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1. INTRODUCTION

One of the remarkable predictions of quantum
mechanics is the Bose–Einstein condensation of indis-
tinguishable particles. At sufficiently low temperatures
the ground state of a system can become macroscopi-
cally occupied, with quantum features being observ-
able at the macroscopic level [1–3]. Dilute alkali gas
Bose–Einstein condensation (BEC) was first observed
in the laboratory in the last decade of the previous mil-
lennium [4] and has since been reproduced by a number
of workers in the field. Theoretical investigations of
BEC, especially where the dynamics are concerned,
have largely used the Gross–Pitaevskii equation (GPE)
[5] and have been remarkably successful. However,
even though it is derived from quantum statistical con-
siderations, the GPE cannot be used to calculate quan-
tum statistical properties of BEC. As an equation of
motion for the condensate mean-field, or even for the
Hartree–Fock many particle wavefunction of the BEC,
it may be expected that it would accurately describe the
dynamical behavior of the condensate mean field. In
this article we review a number of instances where it
cannot even do this successfully.

As with many problems, there is more than one way
to go beyond the mean-field approximation. Even at
zero temperature, where thermal effects are non-exis-
tent, the condensate is influenced by quantum noise,
which in principle can be fully modelled using a func-
tional positive

 

-P

 

 representation or partially modelled
using a truncated functional Wigner representation
[6

 

−

 

9]. The use of the positive

 

-P

 

 representation, how-
ever, while exact, must be performed numerically and
encounters huge stability problems with trapped con-
densates. The truncated Wigner, while stable, is equiv-
alent to the semiclassical theory of stochastic electro-
dynamics [10] and is at best an approximate method.

Another method of going beyond the mean-field
approach is to use the Hartree–Fock–Bogoliubov the-
ory. As an illustration, we can consider the case of the
resonant coupling between atomic and molecular con-
densates [11, 12] using either a Feshbach resonance or
a Raman transition. In this case quantum correlations
are thought to dominate below a critical density [13],
which must be exceeded in order to observe mean-field
“superchemistry” behavior. This is an experimentally
significant point, since below the critical density,
dynamical predictions are made which are at variance
with those of the mean field model. The possibility of a
phase transition [11] induced by quantum fluctuations
is also interesting in this regard.

2. INCLUDING QUANTUM EFFECTS

Quantum correlations and fluctuations have been
treated perturbatively in equilibrium weakly interacting
Bose condensates, since the pioneering work of
Bogoliubov [14], Huang [15], Beliaev [16] and others.
These methods appear in many textbooks [17], and
have been extended via the use of various approxima-
tions schemes that add quantum corrections to the
mean-field equations [18]. In the one-dimensional case,
there are even exact solutions [19] for the interacting
ground-state and excited states. More general treat-
ments of thermal equilibrium quantum effects in
trapped condensates have relied on the use of Monte
Carlo techniques [20].

By comparison, there have been relatively few
attempts to treat quantum dynamics in BEC, and it is
sometimes claimed that no computational approach is
feasible [21], due to the large size of the many-body
Hilbert space. The first published attempt to model
dilute gas trapped BEC while rigorously including the
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quantum features was by Steel 

 

et al.

 

 [6]. This work
developed functional positive

 

-P

 

 and Wigner represen-
tations for a trapped condensate, which were then used
to calculate the first order coherence properties as a
condensate evolved from an initial state. The motiva-
tion for this work was that, while a single mode model
may give an estimate for the phase diffusion time [22]
for example, it could never describe spatial coherence
properties or the role of local density and phase fluctu-
ations. Hence, there was a need for techniques to treat
the quantum dynamics of the condensate using a fully
spatially dependent field rather than a few mode
approach.

Another motivation for treating BEC quantum
mechanically comes by analogy with optical fibres. The
propagation of the optical field in a nonlinear fibre is
governed by what is known as a nonlinear Schrödinger
equation which includes the effects of fibre dispersion
and the Kerr nonlinearity of the medium [23, 24]. The
Heisenberg field operator describing a BEC confined in
a one-dimensional potential well obeys a strikingly
similar equation to that of the fibre soliton system, dif-
fering only by the addition of the trapping potential and
the interpretation of the dispersive term which in a con-
densate represents the kinetic energy. Both number and
quadrature squeezing have been predicted and
observed in soliton propagation in fibres [23–28] and,
given that multi-mode quantum treatments proved
essential for the accurate prediction of quantum soliton
properties, it was reasonable to assume the same would
hold true in Bose condensates. In fact, the nonlinearity
occurring in the condensate problem is typically far
larger than for the soliton case, and thus the role of
quantum noise could be even more important.

A quantum calculation of the evolution of the BEC
field operator is a formidable task as the Hilbert space
for the system is truly vast. A direct route using a num-
ber state basis is not a realistic option, but techniques of
quantum optics may be generalized to provide a com-
plete description of the condensate field operator and
any desired expectation value can, in principle, be cal-
culated. The key to this approach is the representation
of the density operator using phase-space quasi-proba-
bility functions. We will outline the derivation of the
equations resulting from the use of a functional posi-
tive

 

-P

 

 representation below.

 

2.1. One-Dimensional Trapped condensates

 

A one-dimensional system can be considered by
assuming a highly anisotropic harmonic trap with the
longitudinal and radial trap frequencies (

 

ω

 

z

 

 and 

 

ω

 

r

 

respectively) satisfying 

 

λ

 

 = 

 

ω

 

z

 

/

 

ω

 

r

 

 

 

�

 

 1. This corre-
sponds to a cigar-shaped trap such as has commonly
been used in experiments [29, 30]. With strong radial
confinement, it can be assumed the nonlinearity plays a
negligible role in the radial direction. The field operator
is then assumed to factorize with its transverse depen-

dence completely described by a coherent state occupa-
tion of the lowest mode of the trap. The Heisenberg
field operator then has the form

(1)

Adopting harmonic oscillator units in the axial direc-

tion with 

 

a

 

0

 

 = , 

 

τ

 

 = 

 

ω

 

z

 

t

 

, 

 

x

 

 = 

 

z

 

/

 

a

 

0

 

 and (

 

x

 

, 

 

τ

 

) =

(

 

z

 

, 

 

t

 

), the one-dimensional second-quantised
Hamiltonian is (dropping the spatial dependence for
notational convenience)

(2)

where 

 

�

 

 is the linear operator

(3)

 

μ

 

 is the scaled chemical potential, and 

 

Γ

 

 = 2

 

a

 

/(

 

λ

 

a

 

0

 

) is
the scaled nonlinear constant with 

 

a

 

 the 

 

s

 

-wave scatter-
ing length.

A concise derivation of positive-

 

P

 

 [31] field equa-
tions is obtained by introducing the functional 

 

P

 

-distri-
bution [32, 33]

(4)

where 

 

ρ

 

(

 

a

 

)

 

 denotes the density operator 

 

ρ

 

(

 

τ

 

) antinor-

mally ordered with respect to the field-operators , 
in the Schrödinger picture. Putting the master equation
obtained from the Hamiltonian (2) into antinormal
order, and using the following functional analogues of
the operator correspondences [34]

(5)

one finds the functional Fokker–Planck equation,

(6)

The diffusion matrix of this equation is non positive-
definite and so there is no straightforward mapping
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onto a single stochastic differential equation [34].
A positive-P representation [35] must be used, dou-
bling the phase space with the mapping

(7)

where ψ1(x, t) and ψ2(x, t) are independent fields.
Sometimes the notation ψ+(x, t) is used instead of

(x, t), to denote the c-number field that corresponds

to . We now obtain a positive-definite diffusion
matrix and finally derive the pair of Itô stochastic dif-
ferential equations, 

(8)

where the noise sources η1 and η2 are real, Gaussian
and delta-correlated in time and space:

 = δijδ(x – x')δ(τ – τ'). This set of cou-
pled equations can then be numerically integrated on a
spatial lattice and averaged over a large number of tra-
jectories, a procedure which was first carried out for the
optical soliton squeezing problem [36].

The positive-P representation gives exact results for
as long as the ensemble averages converge. However, in
the case of the condensate the trajectories are prone to
large excursions from the mean which quickly cause
the simulation to blow up. Such problems with the pos-
itive-P representation occur especially in systems with
strong nonlinearity and weak (or vanishing) damping
which is precisely the situation of a trapped interacting
Bose condensate. Some alternative stochastic represen-
tations are being developed which promise to enable
the accurate calculation of expectation values without
the numerical instability problems of the usual posi-
tive-P [37–39]. However, as is demonstrated below, the
positive-P has been used successfully to make some
predictions of BEC dynamics beyond the mean-field
model. A second problem with these numerical simula-
tions is the need for an accurate understanding of the
starting quantum-state in a simulation. As we shall see
below, this has been treated to some extent by the
numerical simulation of the cooling process itself.

3. EVAPORATIVE COOLING

The process of evaporative cooling which has been
successfully used to produce BEC inside magneto-
optic traps has no classical description. It is commonly
described using kinetic methods, which discard the
coherence properties found in the final state [40],

ψ x t,( ) ψ1 x t,( ),

ψ* x t,( ) ψ2* x t,( ),

ψ2*

ψ̂†

i∂τψ1 x τ,( ) �ψ1 x τ,( ) Γψ2* x τ,( )ψ1
2

x τ,( )+=

+ iΓψ1 x τ,( )η1 x τ,( ),

i∂τψ2 x τ,( ) �ψ2 x τ,( ) Γψ1* x τ,( )ψ2
2

x τ,( )+=

+ iΓψ2 x τ,( )η2 x τ,( ),

ηi x τ,( )η j x' τ',( )

although other phase-space methods have been pro-
posed [41, 42]. The GPE approach starts with the con-
densate already made and can say nothing about the
quantum state. Exact numerical phase-space methods
have therefore been used for direct quantum dynamical
calculations of the cooling and formation of BEC on a
three-dimensional lattice [7]. The results were
restricted to small condensates due to the large numbers
of modes involved, but were very similar to what is
observed experimentally. In particular, quantum evapo-
rative cooling was found, followed by a clear transition
to a condensate. This was strongly influenced by non-
classical features of the quantum dynamics. The calcu-
lations also indicated additional structure, which was
interpreted as spontaneous formation of vortices—
a process of wide interest in other fields of physics [43].
These appeared to originate in the residual orbital
angular momentum of the trapped atoms, which was
neglected in previous studies, and would provide a sig-
nificant test of the quantum theory.

In the calculations, 3 × 104 relevant modes were
included, with up to 104 atoms present. The quantum
state-vector therefore had over 1010000 components and
was not amenable to quantum number state calcula-
tions in the time-domain. A more practical technique
was to utilize the phase-space methods, namely the
coherent-state (positive-P) phase-space equations
which are exactly equivalent to the relevant quantum
equations provided phase-space boundary terms [44]
vanish.

The model used included the usual non-relativistic
Hamiltonian for neutral atoms in a trapping potential
V(x), interacting via a potential U(x), together with

absorbing reservoirs (x), in d = 2 or d = 3 dimensions,

(9)

Here (x) represents a localized absorber that removes
the neutral atoms, for example via collisions with for-
eign atoms, or at the location of the “RF-scalpel” reso-
nance, which is used to cause evaporative cooling.

 was expanded using free-field modes with a momen-

tum cut-off kmax. Provided that kmax � , where a0 is
the S-wave scattering length, U(x – y) can be replaced
by the renormalized pseudo-potential uδd(x – y), where
u = 4πa0�

2/m in three dimensions. In two dimensions,
u is defined similarly but with a factor ξ0 in the denom-
inator, which corresponds to the effective spatial extent
of the condensate in the third direction. This factor is of
the order of the lattice spacing in the simulations, and is
chosen to be equal to x0, the scaling length.
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Following similar procedures to those of Section 2,
the positive-P equations are found as

(10)

where j = 1, 2 and where the stochastic fields ψj are the
coherent state amplitudes of a non-diagonal coherent
state projector, |ψ1〉〈ψ2 |/〈ψ2 |ψ1〉. Quantum effects come
from the terms ξ j , which are real Gaussian stochastic
fields, with the correlations:

(11)

The form of the potentials was chosen to be

(12)

where α is typically the inverse of the total simulation
time. The potential height was swept downwards lin-
early in time, thus successively removing cooler and
cooler subpopulations of atoms. The absorption rate
Γ(x) was chosen as

(13)

Here Lj is the trap width in the j-th direction, such that
–Lj/2 ≤ xj ≤ Lj/2. The sinusoidal shape of the potential
and absorption was chosen so that the trap would be
harmonic near the center, and smoothly approach a
maximum near the edge. Thus hot atoms were absorbed
when they reached regions of large Γ(x), located near
the trap edges.

The results of the simulations depended critically on
the exact parameters chosen, as expected from the
known sensitivity of the experiments. It was necessary
to consider rather small traps because the numerical lat-
tice spacing used to sample the stochastic fields in
x-space must be of order Δx = 1/kmax, where kmax is the
largest ordinary momentum considered in the problem.
However, the value of the corresponding kinetic energy,
EK = (�kmax)2/2m, must be large enough to allow ener-
getic atoms to escape, otherwise no cooling can take
place. This set an upper-bound on the lattice spacing,
and hence on the maximum trap size that could be com-
puted (which depended on the number of lattice
points). The trap sizes that could be treated had dimen-
sions of the order of microns. The trap simulated had a
width of Lj = 10 μm, with a potential height of
Vmax/kB = 1.9 × 10–7 K, and an initial temperature of
T0 = 2.4 × 10–7 K.

The initial atomic density must of course be such
that the occupation of each momentum state cannot be

i�
∂ψ j

∂t
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–
2m
--------∇2

uψ jψ3 j–* V x( )+ +=
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i�
2
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d

∑=

Γ x( ) Γmax πx j/L j( )sin[ ]50
.

j 1=

d

∑=

greater than one, otherwise the starting point would
already show condensation. This placed a limit on the
number of atoms which could be simulated, assuming
an initially non-condensed grand canonical ensemble
of (approximately) non-interacting atoms. There were
initially around 500 atoms in the two dimensional sim-
ulations, and 10000 in the three dimensional case, cor-
responding to atomic densities of n0 = 5.0 × 1012/m2 and
n0 = 1.0 × 1019/m3 respectively.

It was found that the effect of the stochastic terms on
the dynamics was very large. In fact the quantum fluc-
tuations were much larger than the initial thermal fluc-
tuations, such that the initial features of the distribution
do not persist. This meant that the choice of the initial
state of the system is not critical, and also that in order
to determine properties of the final quantum ground
state of the system, the stochastic terms are vital. Sim-
ulations done using the Gross–Pitaevskii equation, with
initial conditions corresponding to a thermal state did
not show strong Bose condensation effects. This dem-
onstrated the highly non-classical nature of the early
stages of Bose condensation, in which spontaneous
transitions to the lowest energy states clearly play an
important role.

For the simulations, a0 = 0.6 nm and the mass, cor-
responding to rubidium, is m = 1.5 × 10–25 kg, corre-
sponding to relatively weakly interacting atoms, in
order to reduce the sampling error. The figures show
results plotted in normalized units, with space scaled by
x0 = 0.76 μm, and time scaled by t0 = 0.79 ms. The
boundary absorption term was set to Γmax � 103 s–1. Fig-
ure 1 shows the ensemble average of 55 trajectories of
the atomic density, 〈n(k)〉, in Fourier space for a two-
dimensional simulation. It was found that the peak final
momentum state population was much greater than
one, the condensation effect being more pronounced in
three dimensions. This demonstrated that the evapora-
tive cooling process is more efficient with the extra
degree of freedom and the greater number of atoms that
were present.

Since the condensate does not have to form in the
ground-state, the Bose-condensed peaks that occur at
different momentum values in single runs were aver-
aged out in the overall ensemble. A more useful indica-
tion of condensation is given by the following measure
of phase-space confinement,

(14)

being the quantum analogue of the participation ratio
defined by Hall [45]. Figure 2 shows the evolution of Q
calculated from 15 runs of the three dimensional simu-
lation. The sharp rise near t = 100 is a strong indication
of condensation occurring at this point.

Q
d
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Finite-size condensates in atom traps are not con-
strained to fall into the J = 0 angular momentum eigen-
state. Both the initial and the escaping atoms have an
arbitrary angular momentum. It can be estimated that
the variance in angular momentum will scale approxi-

mately as  ∝ N, from central limit theorem argu-
ments. The angular momentum can be carried either by
quasi-particles or vortices, although a volume-filling jth
order vortex has J = Nj, and therefore cannot form
spontaneously in the thermodynamic limit of large N.
For small condensates, a j = ±1 vortex may be quite
likely. Several authors [46–49] had considered how
such vortex states may form through stirring or rotating
a condensate, but in this work it was found that there is
a possibility of vortices forming spontaneously through
the process of evaporative cooling. The presence of
vortex states can be detected quantitatively by trans-
forming the spatial lattice into a lattice which used the
angular momentum eigenstates as a basis set. The two-
dimensional results presented in Fig. 3 were obtained
by integrating the spatial profile over orthogonal modes

with corresponding field operators . The angular

Ĵ
2〈 〉

Ψ̂ jn

momentum distribution is then given by a summation
over the radial modes,

(15)

The angular momentum distribution for individual
trajectories showed large occupation in particular dif-
ferent angular modes, indicating that vortices with dif-
ferent momenta appeared on each trajectory. For exam-
ple, on one run a vortex with j = –1 appeared at about
one quarter of the way through the simulation, and per-
sisted until the end. The maximum occupation of the
vortex was around n( j ) = 20, owing to relatively small
initial atom numbers in this 2D trap simulation. Shown
in Fig. 3 is the ensemble average of the angular momen-
tum distribution, which reveals quite a broad range of
final angular momentum, consistent with the existence
of vortices. However, it was found that the simulations
could not be carried out after damping had stopped,
owing to large sampling errors.

n j( ) Ψ̂ jnΨ̂ jn*〈 〉 .
n

∑=

0
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2
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0
0
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Time, t

〈n(k1)〉

Fig. 1. Simulation of a two-dimensional Bose condensate, showing the ensemble average (55 paths) atom density 〈n(k)〉 along one
dimension in Fourier space versus time.
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4. QUANTUM SUPERCHEMISTRY

What has become known as superchemistry are pro-
cesses in BEC which are analogous to the parametric
nonlinear processes, such as the second and sub-har-
monic generation that are well known in quantum
optics. These processes between interacting bosons do
not obey the usual Arrhenius rules for reaction rates
because of Bose enhancement effects [12]. The pro-
cesses which have been analyzed so far using mean-
field models include molecular photoassociation from
atomic BEC [50–53] and the potentially more robust
method of molecular photoassociation via Raman-
stimulated adiabatic passage [54, 55]. The process of
molecular photodissociation [9] is a noise driven pro-
cess and has no possible description in the mean-field
approach as long as we begin with no atoms present. As
demonstrated below, even the mean-field dynamics in
photoassociation cannot always be described accu-
rately by GPE equations.

4.1. Photoassociation

Photoassociation of an atomic condensate to form a
molecular condensate has been investigated using a
simplified mean-field model [51], while coherent
molecular soliton formation has also been predicted in
a similar system [11]. The mean-field dynamical
behavior of atomic and molecular condensates coupled
by a Raman transition has been investigated in three-
dimensions, showing giant collective oscillations
between the atoms and molecules [12]. This process
not only produces a new species of BEC, but does it
through a non-linear coupling which allows the possi-
bility of quantum statistical effects becoming evident in
the dynamics. Using the functional positive-P represen-
tation to calculate the full quantum dynamics of the

atomic and molecular fields, it has been shown [8] that
in certain parameter regimes the Gross–Pitaevskii
equation (GPE) can give incorrect results, even for the
atomic and molecular populations. This is not totally
unexpected, as one of the simplest systems in quantum
optics in which easily observable experimental features
depend on the quantum statistics is second harmonic
generation, where pairs of photons are coupled to sin-
gle high-energy photons [56]. This system is mathe-
matically analogous to molecular photoassociation and
is also not accurately described by mean-field equa-
tions.

The process of two-colour Raman photoassociation
is described by considering a single electronic level for
the atomic field and a two-component field for the mol-
ecules. The three modes are in a Λ configuration as
shown in Fig. 4, with state |1〉 being the atomic BEC,
state |2〉 the excited state of the molecular condensate
(MBEC) and state |3〉 the stable MBEC. The excited
molecular field is actually composed of multiple vibra-
tional levels, but these excited states are not populated
by the Raman transition, so they are treated as a single
level which is then adiabatically eliminated. Two sepa-
rate lasers induce a free-bound coupling between |1〉
and |2〉 and a bound–bound coupling between |2〉 and
|3〉. In a rotating frame, the Hamiltonian may be writ-
ten as

(16)

where (x) is the field annihilation operator for the

atomic or molecular field in state | j〉,  and  are the
kinetic and potential energy operators for the ith field,
Ukk is the strength of the interatomic interactions
between particles in state |k〉, κ(x) is the Rabi frequency
of the free–bound photoassociation and Ω(x) is the
Rabi frequency of the bound–bound transition. The
interactions between the species are not included, as the
strengths are not known. In this notation, the detunings
of the lasers from the bare atomic and molecular energy
levels are included in the potential energy terms V2
and V3.

The Fokker–Planck equation resulting from the
above Hamiltonian may be written as

(17)

where the elements μ and ν correspond to the six com-
ponents of the fields in the positive-P representation:
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Fig. 2. Simulation of a three-dimensional Bose condensate,
showing the ensemble average evolution (15 paths) of the
confinement parameter Q.
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the diffusion matrix, and ∂(ν ↔ {n, γ}) ≡ . The drift

vector is given by

(18)

where �j = – i/�(  + ), Γjj = Ujj /� and the damping
rate of the excited molecular field is γ. The diffusion

∂
∂ψn

γ---------

A

=  

�1ψ1
α

iΓ11ψ1
βψ1

α2
– κψ1

βψ2
α

+

�1ψ1
β

– iΓ11ψ1
β2ψ1

α κ*ψ1
αψ2

β
+ +

�2ψ2
α

iΓ22ψ2
βψ2

α2
–

κ*
2

------ψ1
α2

– Ωψ3
α γ

2
---ψ2

α
–+

�2– ψ2
β

iΓ22ψ2
β2ψ2

α κ
2
---ψ1

β2
– Ω*ψ3

β γ
2
---ψ2

β
–+ +

�3ψ3
α

iΓ33ψ3
βψ3

α2
– Ω*ψ2

α
–

�3ψ3
α

iΓ33ψ3
β2ψ3

α Ωψ2
β

–+–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,

T̂ j V̂ j

matrix D is diagonal, with diagonal elements from the
vector Bsqr :

(19)

This Fokker–Planck equation leads to the following set
of Itô stochastic field equations,

(20)

where ην are a set of real δ-correlated Gaussian noise
sources. These equations reduce to the GPE for this
system if the noise terms are dropped.

As the single photon detuning δ must be made very
large, the upper level can be adiabatically eliminated.
Making the adiabatic approximation even stronger, that
is assuming that the single-photon detuning δ is larger

than the noise terms , the excited state loss
rate γ and the trapping potential (V2 = �δ), then the
resulting equations of motion in scaled units are
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Fig. 3. Ensemble average of the angular momentum distribution 〈n( j)〉, during the condensation of a two-dimensional Bose con-
densate (40 paths).
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(21)
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where χ = κΩ/δ, τ is the scaled time τ = χt,  = �j/χ,

 = Γjj/χ and Γeff =  – κ/2Ω*. Only four noise
sources are required in this approximation.

An interesting and important aspect of this system is
that there is now a nonlinear light shift of the BEC,
which is proportional to κ/Ω and a linear light shift of
the MBEC which is proportional to Ω/κ. By carefully
selecting the ratio of the two laser intensities, the non-
linear light shift can actually cancel the repulsive inter-
actions between the atoms. A suitable choice of the
two-photon detuning Δ can then be used to make the
coupling between the two stable species resonant.

The discrepancy between the semiclassically pre-
dicted dynamics and the quantum predictions in the
analogous system of travelling-wave second harmonic
generation with added χ(3) interaction is most pro-
nounced when there is nearly complete conversion to
the second harmonic, which occurs when the third
order nonlinearities are very small [57]. In the same
parameter regime for conversion of a BEC to an
MBEC, the sizes of both the linear and the self energy
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Fig. 4. Energy level scheme for coherent free-bound-bound
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ground MBEC respectively.

Fig. 5. Atomic and molecular populations for χ = 2900 Hz m1/2, with Γ33 = Γ11. The solid line is the result of the positive-P calcu-
lation and the dashed line is the solution of the GPE. The error bars on the positive-P solution are due to the sampling error.
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terms are effectively reduced. Since the atomic interac-
tions can be balanced by light shifts, the remaining crit-
ical parameter is the intermolecular interactions.
Unfortunately, there is still much uncertainty about the
molecule-molecule scattering length. The results are
therefore based on the assumption that the molecular
scattering rate is the same as the atomic scattering rate.
If it were weaker, then the difference between the pos-
itive-P and GPE results would be even greater.

It is experimentally difficult to produce large Rabi
frequencies for the atom-molecule interaction due to
the low Franck–Condon factors, but this does not
appear to be a limitation of this system provided large
Rabi frequencies can be achieved for the molecule-mol-
ecule transition. Figure 5 shows the evolution of the
atomic and molecular populations for κ = 0.29 MHz m1/2,
Ω = 10 GHz and δ = 100Ω . The mass and scattering
length of 87Rb were used for this calculation. Both con-
densates are in a quasi-1D harmonic trap of frequency
ω/2π = 6.8 Hz in the axial direction, and ω/2π = 200 Hz
in the tightly confining transverse directions. This leads
to an effective interatomic repulsion of Γ11 = 0.042 in
the one dimensional limit [6]. The stochastic integra-
tion was performed with the XMDS package [58].
Although the GPE solution exhibits a revival in atomic
population, it can clearly be seen that it is inadequate
for predictions over this timescale. In this process, the
signature of the breakdown of the GPE approach occurs
in the simplest experimental observable: the total
atomic and molecular populations.

4.2. STIRAP

The more robust method of stimulated Raman adia-
batic passage (STIRAP) has also been studied in a
mean-field approximation [54, 55] and the quantum
statistical properties of single mode STIRAP with clas-
sical electromagnetic fields and the mean-field multi-
mode behavior in one dimension has also been studied
[55]. The process of STIRAP requires a pair of overlap-
ping laser pulses, one of which couples the BEC from
the atomic state to an excited molecular state, while the
other couples the excited molecular field to a stable
molecular state. These pulses are applied in the coun-
terintuitive sequence, where the atomic field is first
exposed to the laser which couples the two molecular
states. Rather than attempting to combine the atoms
within the BEC to produce molecules, this laser is
defining the initial state of the BEC as a dark state,
which does not interact with the laser. As the second
pulse is turned on, the dark state becomes a linear com-
bination of the two stable states. When the first pulse is
finished, the stable MBEC is in the equivalent dark
state, as it is not affected by the laser which couples the
atomic state to the excited molecular state. If the pulses
are made sufficiently long then the system adiabatically
evolves from the stable atomic BEC to the stable
molecular MBEC without producing a significant pop-
ulation in the excited MBEC.

STIRAP relies on the formation of the dark states
and the ability to smoothly transfer from one to the
other. Although the coupling of the atomic to molecular
transition is quite weak [59], there is Bose enhance-
ment of that transition rate, so its effective Rabi fre-
quency can be made comparable to that of the excited-
ground molecular transition, and Mackie et al. showed
that this means that STIRAP may be a feasible method
for producing an MBEC [54], although the model used
ignored both the spatial structure of the condensates
and the effect of the interatomic interactions. The
resulting model therefore had formal similarities to
travelling wave second harmonic generation [56], with
the addition of an extra level. The atomic interactions
introduce a term analogous to a χ(3) nonlinearity, which
has been known to affect the quantum statistics and
dynamics in second harmonic generation [57, 60–62],
therefore it was of interest to develop a more complete
model.

The simplest possible model for a BEC or MBEC is
to describe it as a single bosonic mode, so the STIRAP
process can be described with three coupled modes
[54]. This approach can give qualitative predictions as
long as the times of interest are short enough. The next
step up in sophistication is to include quantum noise.
The three modes are in a Λ configuration as shown in
Fig. 6, with state |1〉 being the atomic BEC, state |2〉 the
excited state of the MBEC and state |3〉 the stable
MBEC. In a rotating frame, the interaction Hamiltonian
may be written as

(22)

where interactions between the modes are ignored. In

the above, , , and  are the annihilation operators
for |1〉, |2〉, and |3〉 respectively. The couplings for the
|1〉  |2〉 and |2〉  |3〉 transitions have effective
strengths κ and Ω , which are time dependent.

Because the Heisenberg equations of motion for this
system have no known analytic solution, the usual
methods are used to derive c-number equations in the
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†
–[ ] iΩ b̂

†
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Fig. 6. Energy level scheme for coherent free-bound-bound
photoassociation. Levels |1〉, |2〉, and |3〉 are the electronic
states for the atomic BEC, the excited MBEC and the
ground MBEC respectively.
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positive-P representation of quantum optics [63, 34],
where the simplifications have been made that χa = χb =
χc = χ and δ = 0,

(23)

where the real noise terms have the properties  =

0 and  = δijδ(t – t '). This model ignores the
spatial structure of a real condensate, although it can be
considered an approximation to a one dimensional con-
densate in the limit where the kinetic energy term in the
Hamiltonian can be ignored. In the STIRAP case this
turns out to be a reasonable approximation as long as
the applied fields are of short duration [55].

To solve Eq. (23), numerical stochastic integration
was used, with the initial conditions that α(0) = α†(0) =
100, the values for the other two fields being zero, with
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the fields either in coherent states or vacuum. The
applied fields, κ and Ω , were time dependent Gaussian
pulses:

(24)

where Ωp and κp are the peak Rabi frequencies and a
dimensionless time, τ = Ωpt, is used. The results shown
in Fig. 7 were produced with the parameters κp/Ωp =
0.005, T1 = 533, T2 = 1025, and σ = 133, for which the
stochastic integration was stable and there was a good
conversion to the MBEC.

The quantities of interest are the numbers in each of
the three states and the quantum statistics of the final
state. As shown in Fig. 7, the mean number occupation
of each mode does not change significantly with the
addition of the self interaction terms. In fact, for a value
χ = 10–4 it was found that the maximum occupation of
the intermediate dark state actually decreased, from 9
with χ = 0 to less than one. On the scale of the figure,
there is no visible difference in the dynamics whether
or not χ(3) is included.

The primary interest in solving the zero dimensional
model was to determine the quantum statistics of the
resultant field. To this end the quadrature variances for
Xc = c + c† and Yc = –i(c – c†) were calculated, as well
as the normalized intensity variance. Without the self-
interactions, it was found that the resultant field is a lit-
tle less than 50% squeezed in the Xc quadrature, as
shown in Fig. 8. The field is still close to being in a min-
imum uncertainty state and has a normalized intensity
variance indistinguishable from the variance in Xc . This
is typical of resonant χ(2) interactions where the mean
fields remain real, as the Wigner function ellipse is
squeezed but neither rotated nor moved off the X-axis.
The 50% amplitude squeezing in the MBEC is a direct
consequence of the fact that the process is completely
converting a coherent BEC to diatomic molecules,
which in the number basis simply compresses the scale
of the number distribution by a factor of two.

When a non-zero χ(3) component is added there is a
significant difference in the quantum state of the output
mode, although the dynamics are essentially
unchanged. As seen in Fig. 9, while the normalized
intensity variance is almost unchanged, there is now no
squeezing in either quadrature. This is a signature of
χ(3) systems and indicates that there is a rotation and
deformation of the Wigner ellipse of the initial coherent
state. This effect has previously been calculated for
BEC [64], showing that the contours of the Wigner
function take on a banana-like shape, which can indeed
give sub-Poissonian statistics at the same time as
excess quadrature noise.
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This work, and a one-dimensional semi-classical
analysis by the same authors [55] demonstrated that the
transfer of atoms to molecules via STIRAP was robust
with respect to detunings, χ(3) nonlinearities and small
asymmetries between the peak strengths of the two
Raman lasers—as long as the Raman laser Rabi fre-
quencies were large enough. A complete population
transfer by two short, powerful, overlapping laser
pulses is possible, as long as the pulses are short on the
timescale with which the kinetic energy acts. For this
system, the mean-field GPE approach describes the
essentials of the dynamics, but a single-mode approach
which neglects the spatial structure of the problem can
be misleading. Although quantum noise would not
seem to affect the dynamics, the output MBEC is likely
to exhibit some interesting quantum statistical features,
including noise suppression effects due to the atomic
combination.

5. INTRACAVITY CONDENSATE OPTICS

Another process for which a quantum description is
required is that which we may call intracavity conden-
sate optics; specifically the process of resonant photo-
association of an atomic condensate held inside an opti-
cal cavity. In the case of an intracavity electromagnetic
field resonantly coupling atomic and molecular Bose–
Einstein condensates (BEC), it has been shown that a
photon blockade effect can be caused and that the
dynamics of the three fields are not even qualitatively
similar to those of mean-field predictions [65]. The
effects described are not present for a travelling wave
electromagnetic field interacting with the condensate,
but occur because of correlations that build up between
the matter fields and the confined electromagnetic field.

Although there are parametric processes in nonlinear
optics where the noise properties are also important in
the dynamics, the system described here exhibits a
richer range of behaviors because the quantization of
the electromagnetic field means that we effectively
have a quantized χ(2) nonlinearity, which is not possible
with optical parametric systems.

Methods have been developed to study the interac-
tion of quantized matter and electromagnetic fields
[66–68], although these have only been applied after
making various approximations, including lineariza-
tion of the resulting equations of motion. As the system
of photoassociation considered here has formal similar-
ities to SHG and behavior has been predicted there that
is not calculable in a mean-field, or linearized, approx-
imation [56], it is better to use the phase space methods
of quantum optics.

The system considered is as shown schematically in
Fig. 10. A trapped atomic condensate is held in an elec-
tromagnetic cavity. The empty cavity is resonant at the
frequency of the transition between atomic and molec-
ular states of the condensate. The approximation is
made that all three fields can be represented as single
modes, which is reasonable as long as we are consider-
ing short interaction times where the kinetic energy
may be ignored [55]. Spontaneous dissociation of the
molecules is also ignored, again because the interesting
physics happens on a short timescale. The vibrational
and rotational levels of the molecular state can also be
ignored, as long as the energy spacing between these is
more than the laser linewidth.
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Fig. 9. The quadrature and number variances of the final
state with the χ(3) interaction included. The final state is sub-
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The interaction Hamiltonian for this system in the
rotating wave approximation is

(25)

where g represents the effective coupling strength
between the condensates and the electromagnetic field,

( ) is the annihilation operator for the atomic
(molecular) condensate and  is the annihilation oper-
ator for the intracavity electromagnetic field. The χj

represent the self-interaction terms between the atoms
or molecules, � represents the classical pumping of the
cavity and Γ is a bath operator for the electromagnetic
field.

Following the standard methods [34], a partial dif-
ferential equation for the P distribution of this system
can be derived, which does, however, contain third-
order derivatives. An approximation which is com-
monly made, especially in the Wigner representation, is
to truncate the equation at second order. This has been
shown to be accurate for the dynamics and quadrature
variances of second harmonic generation [56] and for
calculating first order correlation functions in trapped
BEC [6], although it is not accurate for the calculation
of higher order correlations in travelling wave SHG
[69, 70]. This truncation can be justified by claiming
that the coefficients of the third order terms are smaller
than the other coefficients in the equation, which is cer-
tainly the case in this example. After truncation, the fol-
lowing set of Itô stochastic differential equations in the
positive-P representation are found
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where the real noise sources have the properties

(27)

We note here that it is possible to write the noise terms
in many different ways, amounting to different factor-
izations of the diffusion matrix.

We have solved Eq. (26) numerically for a range of
parameters, finding behavior of the mean fields that is
strikingly different from that found in the usual mean-
field approximation. This is completely different from
many situations in quantum optics or in the study of
condensates, where the dynamics of the mean fields can
be successfully described by considering only the drift
terms in the appropriate Fokker–Planck equation.

The simulations were begun with an atomic conden-
sate inside a cavity which begins to be pumped at t = 0.
Initially neither molecules nor electromagnetic field are
present, with the atomic field being treated as being ini-
tially in a coherent state. It was found that this system
exhibits at least three regimes of behavior, only one of
which is described in detail here. The behavior shown
in the plots comes from what may be considered the
strong-interaction regime and always exhibits short-
time oscillations and photon blockade [71, 72]. In the
weak-interaction regime, which may be reached by
decreasing the strength of g or the number of atoms, the
solutions approach those found by treating all fields
semiclassically. In this case the solutions for atom and
molecule number are similar to those found in
superchemistry [12]. There are almost total oscillations
between the two states and the photon blockade is not
seen. There is also a regime between these two in which
there are no oscillations, but partial conversion between
atoms and molecules, with the photon blockade effect
being seen as the conversion stops.

Figure 11 is shown the time development of the
atomic and molecular fields as the cavity is turned on,
for the parameters g = 10–5, |� |2 = 106, χa, b = 10–9, and
|α(0)|2 = 106, which are all scaled in terms of the cavity
loss rate. The means were taken over 5 × 105 stochastic
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trajectories, which was sufficient to ensure excellent
convergence. What is seen is that the atoms begin to
associate to form molecules, but that only a small frac-
tion are converted before the system undergoes tran-
sient oscillations between its atomic and molecular
components. After a few cavity lifetimes, both compo-
nents reach a steady-state, with over 90% of the popu-
lation still being in the atomic state. Of course this
steady state only exists in the absence of spontaneous
dissociation of the condensed molecules into non-con-
densed modes.

It is instructive to consider the linearized solutions
for the mean-fields, i.e., the solutions of Eq. (26) with
the noise terms removed, treating all three fields semi-
classically. Because of the dependence of the noise
terms on all three fields, it is not sensible here to treat,
for example, the matter fields quantum mechanically
and the electromagnetic field semiclassically.

However, when these solutions are examined, it can
be seen from Fig. 12 that after approximately the first
third of a cavity lifetime, they do not even approximate
the quantum solutions. This disagreement is even more
striking than that previously found for pure travelling-
wave SHG [56] and can be qualitatively explained as
the result of correlations that build up between the three
fields. Some insight into the reason for this unexpected
behavior can be gained when the dynamics of the intra-
cavity electromagnetic field are examined, as shown in
Fig. 13. An initial build up of intensity is seen in the
cavity, with this field also becoming oscillatory and
eventually almost vanishing completely. As the cavity
continues to be pumped at the same rate, what is seen is
that it has become opaque. That is, a photon blockade

effect is operating, due to correlations which build up
between the electromagnetic and matter fields [71, 72].
This effect has been seen previously in systems which
develop an effective giant χ(3) nonlinearity. In the lin-
earized approach, the electromagnetic field rises mono-
tonically to a steady state value very close to |� |2/γ, as
shown in Fig. 13, in stark contrast to the effectively
empty cavity of the quantum solutions. What can be
seen here is that even going one step past the usual
approach, which has treated the field–matter coupling
as constant, and linearizing the quantum equations,
which maintains to some degree the dynamics of the
effective interaction, is not enough to give the correct
solutions.

5.1. Truncated Wigner Approach

A semiclassical approach that is often used in quan-
tum optics is the theory of stochastic electrodynamics
[10], usually in the guise of linearized operator equa-
tions or a truncated Wigner representation. This has
also been applied to BEC [6], giving results consistent
with the positive-P in that work. This theory is semi-
classical in the sense that it locally real and seeks to
explain phenomena using classical evolution under the
influence of vacuum fluctuations. By definition, it can-
not describe processes requiring a negative Wigner
function. However, use of the truncated Wigner sto-
chastic differential equations for BEC has significant
advantages over the positive-P in terms of the numeri-
cal stability of the integration. In a real sense it also
allows a distinction to be made between processes and
effects that are truly quantum and those which have a
possible semiclassical description.

It is interesting to compare the truncated Wigner
predictions for intracavity photoassociation with those
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Fig. 12. Linearized solutions for the occupation numbers of
the atomic and molecular condensates as a function of time.
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of the positive-P, which itself needed truncation for this
system. From the Hamiltonian of Eq. (25) we may use
operator correspondences to find a partial differential
equation for the Wigner distribution [34], which may
then be truncated and mapped onto the following cou-
pled stochastic partial differential equations for α, β,
and e

(28)

where the ξ j are independent real Gaussian noise
sources of unit strength.

This set of equations can also be integrated numeri-
cally, with the same initial conditions and parameters as
in Section 5, with the proviso that the initial conditions
are represented by their Wigner distributions. What we
find is that the results for the mean fields are indistin-
guishable from those obtained using a truncated posi-
tive-P. This gives an indication that the difference
between the quantum solutions and the semi-classical
solutions is not due to any deeply quantum properties
of the system, but can be explained by the semiclassi-
cal/semi-quantum number fluctuations of the zero point
fields. By definition, the fact that these same solutions
occur in the truncated Wigner gives an indication that
the Wigner function for this system remains positive,
which can be taken as a definition of semi-classical
behavior. It is still an open question what effects may

dα
dt
------- 2iχa α 2α– ge*α*β,+=

dβ
dt
------ 2iχb β 2β–

g
2
---α2

e,–=

de
dt
------ � γe–

g
2
---α*2β γ

2
--- ξ1 t( ) iξ2 t( )+[ ],+ +=

result from the third-order terms which were dropped
to give the positive-P equations, although other results
show that these have no observable effect on the mean
fields [73]. There remains the possibility that the differ-
ent representations will predict different values for
some correlation functions, as in travelling wave sec-
ond harmonic generation [70], although this is beyond
the scope of this article.

6. ANALYTICAL ASYMPTOTIC SOLUTIONS

Mean field behavior of a trapped BEC which is not
calculable via the standard GPE can also be found
using asymptotic self-similar solutions to the GPE
[74, 75] and thus obtaining a semiclassical Hamiltonian
which lends itself to quantization [76]. This method
extends previous results found for the case of pulse
amplification in a single-mode optical fiber [77]. The
process begins with the Gross–Pitaevskii gain equation
[75, 78] normalized to the number, Nc , of condensed
atoms

(29)

where all terms have their usual meanings and the gain
function is determined by the logarithmic derivative

(30)

Equation (29) has asymptotic and self-similar solu-
tions [75] for large positive values of the dimensionless
parameter

(31)

where lm is the minimum length along one of the three
axes and nc is the average density. By writing the wave-
function with a real amplitude and phase,

(32)

the solution for the amplitude can be found as

(33)

where ak are the ellipsoidal parameters of the BEC and

(34)

where this is real and positive, and zero otherwise. The
phase variable is defined by the functions φ0(t) and ck(t)
by the relation

(35)
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Fig. 13. The intracavity intensity of the electromagnetic
field as calculated quantum mechanically, showing the pho-
ton blockade. The semiclassical solution is shown in the
insert and rises to a value of almost 106. 
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where

(36)

so that

(37)

The ellipsoidal parameters are solutions of the equa-
tions

(38)

with initial conditions ak(0) and

(39)

which shows that there is an oscillation in the elliptical
parameters. An important property of these equations is
that they show how the gain process allows oscillatory
center-of-mass motion to survive undamped, while
condensate continues to grow. This behavior is also
observed in the first-principles evaporative cooling sim-
ulations [7] and may well be of great importance for
continuous-wave atom lasers.

7. CONCLUSION

We have analyzed a number of cases where BEC
dynamics are not accurately predicted by solution of
the Gross–Pitaevskii equation. One of these, evapora-
tive cooling, does not even have a possible description
via mean-field equations, as it begins with an ensemble
of non-condensed atoms. For the other situations, while
the GPE approach gives predictions, for many parame-
ter regimes these are qualitatively wrong. In the
superchemistry processes, this error shows up in the
simplest possible observables; that is, in the atomic and
molecular populations. In cavity photoassociation the
signature of these quantum effects is also easily seen in
the intensity of the intracavity electromagnetic field.
What this work shows is that a trapped BEC is indeed a
quantum creature and that much care must be taken
with dynamical calculations, even when we do not wish
to find information about the quantum statistics.

ACKNOWLEDGMENTS

This research was supported by the Marsden Fund
of the Royal Society of New Zealand, the Australian
Research Council and the IREX Project of the Austra-
lian Research Council. Murray Olsen wishes to thank
the Physics Department of the University of Queen-
sland for generous hospitality.

ck t( ) m
2�
------ d

dt
----- ak t( ),log=

φ0 t( ) φ0 0( )
15�as

2m
--------------

Nc t '( ) t 'd
a1 t '( )a2 t '( )a3 t '( )
-----------------------------------------.

0

t

∫–=

d
2

dt
2

-------ak ωk
2
ak+

15as�
2

m
2

----------------
⎝ ⎠
⎜ ⎟
⎛ ⎞ Nc t( )

a1a2a3ak

---------------------,=

dak

dt
--------

t 0=

2�
m
------ck 0( )ak 0( ),=

REFERENCES
1. Bose, S.N., 1924, Z. Phys., 26, 178.
2. Einstein, A., 1924, Sitzungsber. K. Preuss. Akad. Wiss.,

261.
3. Einstein, A., 1925, Sitzungsber. K. Preuss. Akad. Wiss.,

3.
4. Andersen, M.H., Ensher, J.R., Matthews, M.R., et al.,

1995, Science, 269, 198.
5. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., and Stringari, S.,

1999, Rev. Mod. Phys., 71, 463.
6. Steel, M.J. et al., 1998, Phys. Rev. A, 58, 4824.
7. Drummond, P.D. and Corney, J.F., 1999, Phys. Rev. A,

60, R2661.
8. Hope, J.J. and Olsen, M.K., 2001, Phys. Rev. Lett., 86,

3220.
9. Poulsen, U.V. and Mølmer, K., 2001, Phys. Rev. A, 63,

023604.
10. Marshall, T.W., 1963, Proc. R. Soc. London, Ser. A, 276,

475.
11. Drummond, P.D., Kheruntsyan, K.V., and He, H., 1998,

Phys. Rev. Lett., 81, 3055.
12. Heinzen, D.J. et al., 2000, Phys. Rev. Lett., 84, 5029.
13. Holland, M., Park, J., and Walser, R., 2001, Phys. Rev.

Lett., 86, 1915.
14. Bogoliubov, N.N., 1947, J. Phys. (Moscow), 11, 23.
15. Huang, K. and Yang, C.N., 1957, Phys. Rev., 105, 767;

Huang, K., Yang, C.N., and Luttinger, J.M., 1957, Phys.
Rev., 105, 776.

16. Beliaev, S.T., 1958, Sov. Phys. JETP, 34, 289.
17. Fetter, A.L. and Walecka, J.D., 1991, Quantum Theory of

Many-Particle Systems (New York: McGraw-Hill);
Abrikosov, A.A., Gorkov, L.P., and Dzyaloshinski, I.E.,
1963, Methods of Quantum Field Theory in Statistical
Physics (New York: Dover).

18. Proukakis, N.P., Burnett, K., and Stoof, H.T.C., 1998,
Phys. Rev. A, 57, 1230; Zaremba, E., Griffin, A., and
Nikuni, T., 1998, Phys. Rev. A, 57, 4695.

19. Lieb, E.H. and Liniger, W., 1963, Phys. Rev., 130, 1605,
1616.

20. Krauth, W., 1996, Phys. Rev. Lett., 77, 3695.
21. Feynman, R.P., 1982, Int. J. Theor. Phys., 21, 467.
22. Wright, E.M., Walls, D.F., and Garrison, J.C., 1996,

Phys. Rev. Lett., 77, 2158.
23. Carter, S.J. et al., 1987, Phys. Rev. Lett., 58, 1841.
24. Drummond, P.D. and Carter, S.J., 1987, J. Opt. Soc. Am.

B, 4, 1565.
25. Friberg, S.R. et al., 1996, Phys. Rev. Lett., 77, 3775.
26. Werner, M.J., 1996, Phys. Rev. A, 54, R2567.
27. Shelby, R.M. et al., 1986, Phys. Rev. Lett., 57, 691.
28. Spälter, S. et al., 1997, Europhys. Lett., 38, 335.
29. Andrews, M.R. et al., 1997, Science, 275, 637.
30. Mewes, M.-O. et al., 1997, Phys. Rev. Lett., 78, 582.
31. Drummond, P.D. and Gardiner, C.W., 1980, J. Phys. A,

13, 2353.
32. Graham, R. and Haken, H., 1970, Z. Phys., 234, 193.
33. Graham, R. and Haken, H., 1970, Z. Phys., 235, 166.
34. Gardiner, C.W., 1991, Quantum Noise (Berlin:

Springer).



36

LASER PHYSICS      Vol. 12      No. 1      2002

OLSEN et al.

35. Kennedy, T.A.B. and Wright, E.M., 1988, Phys. Rev. A,
38, 212.

36. Drummond, P.D. and Hardman, A.D., 1993, Europhys.
Lett., 21, 279.

37. Carusotto, I., Castin, Y., and Dalibard, J., 2001, Phys.
Rev. A, 63, 023606.

38. Deuar, P. and Drummond, P.D., 2001, Commun. Comp.
Phys. (in press).

39. Plimak, L.I., Olsen, M.K., and Collett, M.J., 2001, Phys.
Rev. A, 64, 025801.

40. Gardiner, C.W. and Zoller, P., 2000, Phys. Rev. A, 61,
033601; Lee, M.D. et al., 2000, Phys. Rev. A, 62,
033606.

41. Stoof, H.T.C., 1997, Phys. Rev. Lett., 78, 768.
42. Kagan, Yu.M., Svistunov, B.V., and Shlyapnokov, G.V.,

1994, Sov. Phys. JETP, 78, 187.
43. Zurek, W.H., 1985, Nature, 317, 505.
44. Carter, S.J. et al., 1987, Phys. Rev. A, 58, 1841.
45. Hall, M.J.W., 1999, Phys. Rev. A, 59, 2602.
46. Marzlin, K.-P., Zhang, W., and Wright, E.M., 1997,

Phys. Rev. Lett., 79, 4728.
47. Dodd, R.J., Burnett, K., Edwards, M., and Clark, C.W.,

1997, Phys. Rev. A, 56, 587.
48. Edwards, M. et al., 1996, Phys. Rev. A, 53, R1950.
49. Sinha, S., 1997, Phys. Rev. A, 55, 4325.
50. Julienne, P.S. et al., 1998, Phys. Rev. A, 58, R797.
51. Javanainen, J. and Mackie, M., 1999, Phys. Rev. A, 59,

R3186.
52. Javanainen, J. and K strun, M., 1999, Opt. Express, 5,

188.
53. K strun, M. et al., 2000, Phys. Rev. A, 62, 063616.
54. Mackie, M., Kowalski, R., and Javanainen, J., 2000,

Phys. Rev. Lett., 84, 3803.
55. Hope, J.J., Olsen, M.K., and Plimak, L.I., 2001, Phys.

Rev. A, 63, 043603.
56. Olsen, M.K. et al., 2000, Phys. Rev. A, 61, R021803.
57. Olsen, M.K., Kruglov, V.I., and Collett, M.J., 2001,

Phys. Rev. A, 63, 033801.

58. Collecutt, G.R., Drummond, P.D., and He, H.,
http://www.physics.uq.edu.au/xmds/.

59. Javanainen, J. and Mackie, M., 1998, Phys. Rev. A, 58,
R789.

60. Cabrillo, C. and Bermejo, F.J., 1992, Phys. Lett. A, 170,
300.

61. Kheruntsyan, K.V. et al., 1997, Opt. Commun., 139, 157.
62. Cabrillo, C., Roldán, J.L., and García-Fernandez, P.,

1997, Phys. Rev. A, 56, 5131.
63. Drummond, P.D. and Gardiner, C.W., 1980, J. Phys. A,

13, 2353.
64. Dunningham, J.A., Collett, M.J., and Walls, D.F., 1998,

Phys. Lett. A, 245, 49.
65. Olsen, M.K., Hope, J.J., and Plimak, L.I., 2001, Phys.

Rev. A, 64, 013601.
66. Marzlin, K-P. and Audretsch, J., 1998, Phys. Rev. A, 57,

1333.
67. Moore, M.G., Zobay, O., and Meystre, P., 1999, Phys.

Rev. A, 60, 1491.
68. Krutitsky, K.V., Burgbacher, F., and Audretsch, J., 1999,

Phys. Rev. A, 59, 1517.
69. Olsen, M.K. et al., 2000, Phys. Rev. A, 62, 023802.
70. Olsen, M.K., Plimak, L.I., and Dechoum, K., 2001, Opt.

Commun., 190, 261.
71. Rebi , S., Tan, S.M., Parkins, A.S., and Walls, D.F.,

1999, J. Opt. B: Quantum Semiclassic. Opt., 1, 490.
72. Werner, M.J. and Imamo lu, A., 1999, Phys. Rev. A, 61,

011801.
73. Olsen, M.K., Plimak, L.I., and Collett, M.J., 2001, Phys.

Rev. A, 64, 063601.
74. Fermann, M.E. et al., 2000, Phys. Rev. Lett., 84, 6010.
75. Drummond, P.D. and Kheruntsyan, K.V., 2001, Phys.

Rev. A, 63, 013605.
76. Kruglov, V.I., Olsen, M.K., and Collett, M.J. (in prepara-

tion).
77. Kruglov, V.I. et al., 2000, Opt. Lett., 25, 1753.
78. Kneer, B. et al., 1998, Phys. Rev. A, 58, 4841.

o∪

o∪

ć
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