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1. INTRODUCTION

To date, a number of dynamical situations have been
investigated for dilute gas Bose–Einstein condensates
(BEC) which are described incorrectly in a mean-field
approach using Gross-Pitaevski-type (GPE) equations
[1]. These begin with the evaporative cooling by which
a BEC is produced [2] and include molecular associa-
tion of an atomic BEC using both laser light [3–5] and
Feshbach resonances [6], as well as the photodissocia-
tion of a molecular condensate [7, 8].

In previous articles, we have shown that there is a
simple dynamical process for which a quantum treat-
ment of all the interacting fields is necessary, namely,
the intracavity coherent photoassociation of an atomic
condensate to form a molecular condensate [9, 10]. For
this system, we have demonstrated that there are
parameter regimes in which the quantum solutions,
obtained using either positive-P representation equa-
tions truncated at second order or a full, generalized
positive-P representation, give qualitatively different
results to the semiclassical mean-field equations. This
generalized positive-P representation is developed
using methods described elsewhere [11–14]. In this
work, we will investigate to what extent all fields need
to be treated quantum mechanically. Our approach may
also be useful to investigate the formation of Efimov
states [15, 16] during the process of molecular associa-
tion via Feshbach resonances. These states, being tri-
atomic molecules, need a triple product of creation or
annihilation operators for their full description and are
hence not exactly treatable by the usual phase-space
methods.

2. STOCHASTIC PROCESSES BEYOND 
THE FOKKER–PLANCK EQUATION

The phase-space methods of quantum optics have
been a very useful tool for the investigation of nonlin-
ear quantum systems [17]. Central to these methods is
finding a master equation for the density matrix starting
from the quantum Hamiltonian; this master equation is
then mapped onto a Fokker–Planck equation (FPE) for
the appropriate pseudoprobability distribution. As a
rare exception, this FPE may be solved directly. Other-
wise, using the well-known duality between FPEs and
stochastic differential equations (SDEs), an SDE may
be written. This can either be linearized to give analyt-
ical solutions or solved numerically using the well-
developed techniques of stochastic integration.

The existence of an FPE depends on the system
under consideration. For example, consider the two-
mode interaction Hamiltonian

(1)

where  and  are arbitrary bosonic annihilation oper-
ators. We find that for 
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 > 2 there is no FPE for the
Wigner distribution, as the differential equation for the
Wigner function will have derivatives of higher than
second order. For 

 

m

 

 > 2 or 

 

n

 

 > 2, there are no FPEs in
the P or Q representations. The problem is that the FPE
may not contain derivatives of higher than second
order. Pawula’s theorem [18] stipulates that a partial
differential equation for the pseudoprobability distribu-
tion with derivatives of higher than second order has no
mapping onto an SDE. A common method used to
avoid this problem has been to truncate the equations at
second order, especially in the Wigner representation.
While often successful, there are known cases where
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this approach gives erroneous results [19–22] and, per-
haps worse, in cases where even the positive-P equa-
tions must be truncated, we have no systematic way of
knowing how important the truncated terms may be.

The fact that Pawula’s theorem only applies in the
continuous time limit allows us to proceed. As we have
previously demonstrated [13, 14, 23], stochastic differ-
ence equations (S

 

Δ

 

E’s) in discretized time may be
devised for nonlinear Hamiltonians which would map
onto generalized FPEs (that is, a partial differential
equation for a pseudoprobability distribution with
derivatives of higher than second order). These S

 

Δ

 

Es
are found directly from the Hamiltonian, without the
need to derive master and Fokker–Planck equations
[14]. The derivation, using a few simple rules, is also
much simpler than the usual methods for systems
which give a genuine FPE. As numerical simulation is
often the only possible exact treatment for highly non-
linear systems, the development of S

 

Δ

 

Es, even though
they have no continuous time limit, is, for all practical
purposes, sufficient.

3. THE SYSTEM

The system we consider is one with a trapped
atomic condensate held in an electromagnetic cavity
which is resonant at the frequency of the transition
between the atomic and an excited molecular state of
the condensate. Here, we make the approximation that
all three fields can be represented as single modes,
which is reasonable as long as we consider short inter-
action times where the kinetic energy may be ignored.
We also ignore the vibrational and rotational levels of
the molecular state, as the energy spacing between
them is more than the laser linewidth. We also make the
normal zero-temperature approximation of quantum
optics, as condensates exist at temperatures of the order
of nanokelvins.

The interaction Hamiltonian for this system in the
rotating wave approximation is

(2)

where 

 

g

 

 represents the effective coupling strength
between the condensates and the electromagnetic field,

 is the annihilation operator for the atomic (molec-
ular) condensate, and  is the annihilation operator for
the intracavity electromagnetic field. The 

 

χ

 

j

 

 represent
the self-interaction (collision) terms between the atoms
or molecules, 

 

�

 

 represents the classical pumping of the
cavity, and 

 

Γ

 

 is a bath operator for the electromagnetic
field.
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4. GENERALIZED POSITIVE-P EQUATIONS
As the differential equation for the positive-P distri-

bution of this system contains mixed third-order deriv-
atives, it is not amenable to standard phase-space tech-
niques [17]. Following our alternative approach, we
can map the Hamiltonian onto the following set of cou-
pled S

 

Δ

 

Es in a generalized positive-P representation,
(with 
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), and so on for the other
variables):

(3)

where 

 

u

 

 is a free parameter which may be chosen so as
to improve the convergence of the numerics. These
equations imply an equal discretization of the time axis,
with 

 

Δ

 

t

 

 being the step of the time grid. In the above, all
noise sources are real and have the properties
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is the Kronecker symbol. As in the usual positive-P dis-
tribution, there is a correspondence between the c-num-
ber variables [α, α†, β, β†, e, e†] and the operators [ ,

, , , , ], although a variable such as α† is not
complex conjugate to α (except in the mean over a large
number of stochastic trajectories) due to the indepen-
dence of the noise sources.

5. RESULTS

We have solved Eq. (3) numerically for a range of
parameters and found a behavior of the mean fields that
is strikingly different from that found in the usual
mean-field approximation, as well as from that in
regimes where the mean-field approach is valid. In our
simulations, we start with an atomic condensate inside
an optical cavity which begins to be pumped at t = 0.
Initially neither molecules nor an electromagnetic field
are present, with the atomic field being treated as ini-
tially in a coherent state. We present the results here of
numerical investigations of the regime where semiclas-
sical and quantum predictions are different. In this
regime, the quantum dynamics exhibit short-time oscil-
lations and photon blockade.

In Fig. 1, we show the time development of the
atomic and molecular fields as the cavity pumping is
turned on for the parameters g = 10–5, |� |2 = 106, χa, b =
10–9, and |α(0)|2 = 106, which are all scaled in terms of
the cavity loss rate. We have taken the means over 3 ×
105 stochastic trajectories, which was more than suffi-
cient to ensure excellent convergence. We can obtain

â

â† b̂ b̂
†

ê ê†

some insight into the behavior exhibited here when we
examine the dynamics of the intracavity electromag-
netic field, as shown in Fig. 2. We find an initial buildup
of intensity in the cavity, with this field also becoming
oscillatory and eventually almost vanishing completely.
The mean behavior of these three fields is identical to
that found by truncating the positive-P distribution at
second order [9].

For comparison, in Figs. 3 and 4, we show the solu-
tions of Eq. (3) with all the noise terms removed. The
disagreement between quantum and semiclassical solu-
tions is even more striking than that previously found
for pure travelling-wave SHG [24]. One way of
explaining the quantum solutions is to consider that the
interaction detunes the cavity. The linearized equation

for the electromagnetic field contains a term 

which will have some imaginary component due to the
self-interaction terms of the atomic and molecular
fields. However, this term by itself cannot cause the
blockade. What is needed is noise in the atomic and
molecular fields. This noise can then act to cause a dif-
fusion of the phase of the electromagnetic field, making
it difficult for the cavity mode to sustain itself. In this
respect, it is interesting to note that solution of the trun-
cated Wigner equations for this system gives the same
results as the positive-P solutions [25]. This indicates
that the noise required need not be deeply quantum, as
the truncated Wigner is equivalent to the semiclassical
theory of stochastic electrodynamics [26].
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Fig. 1. Occupation numbers of the atomic and molecular
condensates as a function of time according to 3 × 105 quan-
tum trajectories. The parameters are g = 10–5, |� |2 = 106,
χa, b = 10–9, and |α(0)|2 = 106. All quantities plotted in this
and the following graphs are dimensionless. 
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Fig. 2. The intracavity intensity (in units of photon number)
of the electromagnetic field calculated quantum mechani-
cally for the same parameters as in Fig. 1 showing the pho-
ton blockade effect. 
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6. SPONTANEOUS MOLECULAR
DISSOCIATION

One of the approximations made so far in this article
is that we are considering times over which there will
not be significant spontaneous dissociation of the
excited molecules. Hence we have so far ignored this
factor in the dynamics. As it is often stated that any
damping can act to destroy quantum features, it is of
interest to include this process. We will now add a phe-
nomenological Born–Markovian damping term to the
Hamiltonian for the molecular field:

(5)

In the normal manner, this results in loss terms, –γbβ
and –γbβ†, being added to the equations for β and β†.
What we find upon integration of the resulting equa-
tions [10] is that the behavior has changed, with the
atom number undergoing an oscillatory decrease while
the molecule number undergoes an oscillatory increase.
The intracavity light field starts to revive as the atom
number goes down. This is to be expected, as we have
less interacting matter inside the cavity as the mole-
cules are damped. However, to develop this picture any
further would begin to exceed the limits of our single-
mode-type approach. What is interesting is that the
semiclassical predictions are still qualitatively wrong.
The semiclassical light field again rises monotonically
to its steady-state value, so that the differences should
again be easily experimentally detectable.

�spon Γb
†
b̂ Γbb̂

†
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7. SEMICLASSICAL TREATMENTS 
OF THE ELECTROMAGNETIC FIELD

For this system, it is simple and obvious how to treat all
the fields either quantum mechanically or semiclassically.
When we want to treat only the electromagnetic field
semiclassically, there is some ambiguity. Removing the
noise from the appropriate equations and representing the
electromagnetic field by the c-number variable Ω(t), we
find the following set of positive-P equations:

(6)

where ηj are real Gaussian noise terms. There are now
three choices. Although noise in the electromagnetic
field has been explicitly removed, it is still implicit in
the variables α+ and β. Solving the equations as written
above is still not a semiclassical treatment of the elec-
tromagnetic field; it is more like a semiquantum treat-
ment. Note that there is even more ambiguity here, as
we could have retained the equation for e†  Ω*
instead of that for e  Ω). One other option is to aver-
age the matter variables at each time step and use a fac-
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Fig. 3. Occupation numbers of the atomic and molecular
condensates as a function of time calculated semiclassically
for the same parameters as in Fig. 1. 
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Fig. 4. The intracavity light field (in units of photon num-
ber) calculated semiclassically for the same parameters as
in Fig. 1. 



LASER PHYSICS      Vol. 13      No. 4      2003

QUANTUM DYNAMICS 525

torization assumption, so that the last of the equations
becomes

(7)

Both these options give essentially the same results
as the full equations. However, when we treat the elec-
tromagnetic field as if it were building up in an empty
cavity, via the equation

(8)

and leave the noise terms in the atomic and molecular
equations, we find a different result altogether. The
atomic and molecular field behave, as shown in Fig. 5,
in a manner reminiscent of travelling-wave second-har-
monic generation [24]. This is not at all surprising, as
the equations are now mathematically equivalent to
second-harmonic generation equations with an added
χ(3) component and a time-dependent coupling [27].
This demonstrates that it is the back action of the
atomic and molecular fields on the electromagnetic
field that is responsible for the dynamical features of
this process and that at least a semiquantum treatment
of the electromagnetic field is necessary, despite the
large number of quanta present.

8. CONCLUSIONS

We have described and analyzed a situation in
which the mean-field approach does not adequately
describe the dynamics of a Bose–Einstein condensate.
The differences are not of the order of the inverse of the

dΩ
dt
------- � γΩ–

g
2
---α+2

β.+=

dΩ
dt
------- � γΩ,–=

system size but are qualitative. We have seen from
numerical investigations that quantum solutions
become closer to semiclassical solutions as the number
of atoms or the coupling decreases. This is a sign of the
nonlinearity of the quantum dynamics, where noise-
driven correlations are built up between the three fields
in a manner which has no semiclassical mean-field
description, which was demonstrated using different
semiclassical approaches to the modeling of the elec-
tromagnetic field.

We have also shown how the third-order terms in the
equations of motion can be modeled. Although the
third-order noises were found to have no noticeable
effect within the limits of our model, the fact that they
may be successfully modeled may be important for
processes such as the formation of Efimov states in the
process of molecular formation using Feshbach reso-
nances and also for other processes which may be
investigated in the future.
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