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1. INTRODUCTION 

The idea of producing a molecular Bose–Einstein
condensate (BEC) via Raman photoassociation of an
atomic condensate has attracted much theoretical and
experimental interest in the last few years. Much of the
theoretical work has been performed using the Gross–
Pitaevskii equation (GPE) [1], which is a semiclassical
mean-field approach to the problem, or in an even more
simplified fashion. That a matter wave analog of the
optical processes of frequency up conversion and down
conversion should exist with atomic and molecular
condensates was first stated by Drummond 

 

et al.

 

 [2],
who developed an effective quantum-field theory to
describe coupled atomic and molecular BECs. An early
suggestion that a molecular condensate could be pro-
duced via photoassociation came from Javanainen and
Mackie [3], who proposed a two-mode, phenomeno-
logical Hamiltonian to model the process. A more com-
plete proposal, using one atomic and two molecular
fields, coupled via a two-color Raman transition so as
to minimize spontaneous emission losses, was devel-
oped by Heinzen 

 

et al.

 

 [4]. This model was semiclassi-
cal in that it utilized a mean-field, GPE approach and
hence could not predict anything about the quantum
dynamics of the interacting condensates. As shown by
Hope and Olsen in one dimension [5] and Hope in three
dimensions [6], full quantum treatments using the pos-
itive-P representation [7, 8] may not always agree with
mean-field predictions, even for the mean fields. This is
not at all surprising, as it is known that the mean-field
approach does not give reliable results in the optical
parametric processes of second harmonic generation
[9] and down conversion, the mathematical descrip-
tions of which have many similarities to that for cou-
pled atomic and molecular condensates. In fact, for
traveling wave parametric down conversion, the mean-
field prediction is that the process does not exist. How-

ever, even though previous phase–space treatments of
photoassociation have been an improvement over the
mean-field treatment, they all assume that the atomic
BEC is initially in a coherent state. This is a natural and
appealing choice in the positive-P representation as it
gives a deterministic initial condition. What we will
show here, however, is that the actual initial quantum
state of the condensate can cause noticeable differences
in the mean-field dynamics of photoassociation, even
when the dynamics for an initial coherent state agrees
reasonably well with the GPE predictions.

Another issue which has attracted some attention
from theoreticians has been the question of the quan-
tum state of a trapped condensate with repulsive inter-
atomic interactions. To our knowledge, experimental-
ists have so far paid little attention to this issue. Perhaps
the two most natural and common choices are the well-
known coherent state and the number or Fock state,
which are both useful in quantum optics. The coherent
state is appealing because of the coherence properties
exhibited [10–12], but has the problem of a largish
uncertainty in number, which is conceptually difficult
to understand as atoms are not created or destroyed at
typical condensate temperatures. The number state is
superficially an appealing choice, but, as the conden-
sate is in contact with an environment, some particles
can be added or removed. This state also has the prob-
lem that it has no defined phase. As the nonlinearity due
to 

 

s

 

 wave collisions between condensed atoms is equiv-
alent to a Kerr interaction, we may expect to find that
the actual state is none of the above. An early calcula-
tion [13] predicted an amplitude eigenstate, while a
subsequent, more rigorous calculation [14] predicted a
sheared Wigner function approximating a number
squeezed state. A more recent attempt, using the Har-
tree approximation, found a Q-function which suggests
both amplitude quadrature and number squeezing [15].
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In this work, we combine these two issues and con-
sider the effects of different possible initial quantum
states on the dynamics of Raman photoassociation. As
the mathematics of photoassociation is essentially a
more complex form of that of second harmonic gener-
ation and both quantum statistics [16, 17] and Kerr non-
linearities [18] have been shown to affect the dynamics
of this process, it is of interest to investigate their effect
in the present situation. Other experimental details not
present in treatments of second harmonic generation
are the trapping potential and the kinetic energy of the
trapped condensates, both of which are included in our
approach to the interacting condensates. As we are
interested only in the dynamics of the mean fields rather
than quantum correlations, we stochastically integrate
the appropriate equations in the truncated functional
Wigner representation [8, 19, 20], which we expect to
give reliable results. We are not aware of any cases
where this method has given predictions at variance
with the full quantum solutions for field intensities, at
least when the number of quanta involved are relatively
large, as is the case here. This method also has the very
useful advantage that numerical integration is much
more stable with condensates than the functional posi-
tive-P representation, which can exhibit problems due
to the large nonlinearities involved [8].

2. THE SYSTEM AND EQUATIONS
OF MOTION 

We consider that the initial atomic condensate is
trapped such that one of the trapping frequencies (

 

ω

 

0

 

)
is much smaller than the other two, leading to a cigar-
shaped condensate which may reasonably be approxi-
mated as one-dimensional. We consider here a two-
color Raman photoassociation scheme [4–6] coupling
the ground-state atoms to a molecular condensate in the
ground state via excited molecules. The excited molec-
ular field is actually composed of multiple vibrational
levels, but these excited states are essentially not popu-
lated by the Raman transition, so we treat them as a sin-
gle level which will be adiabatically eliminated. In a
rotating frame, the interaction part of the Hamiltonian
may be written, suppressing the time dependence, as

(1)

where (

 

x

 

) is the atomic-field annihilation operator,

(

 

x

 

) is the excited molecular-field annihilation oper-

ator, and (

 

x

 

) is the ground-state molecular-field
annihilation operator. The Rabi frequency of the transi-
tion between atoms and excited molecules is repre-
sented by 

 

χ

 

(

 

x

 

), and 

 

Ω

 

(

 

x

 

) is the Rabi frequency of the
transition between excited- and ground-state mole-
cules.
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i�
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The first decision we must make is how to treat the
quantum field problem of the two interacting conden-
sates mathematically. Although Heisenberg equations
of motion for the quantum-field operators can be writ-
ten, little can be done with them as they are nonlinear
operator equations for space- and time-dependent
quantum fields. Another possible approach is to use the
equation of motion for the density matrix. In the case of
a few-mode problem with a small number of atoms, a
master equation may be derived from the full Hamilto-
nian and then numerically integrated in the time
domain. In the system under consideration here, we use
an initial condensate of 20000 atoms with 1024 spatial
modes. Before even considering the coupling with the
molecular condensate, the master equation approach
would need a Hilbert space of dimension 1024

 

20000

 

,
which is clearly intractable. We will therefore resort to
the use of a phase–space representation, which allows
mapping of the quantum Hamiltonian onto stochastic
differential equations for complex variables and allows
for numerical stochastic integration of the resulting
equations. This approach was first used to calculate cor-
relation functions for a one-dimensional trapped con-
densate [8] and shortly thereafter to model the process
of evaporative cooling [21].

The process of photoassociation has previously
been treated using a functional positive-P representa-
tion [5, 6] with adiabatic elimination of the excited
molecules, which gives true stochastic differential
equations for the coupled atomic and molecular fields.
However, numerical integration of these equations is
very time consuming and can present serious stability
problems [8]. Hence we will use a truncated functional
Wigner representation, which is much more stable and
lends itself more readily to the modeling of different
initial quantum states of the atomic condensate. A full
Wigner representation of this problem would have
derivatives of third order in the equation of motion for
the pseudoprobability function, coming from both the
interaction Hamiltonian above and the self-interaction
terms. While it is possible to model these using stochas-
tic difference equations [22], there are severe practical
difficulties involved. However, as is commonly done
with the Wigner representation, we can discard the
third-order derivatives, which in this case leaves us
with a functional Fokker–Planck equation with no dif-
fusion matrix. This can be immediately mapped onto
differential equations which have the appearance of
coupled Gross–Pitaevskii-type equations. It must be
stressed that there are, however, two important differ-
ences. Firstly, averages must be taken over a large num-
ber of integrations of these equations, with initial con-
ditions chosen so as to represent the Wigner function
for the desired initial quantum states. Only if the
Wigner function were to be a Dirac delta, which is com-
pletely nonphysical, would we recover the Gross–
Pitaevskii equations. It is the probabilistic distribution
of the initial state that allows the evolution of complex
variables to represent (to a very good approximation)
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the evolution of noncommuting field operators. Sec-
ondly, being an approximation to the full Wigner repre-
sentation, the truncated Wigner representation yields
symmetrically ordered operator averages [23]. Formu-
lae for physical quantities which are expressed as nor-
mally ordered operator averages must be corrected due
to the operator reordering, as is done in Eq. (5) below.
In this paper, we are only interested in single-time aver-
ages, so the free commutation relations for the field
operators are sufficient. In general, the problem of reor-
dering Heisenberg operators for different times may be
tackled using methods developed in [23], as was done
previously to calculate the symmetrized products
needed for QND measurements [24]. With these reser-
vations in mind, we can now model the quantum fields
via equations which are completely classical in appear-
ance.

Using the same units as Cusack 

 

et al.

 

 [25], with time

measured in units of  and space in units of

, we are then able to describe the process
using two coupled equations for the complex atomic
(

 

ψ

 

a

 

) and molecular (

 

ψ

 

m

 

) fields, with the spatial and
temporal dependences neglected for notational conve-
nience:

(2)

In the above, 

 

V

 

a

 

(

 

x

 

) (

 

V

 

m

 

(

 

x

 

)) represents the trapping
potential for the atomic (molecular) condensate, 

 

U

 

aa

 

 is
the atom–atom interaction strength, 

 

U

 

mm

 

 represents that
between molecules, and 

 

U

 

am

 

 represents atom–molecule
scattering, all in the 

 

s

 

 wave 

 

δ

 

-function approximation.
The coupling strength 

 

κ

 

, chosen as real and spatially
constant here, is now the effective two-photon Rabi fre-
quency, while 

 

Δ

 

 is the effective two-photon Raman
detuning. In this model, we ignore spontaneous losses
and interactions with the thermal cloud, which does not
exist in our zero-temperature treatment.

3. RESULTS 

For the purposes of comparison, in all simulations
we use as our starting point a ground-state solution of
the GPE for a one-dimensional trapped atomic conden-
sate with 2 

 

×

 

 10

 

4

 

 atoms and a value of the nonlinear
interaction of 

 

U

 

aa

 

 = 4 

 

×

 

 10

 

–3

 

. This initial solution is
obtained via propagation in imaginary time [26], begin-
ning with the Thomas–Fermi solution for these param-

ω0
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�/mω0
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2
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eters. In all our investigations, we use Uam = –1.5Ua,
Umm = 2Uaa, κ = 1, Δ = 0, and a molecular trapping
potential twice that of the harmonic atomic potential,
all consistent with [25]. The difference between the
molecular and atomic trapping potentials, given the
same magnetic spin, comes directly from the increased
mass of the molecules. The integration always begins
with all particles in the atomic condensate and a coher-
ent vacuum for the molecular field. The equations are
integrated over 104 trajectories using a standard split-
operator method with momentum propagation in the
Fourier space and a three-step predictor–corrector
method in position space. It is readily seen that the grid
spacing Δx has to be chosen larger than the magnitude
of the s wave scattering lengths, effectively becoming a
momentum cutoff. With Δx too small, we would
encounter ultraviolet divergences, these being even
more calamitous in higher dimensions. The accuracy
and stability of the integration is checked by keeping
track of the conserved quantity of the number of atoms
plus two times the number of molecules, Na + 2Nm, and
also by varying the time step. Over the times shown, t =
π/16, results with a halved time step were virtually
indistinguishable from those shown and the number
was conserved to within less than 0.05%.

To model the quantum states of the condensates,
each of the 1024 points in the spatial grid is given an
initial value on each trajectory, chosen from the Wigner
distribution for the appropriate state. A coherent state is
modeled by taking the (real) GPE solution for the nth
spatial point and adding real and imaginary numbers
drawn from a normal Gaussian distribution, giving

ψ(xn) = ψGP(xn) + 0.5(η1 + iη2)/ . It is easily veri-
fied that the trajectory average will be |ψGP(xn)|2 +
1/2Δx at each point, with 1/2Δx needing to be sub-
tracted at each point once the trajectory averaging has
taken place. A minimum uncertainty squeezed state is

modeled by adding 0.5(η1e–r + iη2er)/  at each
point, where r is the squeezing parameter. A positive r
gives squeezing in the amplitude quadrature, while a
negative r gives phase quadrature squeezing. A sheared
state, typical of Kerr nonlinearities, as in Dunningham
et al. [14], is simulated by transforming the added
squeezed-state noise by a factor exp(iqη3), where q is
the shearing factor. The real noise terms used above
have the correlations

(3)

Numerical checks of single-mode distributions pro-
duced using these methods show that they give the
expected values for both average numbers and quadra-
ture variances. In our simulations for squeezed states,
we use values of r = ±log0.5, while for the sheared state
we used q = 0.005, which gives results similar to the
Wigner function shown in [14]. We also investigate a
more extreme shearing of the distribution, with r =
−log0.2 and q = 0.05, as we are treating a larger con-

Δx

Δx

η j 0, ηiη j δij.= =
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Fig. 1. GPE atomic-field prediction up to t = π/16 showing
the spatial dynamics of the atomic BEC, which is not calcu-
lable in a single-mode approach. The units of the spatial

axis are .�/mω0

Fig. 2. GPE molecular-field prediction up to t = π/16.
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densate than those considered in [14, 15]. This state,
which we call a crescent state, will have a larger effec-
tive Kerr nonlinearity and thus will be expected to have
a more sheared Wigner distribution. This is the state we
consider the most likely of the above options for the ini-
tial atomic condensate. The molecular field always
begins as a coherent vacuum.

We begin by numerically integrating the GPE type
equations, which give semiclassical results with the
quantum statistics playing no part in the time evolution.
These results are then used for purposes of comparison
with the results of the truncated Wigner representation.
What we find is that the spatial dependence of the
trapped condensates plays an important role in the pro-
cess, with the coupling rates at different densities being

different. For the parameters used, this causes an inter-
esting structure to emerge, with spatial sidebands form-
ing in the distributions, as shown in Figs. 1 and 2. Over
the times shown here, the kinetic energy of the conden-
sates plays a negligible role, with integration of spa-
tially separate single-mode equations at each spatial
point giving virtually identical predictions, both spa-
tially and for the total particle numbers. This is not the
case for longer interaction times, where the full spatial
problem needs to be solved.

Examining Figs. 3 and 4, which show the mean par-
ticle numbers, we see that when we use an initial coher-
ent state in the Wigner equations, we do not see the dra-
matic differences from the GPE predictions reported
previously [5, 6]. The reason is simply that we are
working with different parameters, with the ratio
between κ and the strength of the nonlinear interactions
being important in this regard. This was previously
demonstrated to be the case in traveling wave second
harmonic generation with additional χ(3) nonlinearities.
Although this is not as rich a system as coupled conden-
sates, a useful analogy can be made [18]. Initial states
with the degree of amplitude squeezing and shearing as
calculated in [14, 15] also do not lead to vastly different
predictions, the difference between the two being
almost negligible. However, a dramatic difference
occurs when we consider the initial crescent state,
which is greatly sheared in phase space with a large
degree of number squeezing (the single-mode Fano fac-
tor for this distribution is approximately 0.2) but is well
above the minimum uncertainty product in the quadra-
tures (single-mode V(X) ≈ 0.6, V(Y) ≈ 15).

It seems that the differences seen are largely not due
to the spatial intensity correlation, defined using the
field operators as

(4)

which is predicted to affect the initial conversion rate
for second harmonic generation [16, 17] and conden-
sates in free space [27]. In the variables of the Wigner
representation, which represent symmetrically ordered
operator averages, the definition is

(5)

This factor varies between 1 and 1.04 at the center for
the initial states considered here, and the initial conver-
sion rate remains almost unchanged. The differences
come in the first minimum of the atomic population and
in subsequent revivals and are more readily explained
by the degree of phase uncertainty in the initial state. It
can be seen by examining Eq. (2) that whether associa-
tion or disassociation is predominant will depend on the

phase of the products  and . As the crescent

g
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state has a larger phase uncertainty than the others con-
sidered here, the photodisassociation process begins to
dominate and the mean number of atoms begins to
revive at an earlier time than for the other states. This
result tends to suggest that the closer the initial atomic
state to a number state, the more markedly different the
predictions may be and the more important it will be to
take quantum effects into consideration. Unfortunately,
a number state has a Wigner function expressed in
terms of Laguerre polynomials [28], which is not easy
to model numerically for the atom numbers considered
in this work.

4. CONCLUSIONS 

We have demonstrated that care must be taken in
making theoretical predictions for the process of
Raman photoassociation used to couple atomic and
molecular Bose–Einstein condensates. Calculations in
the mean-field approach using the Gross–Pitaevskii
equation cannot be relied on to give accurate predic-
tions. Using numerical stochastic integrations of the
field equations in a truncated Wigner representation, we
have shown that the quantum state of the initial atomic
condensate plays an important role in the mean-field
dynamics of the two interacting fields. We have shown
how different initial quantum states can give quite dif-
ferent results even when the GPE predicts the dynamics
for an initial coherent state reasonably accurately. All
the quantum states considered gave some difference
from the GPE predictions, but the crescent state, possi-
bly the most likely for BEG, is the most dramatic,
showing a markedly less complete conversion to mole-
cules. Over the time scales we considered, the quantum
statistics are much more important than the spatial
dependence of the condensate. These results suggest
that, for the purposes of Raman photoassociation, a
careful preparation of the initial atomic condensate will
be important for the resulting dynamics and that any
calculations aimed at predicting the process accurately
will need to take quantum statistics into account.
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