore, a narrowing of the
spectral width with increasing thickness is apparent.


