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Current reversals and metastable states in the infinite Bose-Hubbard chain with local particle loss

M. Kiefer-Emmanouilidis1,2 and J. Sirker1

1Department of Physics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
2Department of Physics, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany

(Received 16 September 2017; published 29 December 2017)

We present an algorithm which combines the quantum trajectory approach to open quantum systems with
a density-matrix renormalization-group scheme for infinite one-dimensional lattice systems. We apply this
method to investigate the long-time dynamics in the Bose-Hubbard model with local particle loss starting from
a Mott-insulating initial state with one boson per site. While the short-time dynamics can be described even
quantitatively by an equation of motion (EOM) approach at the mean-field level, many-body interactions lead to
unexpected effects at intermediate and long times: local particle currents far away from the dissipative site start
to reverse direction ultimately leading to a metastable state with a total particle current pointing away from the
lossy site. An alternative EOM approach based on an effective fermion model shows that the reversal of currents
can be understood qualitatively by the creation of holon-doublon pairs at the edge of the region of reduced
particle density. The doublons are then able to escape while the holes move towards the dissipative site, a process
reminiscent—in a loose sense—of Hawking radiation.
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I. INTRODUCTION

No quantum system is perfectly isolated. Coherent dynam-
ics as described by Schrödinger’s equation lasts only over
a finite time scale before dissipation leads to decoherence.
While dissipation is an intrinsic process in solid-state systems
determined by the properties of the material, the advent of
quantum gases in optical lattices [1] has made it possible to
study lattice systems where dissipation can be controlled to a
certain degree and used as a tool to manipulate the quantum
state [2–4].

Experimentally it has been shown, for example, that strong
dissipation in the form of two-body losses can model a
Pauli exclusion principle, fermionizing a system [5]. Using
an electron beam, a controlled local particle loss process
has been realized for a Bose-Einstein condensate (BEC)
providing direct evidence for the quantum Zeno effect [6].
Furthermore, local particle loss has been used to create a tunnel
junction between two Bose-Einstein condensates (BEC) and
negative differential conductance has been observed [7]. For
a one-dimensional array of BECs with a single lossy site it
has also been shown that a transition from a superfluid to a
resistive state can be driven by tuning the loss rate γ with a
bistability occurring at intermediate γ [8].

Theoretically, local particle loss in the noninteracting
Bose-Hubbard model has been studied in Ref. [9] while the
interacting case has been investigated numerically using time-
dependent density-matrix renormalization group (tDMRG)
algorithms [10]. The quantum Zeno dynamics which has
been observed in these simulations for local particle loss
rates γ much larger than the hopping amplitude J can be
understood in a perturbative approach based on adiabatic
elimination [11]. Global three-body loss processes have also
been simulated by tDMRG algorithms and have been shown
to give rise to effective three-body hard-core interactions
[12]. Quite recently, also the cases of interacting spinless
fermions with disorder and local particle loss [13] and of
the Bose-Hubbard model with dephasing have been studied
[14].

In this paper we will consider open quantum systems which
can be described in Markov approximation leading to the
following general Lindblad master equation (LME) for the
density matrix ρ̂:

d

dt
ρ̂ = −i[Ĥ ,ρ̂] +

L∑
j=1

γj

(
Âj ρ̂Â

†
j − 1

2
{Â†

j Âj ,ρ̂}
)

. (1)

Here H is the Hamiltonian, Âj the operator describing local
dissipation at site j of a lattice of length L with rate γj , and
{.,.} the anticommutator.

Part of the progress in studying the dynamics of one-
dimensional open many-body systems is currently driven by
numerical renormalization-group algorithms such as tDMRG
[15–17] and the time-evolving block decimation (TEBD)
[18–20] for finite lattice systems. For local particle loss
neither method leads to nonequilibrium steady states (NESS)
other than the vacuum because the number of particles
is also typically finite. The same problem also exists for
metastable states established at long-time scales [21]. Here we
present a numerical scheme combining the quantum trajectory
(QT) approach [3,22–24] with the light-cone Renormalization
Group (LCRG) [25] to treat open one-dimensional quantum
systems directly in the thermodynamic limit. This will allow
one, in particular, to study the dynamics in the Bose-Hubbard
model with local particle loss shown in Fig. 1 at times
t � J/γ .

Our paper is organized as follows. In Sec. II we introduce
the Bose-Hubbard chain with local particle loss. We then dis-
cuss equation of motion (EOM) approaches in Sec. II A before
describing the numerical renormalization-group algorithm to
simulate the Lindblad dynamics for infinite system size in
Sec. II B. The results of both methods are presented in Sec. III
which includes a discussion of the density and current profiles,
the particle loss rate, and the evolution of the density-density
correlations. Section IV is devoted to a short summary and
conclusions.
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FIG. 1. One-dimensional lattice model with hopping amplitude
J and on-site interaction U . At site j = 0 particles escape the lattice
with loss rate γ .

II. MODEL AND METHODS

In the following, we will consider the Bose-Hubbard
Hamiltonian

H = −J
∑

j

(b̂†j b̂j+1 + H.c.) + U

2

∑
j

n̂j (n̂j −1)−μ
∑

j

n̂j ,

(2)

where b̂
(†)
j is the bosonic annihilation (creation) operator acting

at site j and n̂j = b̂
†
j b̂j is the number operator. The bosonic

operators fulfill the commutation relations [b̂i ,b̂
†
j ] = δij and

[b̂†i ,b̂
†
j ] = [b̂i ,b̂j ] = 0, where δij is the Kronecker delta. J is

the hopping amplitude, and U the on-site Hubbard interaction
which is assumed to be positive corresponding to repulsive
interactions between atoms on the same site. μ is the chemical
potential. We set h̄ = 1 and also set the lattice constant a = 1
so that all scales are determined by the hopping amplitude
J . We assume that the system at time t = 0 is prepared in the
ground state of the closed system and concentrate, in particular,
on initial states with commensurate filling 〈nj 〉 = 1 deep in the
Mott-insulating phase (U � 3J ). The nonunitary dynamics is
then described by the LME

d

dt
ρ̂ = −i[ĤBH,ρ̂] + γ

(
b̂0ρ̂b̂

†
0 − 1

2 {b̂†0b̂0,ρ̂}), (3)

which is a special case of the general LME, Eq. (1), with
dissipation—in terms of a local particle loss process—limited
to site j = 0. The model is motivated by recent experiments
on cold atomic gases where an electron beam has been used
to ionize and eject particles from the gas with single site
resolution [7,8,26].

A. Equation of motion

The time dependence of an observable X̂(t) in an
open quantum system modeled by an LME is given by
the EOM

d

dt
X̂ = i[Ĥ ,X̂] +

L∑
j

γj

(
Â

†
j X̂Âj − 1

2
{Â†

i Âi ,X̂}
)

. (4)

For particle loss Âj = b̂j and without the Hubbard interaction
U the EOM closes and the dynamics can be obtained exactly by
numerically integrating the EOM. For finite interactions, on the
other hand, terms will in general be generated on the right-hand
side of Eq. (4) which contain more bosonic operators than the

observable X̂ leading to an infinite hierarchy of equations. This
hierarchy has to be truncated in practice by using a mean-field
decoupling of higher-order correlators. Nevertheless, for short
times such an approach often yields a good approximation of
the nonequilibrium dynamics of local observables.

1. Direct decoupling

We are interested, in particular, in the time evolution of the
density profiles 〈nj 〉(t) and current profiles 〈Jj 〉(t). Evaluating
Eq. (4) for the two-point function σjk(t) = 〈b†j bk〉(t) leads to
[27,28]

i
d

dt
σjk = −J (σj,k+1 + σj,k−1 − σj+1,k − σj−1,k)

+U (〈a†
j a

†
kakak〉 − 〈a†

j a
†
j aj ak〉)

− i
γ0

2
(δj,0 + δk,0)σjk. (5)

In a first-order approximation, we can simply use a Hartree-
Fock decoupling of the quartic terms

〈a†
j a

†
kakak〉 − 〈a†

j a
†
j aj ak〉 → σkkσjk − σjjσjk . (6)

Within this decoupling scheme, Eq. (5) can now be solved
numerically.

2. Effective fermionic model

Alternatively, an EOM approach can be formulated by first
mapping the BHM for strong repulsive interactions onto an
effective fermionic model (EFM) [14,29–31]. The main idea
is to limit the local Hilbert space to states with n = 0,1,2
particles. We can then interpret the state |1〉 as the vacuum,
the holon as a fermion with spin down, and the doublon as
a fermion with spin up. The fermionic statistics ensures that
not more than one holon or doublon can occupy the same site.
Formally, the mapping is given by

b
†
j = Zj

√
2c

†
j↑(1 − nj↓) + Zjcj↓(1 − nj↑), (7)

with njσ = c
†
jσ cjσ and the Jordan-Wigner string Zj =∏

j ′<j exp(iπ
∑

σ nj ′σ ). The local density operator then reads

b
†
j bj = 1 + nj↑ − nj↓, (8)

where the hard-core constraints have to be properly taken into
account. In this approximation, the BHM Hamiltonian is given
by

H = −J
∑

j

[2c
†
j↑cj+1↑ + c

†
j↓cj+1↓ + H.c.]

+
√

2J
∑

j

[c†j↑c
†
j+1↓ + c

†
j↓c

†
j+1↑ + H.c.]

− U

2

∑
j

(nj↑ + nj↓) + V
∑

j

nj↑nj↓, (9)

with V → ∞ required to project out unphysical states where
a holon and a doublon occupy the same site. In the following
we drop this constraint which is a reasonable lowest-order
approximation if the number of holons and doublons in
the system is very small. To derive the EOMs, we can
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either diagonalize the Hamiltonian first by a Fourier and a
Bogoliubov transform or work directly with the Hamiltonian
(9) in position space. We choose to do the latter here, in
which case we also have to consider the EOMs for the
“pairing terms”; see second line of (9). We introduce the
following shorthand notation: hkl = 〈c†k↓cl↓〉, dkl = 〈c†k↑cl↑〉,
akl = 〈ck↓cl↑〉, and ākl = 〈c†k↓c

†
l↑〉 = −a

†
kl . For the doublon

correlator the EOM then reads

iḋkl = 2J (dk−1l − dkl+1 + dk+1l − dkl−1)

−
√

2J (ak+1l + āl+1k − āl−1k − ak−1l)

− iγ0(δk0 + δl0)dkl(1 − 〈n0↓〉) (10)

and for the holon

iḣkl = J (hk−1l − hkl+1 + hk+1l − hkl−1)

−
√

2J (−alk+1 − ākl+1 + ākl−1 + alk−1)

+ iγ0
[
δk0δl0 − 1

2 (δk0 + δl0)hkl

]
(1 − 〈n0↑〉)

− iγ0

√
2δl0(1 − δk0)ākl(1 − 〈n0↑〉)(1 − 〈n0↓〉)

+ iγ0

√
2δk0alk(1 − 〈n0↑〉)(1 − 〈n0↓〉). (11)

Note that the Hubbard interaction in this approximation is just
a chemical potential for the holons and doublons, see Eq. (9),
and therefore does not show up in the EOMs for these particles.
The Hubbard interaction does, however, show up in the EOMs
for the nonparticle conserving, anomalous correlators which
are given by

iȧkl = −J (ak+1l + ak−1l + 2akl+1 + 2akl−1)

−
√

2J (dk−1l + hl+1k − δkl+1 − hl−1k + δkl−1 − dk+1l)

−Uakl − iγ0

√
2δk0dkl(1 − 〈n0↓〉)(1 − 〈n0↑〉)

− iγ0/2[δk0akl(1 − 〈n0↑〉) + 3δl0akl(1 − 〈n0↓〉)]. (12)

The system of EOMs, Eqs. (10)–(12), can then be solved
by numerical integration. Note that this approach is also a
mean-field decoupling scheme—although different from the
one discussed in Sec. II A 1—based on restricting the local
Hilbert space to three states only and ignoring the infinite
repulsion V between holons and doublons in Eq. (9) which is
required to avoid unphysical states with a holon and a doublon
occupying the same site. In the EOMs (10)–(12) this constraint
is only implemented “on average.”

B. LCRG and quantum trajectories

The quantum trajectory (QT) approach was developed in
the 1990s [22,23] as a wave-function approach to dissipative
processes in quantum optics. The term quantum trajectories
was coined by Carmichael [23]. Previously, it was called either
the quantum jump approach or the Monte Carlo wave-function
method. In general the QT approach can be used to solve any
master equation in Lindblad form [3]. An integration over
these QTs can be carried out by any numerical approach that
is able to solve the Schrödinger equation.

The main idea is to rewrite the master equation as a
stochastic average of QTs. Each QT is dependent on random
variables; thus no QT is identical in the limit time t to infinity.
The main advantage of the QT approach is that only a quantum

O
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FIG. 2. Transformation from an MPS network after Trotter-
Suzuki decomposition (left) to a light cone (right). The adjacent
plaquettes outside the light cone, depicted by the black dotted line,
cancel each other.

state has to be evolved in time thus avoiding propagating the
full density operator; only a Hilbert space with the dimension
of the system needs to be considered [3,22,23]. The price one
has to pay is that many QTs (of the order of several hundred
or even several thousand for the Bose-Hubbard model) have to
be calculated to obtain meaningful averages. While memory
requirements are reduced and obtainable simulation times
often greatly enhanced as compared to a direct time evolution
of the density matrix, the QT approach is therefore very costly
in terms of computing time.

In previous studies of dissipative one-dimensional quantum
systems, the QT approach has been combined with time-
dependent DMRG algorithms for finite system size L [10]
and compared to the superoperator approach where the full
density matrix is evolved in time [32,33]. One problem
with numerical algorithms for finite systems is that the only
nonequilibrium steady state (NESS) which can be reached
in a system with particle loss is the vacuum. We circumvent
this problem here by combining the QT approach with the
LCRG making it possible to discuss the physical properties
at long times t � J/γ . The LCRG uses a Trotter-Suzuki
decomposition of the time evolution operator [34] and the
Lieb-Robinson bounds [35,36] to restrict the time evolution
to an effective light cone for a Hamiltonian with short-range
interactions [25]. The LCRG algorithm efficiently simulates
one-dimensional systems and yields observables directly in
the thermodynamic limit [31,37,38]. The Hilbert space is
truncated based on the eigenvalues of the reduced density
matrix following traditional DMRG schemes [15,17]. Transfer
matrices are used to enlarge and time evolve the system
stepwise. In an alternative description, a tensor network
in matrix product state (MPS) language can be easily
transformed to a light-cone shape through this process; see
Fig. 2.

The aim of this section is to describe how to combine the
LCRG with a QT scheme in order to generalize the LCRG
algorithm to nonunitary time evolution in open systems for the
special case where a single site is coupled to a bath. The LCRG
keeps its light-cone shape for a nonunitary time evolution
carried out only locally. Translational invariance, however,
is destroyed thus algorithms like the infinite TEBD [39,40]
cannot directly be applied to calculate the dynamics in the
thermodynamic limit.
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The size of the effective light cone in the LCRG algorithm
at time t is given by

L = vTrotter|t |, vTrotter = a

δt
, (13)

where vTrotter is the Trotter speed and a the lattice constant
which we have set to unity. It has been shown that for
systems with short-range interactions the error between a
time-dependent operator Ô

(�)
0 (t) acting on the site j = 0 in

the middle of an � site light cone (see Fig. 2) and the operator
Ô0(t) evaluated in the infinite system is bounded by

∥∥[
Ô0(t),Ô(�)

0 (t)
]∥∥ � ce

(− �−vLR t

ξ
)
, (14)

where c is a constant, ξ the correlation length, and vLR

the Lieb-Robinson velocity which is of the order of the
hopping amplitude J and describes the velocity information
is spreading through the lattice [35,36]. In the BHM the Lieb-
Robinson bound has been observed in tDMRG simulations
[29] and has also been verified in experiment [30]. In order to
make the error in the LCRG simulations exponentially small as
compared to results in the thermodynamic limit we therefore
have to make sure that the condition vTrotter � vLR is fulfilled.
For the one-dimensional BHM in the limit of U/J → ∞,
doublon and holon excitations with velocities vdoublon = 4J

and vholon = 2J respectively exist [30,31]. For a propagating
doublon the Trotter time step therefore has to be chosen such
that

1/δt � vdoublon ∼ 4J. (15)

In our simulations we usually set Jδt ∼ 0.01 or smaller,
which obviously fulfills Eq. (15). We thus obtain results in
the thermodynamic limit with the light-cone structure only
introducing exponentially small errors.

The QT approach can then be combined with the LCRG
algorithm in the following way: the system without dissipation
evolves under a Hamiltonian H = ∑

j hj,j+1. For a system
with hopping terms or interactions beyond nearest neighbors
the unit cell has to be expanded accordingly. Adding local
dissipation at site k we have to replace the local Hamiltonian by
hj,j+1 → heff

j,j+1 = hj,j+1 − δjk
γk

2 Â
†
kÂk . The local time evo-

lution operator in Trotter-Suzuki decomposition is then given
by τ = exp(−iδtheff

j,j+1) and is depicted as a plaquette in Fig. 2.
Next, we draw a random number r ∈ [0,1). The normalized ini-
tial state is now time-evolved |
(δt)〉 = exp(−iH effδt)|
(0)〉
with H eff = ∑

j heff
j,j+1. If r < ‖|
(δt)〉‖ we continue with

the time evolution. If, on the other hand, r � ‖|
(δt)〉‖, then
we apply the local operator Ak onto the state, |
(δt)〉 →
Ak|
(δt)〉, realizing a quantum jump. After the quantum jump
the time-evolved state is normalized, a new random variable
r ∈ [0,1) is drawn, and the state is further evolved in time
under the effective Hamiltonian until the next quantum jump
occurs. In the implementation it is important to use very small
time steps close to the point where the quantum jump occurs
in order to avoid having many trajectories which jump at
exactly the same time [10,33]. For each QT the expectation
value of the variable of interest is measured and then averaged
over all QTs. The statistical error of an observable is simply
given by σA(Ô) = σ (Ô)√

Q
, where Q is the number of QT and

σ (Ô) the standard deviation because the QTs are statistically

FIG. 3. (a) gc(j,0), Eq. (17), in the projected state for U = 12J

decays with a correlation length ξ ≈ 0.57. The line is an exponential
fit. (b) Density n0(t) for U = 12J . QT-LCRG results (error bars
denote the statistical errors) are compared with ED data (solid line)
for a chain of L = 5 sites and γ = 0.25. Boundary effects become
visible in the ED results for J t � 2.

independent [3,22]. For the density and current profiles we
typically need several hundred QTs to obtain statistical errors
which are small compared to the dynamical changes of the
observables. The number of states χ which we need to keep is
adjusted dynamically so that the truncation error always stays
below 10−7. This typically requires the number of states to be
in the range χ ∼ 300–1850 for the examples considered later.
Furthermore, we always recompute each QT with a higher
bond dimension to make sure that all QTs are converged as
one fixed χ does not apply to all QTs.

C. Preparation of initial state and comparison with
exact diagonalization

We consider dissipative dynamics starting from the ground
state of the closed system. In order to compute the ground
state within the LCRG scheme, imaginary time evolution is
used. Because the Bose-Hubbard model lacks particle-hole
symmetry, the correct chemical potential μ needs to be
included in the imaginary time evolution operator

τβ = exp

⎧⎨
⎩−β

⎛
⎝H − μ

∑
j

nj

⎞
⎠

⎫⎬
⎭. (16)

Here β is imaginary time. The time-evolution operator is then
considered in Trotter-Suzuki composition and β successively
increased to project an arbitrary initial state onto the ground
state. In practice, we cannot reach the limit β → ∞ so that
the projection will not be exact. However, if there is a gap E

between the ground state and the first excited state then the
error will be exponentially small, ∼exp(−βE), if βE � 1.

As an example, we consider imaginary time evolution deep
in the Mott-insulating phase for U = 12J . For β ∼ 5, we find
that the energy of the state is already converged. To further test
the properties of the projected state, we consider the connected
density-density correlation function

gc(j,t) = 〈n0nj 〉(t) − 〈n0〉〈nj 〉(t). (17)

As shown in Fig. 3(a), the projected state is not a simple
product state but rather shows the physically expected expo-
nentially decaying correlations.

We ensure that the energy is converged for all the projected
ground states considered in the following and that the correla-
tions are properly captured.
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As a next step, we test the QT-LCRG algorithm by
comparing results for the BHM with local particle loss with
a solution of the Lindblad equation (3) based on exact
diagonalizations (ED). Note that such a comparison is only
meaningful for observables at or very close to the lossy site
(which will always be in the middle of the considered chain)
and small times because ED is limited to very small system
sizes. In Fig. 3(b) results for the density n0(t) at the lossy
site calculated with the QT-LCRG algorithm using 2000 QTs
are compared to the ED result. Within the statistical errors,
both results agree for J t � 2. Whether or not the QT-LCRG
algorithm can be used to simulate the dynamics at long times,
J t � 1, depends on the amount of entanglement present. An
analysis of the entanglement entropy of individual QTs as
well as of the average entanglement entropy is presented in
the Appendix.

III. RESULTS

In the following, we want to analyze results obtained by the
QT-LCRG algorithm for the density and current profiles, and
the density-density correlations. We will compare these results
to the EOM approach and are, in particular, interested in the
long-time regime where many-body effects dominate and the
EOM approach in Hartree-Fock approximation is expected to
fail. We will mainly concentrate on the case of weak dissipation
but will also briefly discuss the case of strong dissipation
towards the end of this section.

A. Particle and density profiles

When a hole is created at the lossy site j = 0, this density
perturbation starts to move through the lattice with the holon
velocity which is approximately given by v ∼ 2J for U/J �
1. Based on the effective fermion model description, Eq. (10),
we see that alternatively also a doublon can be annihilated—
although the doublon density in the initial Mott-insulating
state with 〈nj 〉 = 1 will be small—creating a perturbation
which will travel with twice the holon velocity [31]. For
small dissipation and large U we cannot reliably detect the
doublon contribution numerically so that the density profile
has a light-cone structure at short times given by the holon
velocity; see Fig. 4. However, the doublon contribution is
present and can be detected numerically for larger γ values;
see the inset of Fig. 4.

The changes of the density profiles are caused by local
currents which can be calculated from the continuity equation
with

ṅj = σ̇jj = iJ (σj,j+1 − σj+1,j + σj,j−1 − σj−1,j )

− γ0δj0σjj , (18)

see Eq. (5). The local current operator originating from the
unitary part is therefore given by

Jj = −iJ (b†j bj+1 − b
†
j+1bj ). (19)

Using the current operator, the change of the local density can
also be written as

d

dt
〈nj 〉 =

{〈Jj−1〉 − 〈Jj 〉 − γ0〈n0〉, j = 0,

〈Jj−1〉 − 〈Jj 〉, else,
(20)

0 10 20 30 40 50
j

0.98

0.99

1.00

n j
(t

)

t= 1.5, 3, 5, 10, 20, 30
10 20

j
0.999

1.000

1.001

n j
(t

)

t= 1.5, 3, 5

FIG. 4. Density profiles at short and intermediate times for U =
12 and γ = 0.025. The holons spread in a light-cone–like fashion
with the numerically calculated velocity v ≈ 2J (vertical bars) [31].
Averages over 2589 converged QTs for t � 20 and 1089 for t > 20
are shown for bond dimensions χ = 900–1450. The statistical error is
largest at the dissipative site, σ 0

A ≈ 0.0028. Inset: for U = 12, γ = 8
a doublon contribution is clearly visible with v ≈ 4J (vertical bars).

with 〈Jj 〉 = 2i Im〈b†j bj+1〉. At short times inside the light

cone we expect that d
dt

〈nj 〉 < 0, which is equivalent to
〈Jj 〉 > 〈Jj−1〉 for |j | > 1. For j > 1 (to the right of the
dissipative site) at the boundary of the light cone we expect
0 ≈ |〈Jj 〉| < |〈Jj−1|〉, which implies that the currents are
negative, i.e., are pointing towards the dissipative site. As
long as the local densities inside the light cone are decreasing
we furthermore expect that the local currents 〈Jj>0〉 are a
monotonically increasing function of the distance j from
the dissipative site. Because the Hamiltonian is reflection
symmetric around j = 0 there is always a current equal and
opposite in direction on the other side of the lossy site,

〈Jj 〉(t) = −〈J−j−1〉(t). (21)

Furthermore, we can also immediately read off the stationary
current from Eq. (20) by demanding d

dt
〈nj 〉 = 0 for all sites j .

Using Eq. (21) this leads to

〈Jj 〉NESS =
{−γ0〈n0〉/2, j � 0,

γ0〈n0〉/2, j < 0.
(22)

At short times our numerical results for the currents are
consistent with these considerations; see Fig. 5.

We have also checked that the density and current profiles
are consistent with the continuity equation (20). For intermedi-
ate times we find that the area of reduced density first continues
to spread before essentially stopping to extend further at
times t ∼ 30. As shown in Fig. 4 the density at this point
is significantly reduced on the first ∼40 lattice sites around
the defect. The current profiles shown in Fig. 5 also show an
intricate evolution at this time scale. For the ∼10 sites closest
to the defect the currents, on average, stop growing for t � 10.
Even more remarkable, a local current reversal starts to set in
for times t > 20 at sites further away from the defect. For time
t = 30, for example, sites j > 35 have a local current leading
away from the lossy site. This current reversal will ultimately
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FIG. 5. Current profiles at short and intermediate times for U =
12 and γ = 0.025 with 1500 converged QTs for t � 20 and 574 for
t > 20. At times t > 20 a current reversal at sites far away from the
lossy site is starting.

reduce the area over which the density is significantly depleted
while even further reducing the density close to the defect.

This effect can clearly be seen in the density profiles at the
longest simulation times shown in Fig. 6. The densities at sites
j � 10 only change very little in time while the densities at the
sites closest to the defect continue to be reduced. The absolute
values of the currents near the defect also do decrease at long
times as shown in Fig. 7. Interestingly, all local currents for j >

5 are reversed at t = 200 and are flowing away from the defect.
While the local currents are almost all equal as is expected in
the steady state, see Eq. (22), the currents are flowing in the
opposite direction to the steady-state currents. Furthermore,
the magnitude of the currents is much smaller than the expected
steady-state current for 〈n0〉(t = 200) ≈ 0.9; see Fig. 7. We
conclude that while the density profile appears to become
almost independent of time and the local currents almost all
equal to each other we are not in the nonequilibrium steady
state of the system. The local densities for times t ∈ [150,200],
however, only change very little (see Fig. 8), indicating that
we have reached a metastable steady state with small local
currents pointing away from the lossy site.

While the densities at sites j = 0–3 at times t ∈ [150,200]
appear to be constant on average, the particle densities at sites
j = 5–10 are monotonously but very slowly increasing. Even
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0.94
0.97
0.98
0.99
1.00

FIG. 6. Density profiles at long times for U = 12 and γ = 0.025
at selected times (left panel) and as a color plot (right panel). The
density profile at sites j � 10 changes only very little over time.

FIG. 7. Current profiles at long times for U = 12 and γ = 0.025.
The local currents at t = 200 are reversed and are pointing away from
the lossy site.

further away from the defect, on the other hand, the densities
continue to decrease slowly.

While we cannot reach the nonequilibrium steady state,
a likely scenario based on the density and current profiles
is a steady-state density profile which is quite steep with a
density at the dissipative site which is strongly reduced—
and perhaps much closer to zero than to 1—while substantial
particle densities persist on all other sites. A small density
at the dissipative site in the steady state would, according to
Eq. (22), also lead to a small steady-state current. The local
currents at times t > 200 therefore possibly stay almost equal
except very close to the dissipative site but slowly change
sign again. Another surprising result of the simulations is the
very large time scale apparently required to reach the NESS.
One relevant time scale is clearly set by J/γ = 40 for the
example considered here. In Fig. 8 this time scale separates
the regime where the densities of sites inside the light cone
change approximately linearly in time from a regime where the
densities at some sites become already approximately constant
or even start to slowly increase again. J/γ is also the time

0 50 100 150 200
Jt

0.90

0.92

0.94

0.96

0.98

1.00

n j
(t

)

j= 0, 1, 2, 3, 4, 5, 7, 10, 20

FIG. 8. Local densities as a function of time for weak local
particle loss γ = 0.025. The local densities change very little in the
time interval t ∈ [150,200] pointing to a metastable steady state.
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FIG. 9. Local densities as a function of time for U = 12 and γ =
0.1. Averages over 800 QTs are shown. At the time scale J/γ = 10
a plateaulike feature is visible.

scale where some of the local currents start to reverse. In order
to check this interpretation we also briefly consider the case
γ = 0.1 in the following. In this case we do see in the local
densities 〈nj 〉(t) inside the light cone an initial decay followed
by a plateau around J/γ = 10 and then a further decay; see
Fig. 9. Again, the time scale to reach the NESS appears to be
much larger than J/γ .

B. Comparison with EOM

Next, we want to investigate how much of the complicated
dynamics is captured in an EOM approach with a Hartree-Fock
decoupling or within the effective fermion model approach;
see Sec. II A. In Fig. 10 the density and current profiles
obtained by LCRG and the first-order Hartree-Fock EOM
approach for short and intermediate times are compared. As
initial state in the EOM calculations we use a product state
with one boson per site which is a good approximation for

FIG. 10. Comparison of density profiles (main) and current
profiles (inset) obtained by LCRG (symbols) and the EOM with
Hartree-Fock decoupling (lines), see Eqs. (5), (6), for U = 12 and
γ = 0.025. LCRG current profiles are shown for t = 5,10,20 only
for clarity.

the ground state at U = 12. While the density profiles for
times t = 5 and t = 10 obtained by this mean-field EOM
approach agree very well with the LCRG results, the first
significant deviations become visible at t = 20 and already
at t = 40 the Hartree-Fock EOM approach fails completely.
While the LCRG data show that between time t = 20 and
time t = 40 the densities at sites j � 20 no longer decrease,
the EOM predicts a ballistic extension of the region with
reduced particle density with the holon velocity v ∼ 2J . That
the EOM fails to capture essential aspects of the dynamics
is also obvious from the current profiles shown in the inset
of Fig. 10. While the current profiles are correctly captured
for t < 20, the EOM approach again completely fails for
longer times (see also Fig. 7). In particular, current reversals
away from the lossy site do not occur in the mean-field EOM
solution. We conclude that the current reversals observed in
the LCRG simulations are a genuine many-body effect which
cannot be captured in a Hartree-Fock decoupling scheme. The
Hartree-Fock solution—which is essentially the result for a
Gaussian system—is only able to describe the initial dynamics
at times t < J/γ .

The failure of the Hartree-Fock EOM decoupling scheme
at long times raises the question if a different EOM approach
can better describe the system. We first checked that using a
higher-order decoupling approximation does not lead to any
significant improvement at small U and introduces instabilities
at large U . Such problems in higher-order truncation schemes
based on cluster expansions have been reported previously
[41]. An alternative is the EOM scheme for the effective
fermion model derived in Sec. II A 2. The potential advantage
of this approach is that its starting point is the opposite limit
of large U where the local Hilbert space can be limited to
three states only. This approach does, however, have another
problem: holons and doublons are allowed to occupy the
same site at the same time because the hard-core constraint
is an interaction between these particles which cannot be fully
treated. For U = 12 and γ = 0.025 we find that the error
induced in the current and density profiles by these unphysical
states makes the results of the effective fermion model
approach quantitatively unreliable; see Fig. 11. Nevertheless,
these results show some interesting features which are not
present in the Hartree-Fock approach. As the main qualitative
difference we note that in the effective fermion model a
doublon peak with local densities 〈nj 〉 > 1 is clearly visible
in the density profile. In the LCRG data such a doublon
contribution also exists, but is much smaller. We have already
shown in Fig. 4 that this contribution can be seen very clearly
numerically at larger γ .

The local current operator, Eq. (19), in the effective fermion
model is given by

Jj = 2J ↑
j + J ↓

j , (23)

with the doublon and holon currents J σ
j = −i σJ

(c†j,σ cj+1,σ − c
†
j+1,σ cj,σ ) with σ =↑ , ↓= +,−. The Hamil-

tonian (9) of the effective fermionic model does contain
doublon-holon pair creation and annihilation terms. In a
short-time density profile, holes are spread in a light cone
around the dissipative site. A doublon excitation created on
top of this profile will then have an enhanced probability to
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FIG. 11. (a) Density profiles from QT-LCRG (symbols), Hartree-
Fock EOM (dashed line), and effective fermion model (solid line) at
t = 20. (b) Density of holons and doublons at t = 20 in the EFM
approach. (c),(d) Same as (a),(b) for the local currents.

recombine with a hole if it travels towards the dissipative site.
Traveling away from the defect it has, on the other hand,
a higher probability to survive and to travel on ballistically.
We therefore expect that a positive doublon current 〈J ↑

j 〉 is
associated with the doublon peak seen in the density profiles
in regions where the holon density is low. Such positive local
currents are indeed seen in the numerical solutions of the
EOMs for the effective fermion model; see Figs. 11(c) and
11(d). The EFM therefore seems to be able to qualitatively
explain the onset of local current reversals far from the
dissipative site: while the local currents close to the defect
are dominated by the holon current J ↓

j , the faster doublon
excitation can move ballistically on a background without
holes outside the holon light cone, leading to small local
currents which are positive. This is—in a loose sense—
reminiscent of Hawking radiation, where particle-antiparticle
pairs are created close to the event horizon with one particle
falling back into the black hole while the other escapes. In
our system there is, however, no sharp horizon between the
region of reduced density and the “vacuum” (〈nj 〉 = 1) and
the energies of the escaping doublons will not show a thermal
distribution. The system is not a sonic analog of a gravitational
black hole. We further note that the EFM model is not able
to describe the metastable state in which all local currents are
reversed. It also always overestimates the doublon contribution
because the doublons can travel on top of the holons in the
approximation considered here.

C. Particle loss

The particles lost at the defect can be detected, for example,
in a cold gas experiment where an electron beam is used to
ionize atoms. The ions then leave the trap and are collected
by a detector [6]. In the QT approach each quantum jump
corresponds to a particle which is removed from the system.
The total number of particles lost at a given time t can therefore
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FIG. 12. Particle loss N (t) (upper curve) and overall change of
the density profile D(t) (lower curve) for U = 12 and γ = 0.025.
The lines are fits; see text.

be calculated by counting the quantum jumps,

N (t) = lim
Q→∞

1

Q

Q∑
i=1

∫ t

0
δ(t ′ − tjumpi

)dt ′, (24)

where Q is the number of QTs. Experimentally, the quantum
jumps for a single QT correspond to a possible time line
of detection events. The average particle loss rate Ṅ (t) has
to become a constant in the NESS. For an infinite system,
it is important to distinguish the particle loss, Eq. (24),
measured by a detector from the overall change of the density
profile

D(t) =
∞∑

l=−∞
nl(t = 0) − nl(t), (25)

seen, for example, by in situ imaging. While D(t) and N (t)
are identical for a finite system, this is no longer the case if
an infinite reservoir of particles exists. For the infinite system
we expect a nontrivial time-independent density profile D∞ =
D(t → ∞) in the NESS.

In Fig. 12 we show LCRG results for N (t) and D(t).
At short times D(t) ≈ N (t), but at times t � 20 both start

to deviate. Note that this is roughly the time scale where the
region of reduced particle density stops to extend ballistically
with the holon velocity v ∼ 2J ; see Fig. 4. The change in the
density profile can be well approximated by

D(t) ∼ A(1 − e−γ t ), (26)

with γ being the dissipation rate as has also been observed
previously in Ref. [10]. This seems to suggest that the time
scale for reaching the steady state is ∼J/γ . It is important to
stress once more that this is not the case. Our simulations show
that the density profile continues to change substantially for
times t � J/γ . The continuing density reduction at sites close
to the defect is, however, largely compensated for by a refilling
of sites further away from the defect, making D(t) almost
constant for t > J/γ . The short-time expansion, D(t) ≈ Aγ t ,
does not only capture the behavior of D(t) at times t � 20
but also yields a good approximation for the particle loss rate
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FIG. 13. Particle loss rate Ṅ (γ,t � J/γ ) for U = 12 as a func-
tion of dissipation strength γ . The error bars denote the corresponding
statistical errors. For large dissipation, the numerical results are well
described by the perturbative result Ṅ (γ,t � J/γ ) = 8γ 2/J .

Ṅ (t) ∼ Aγ . Within error bars, Ṅ (t) does not change as a
function of time and is therefore not a useful quantity to detect
whether or not the NESS has been reached.

In Fig. 13 the constant rate Ṅ (γ,t � J/γ ) is shown as
a function of the dissipation strength γ . The loss rate goes
through a maximum at γ /J ≈ 8 before falling of ∼γ 2/J for
large dissipation strengths [11]. This counterintuitive effect is
known as quantum Zeno dynamics. Large dissipation strengths
effectively stabilize configurations at long times where the
dissipative site is unoccupied with γ � J effectively acting
as a potential barrier strongly reducing the hopping onto the
lossy site. Our results for the loss rate are consistent with
previous numerical and experimental studies [6,10,11].

D. Long-range correlations

The quench dynamics we are investigating here starts from
a ground state deep inside the Mott-insulating phase. This state
has exponentially decaying density-density correlations with
a rather small correlation length of about half a lattice site; see
Fig. 3. Here we want to study how these correlations change
once the dissipative dynamics sets in. We concentrate on
the connected equal time density-density correlation function
between the dissipative site and other sites in the lattice; see
Eq. (17).

At short times, the density perturbation created by turning
on the dissipative process at site j = 0 at time t = 0 travels
with the holon velocity v ∼ 2J through the system creating
a light cone; see Fig. 14. While this density wave travels
through the chain, it leaves behind sites which are stronger
correlated than in the initial state. Figure 15 shows that the
correlations between the lossy site and sites inside the holon
light cone for times �10 even appear to be long ranged.
Obtaining accurate data for the density-density correlation
function requires one to calculate ∼10000 QTs which is
computationally very demanding. The data in Fig. 15 are
therefore limited to short times. Based on these data it is
impossible to analyze in more detail if truly long-ranged,
power-law decaying, or exponentially decaying correlations
with a large correlation length are established.

FIG. 14. QT-LCRG data for the time evolution of gc(j,t) at
selected sites of the chain for U = 12 and γ = 0.025. A density
wave propagates through the chain with velocity v ≈ 2J .

E. Initial conditions and NESS

In Ref. [8] a BHM with local particle loss was studied. The
experiment showed a bistability in a certain parameter regime:
different steady states are reached depending on whether or not
the lossy site has the same filling as the other sites or is empty
in the initial state. In contrast to our study, the experiment was
performed in the superfluid regime with each site occupied on
average by several hundred bosons.

In the following we will investigate if a similar bistability
also exists deep in the Mott-insulating phase. Similar to the
experiment, we modify the density 〈n0〉 in the Mott-insulating
initial state. In Fig. 16(a) we show results for the evolution of
〈n0(t)〉 obtained using the Hartree-Fock EOM aproximation
for initial states with densities 〈n(0)〉 ∈ [0,1]. Interestingly,
the results indeed point to a bistability where the site n0

becomes almost completely empty or refills almost completely
at intermediate times with a critical filling 〈ncrit

0 (0)〉 ∼ 0.7.
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FIG. 15. Spatial profile of gc(j,t) at selected times starting from a
Mott-insulating ground state at U = 12. At time t = 0 the correlations
decay exponentially with ξ ≈ 0.57. The weak dissipative defect
induces correlations inside the holon light cone which are much longer
ranged. The maximal error of the data can be well approximated by
gc(j,t) ∼ 10−(11− t

2 ).
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FIG. 16. Time evolution of the density at the lossy site for initial
states with different fillings of the lossy site for U = 12 and γ =
0.025. (a) Results of the Hartree-Fock EOM approximation do show
a bistability. (b) No bistability is seen using the EOMs for the EFM.
The result for initial filling 〈n0〉 ≈ 0 is in good agreement with the
QT-LCRG data (dots).

The results obtained using the EOMs for the effective fermion
model are shown in Fig. 16(b) and are very different from
the Hartree-Fock approximation. For all initial states the site
n0 fills up again over a rather short time scale. There is
no bistability. The results for initial filling 〈n0〉 = 0 for the
effective fermion model are consistent with QT-LCRG data;
see symbols in Fig. 16(b). Note that the initial states in the two
approaches are slightly different: we solve the EOMs for an
initial product state with 〈n0〉 = 0 and 〈nj 〉 = 1 for all other
sites. In the QT-LCRG calculations, on the other hand, we first
calculate the ground state |
0〉 at U = 12. We then obtain the
initial state as b0|
0〉. Because |
0〉 is not a product state and
the dissipative site can be occupied by more than one boson,
the density in the initial state is 〈n0〉 ≈ 0.05.

While the Hartree-Fock and the EFM approach yield similar
results at short times if we start from the initial state with
〈nj 〉 = 1 at all sites, only the EFM approach is able to describe
the short-time dynamics properly if we start with a reduced
density at the lossy site. This underlines that the EFM approach
does capture the essential aspects of the short-time dynamics
and is a good basis to qualitatively understand the properties
of the system deep in the Mott-insulating phase. We also note
that we have only studied one particular loss rate, γ = 0.025,
here. Investigating whether or not bistabilities do occur in the
Mott-insulating initial state for larger loss rates is beyond the
scope of this study.

IV. CONCLUSIONS

Using an algorithm which combines the quantum trajectory
approach with the light-cone renormalization group, we have
investigated the dynamics of the Bose-Hubbard model at
long times, t � J/γ . Starting from a Mott-insulating initial
state we found that for weak particle loss, γ � J � U , an
intriguing long-time dynamics takes place.

Counterintuitively, a reversal of local currents sets in at
times t ∼ J/γ leading to a state where almost all local currents

are equal and pointing away from the lossy site. We argued
that this state cannot be the steady but rather is an unusual
metastable state. In the steady state, all currents are equal and
are pointing towards the lossy site. The currents therefore have
to reverse again at longer times. The reversal of local currents at
intermediate times at sites outside the region with substantially
reduced particle density can be qualitatively understood in
an effective fermion description. In this approach the local
Hilbert space is restricted to three states: empty (holon),
singly occupied (vacuum), and doubly occupied (doublon).
While fermionizing the model discards unphysical states with
more than one holon or more than one doublon per site,
doublon and holon can still occupy the same site. While
this approach is quantitatively not fully reliable due to these
unphysical states, it does explain the qualitative features of
the dynamics seen in the numerical simulations. The Bose-
Hubbard Hamiltonian in the effective fermion representation
contains terms annihilating or creating holon-doublon pairs
on neighboring sites. For a pair created near the edge of the
region with reduced density, in particular, the holon has an
enhanced probability to move towards the lossy site while
the doublon is more likely to escape. The process is—in a
loose sense—reminiscent of Hawking radiation near the event
horizon of a black hole and leads to local currents which are
pointing away from the dissipative site.

For a system with infinite particle reservoirs as considered
here it is important to distinguish between the density loss as
measured by a detector and the overall change of the density
profile. While the former is a linear function of time with
constant slope for all times and is therefore not useful to detect
whether or not the system has reached the steady state, the
latter exponentially slowly approaches a constant with a rate
∼γ . However, this does not imply that the steady state is
reached on time scales ∼J/γ . The density profile continues
to change substantially at times t > J/γ with a density loss at
sites close to the defect almost compensated for by a refilling
of sites further away from the defect.

In the density-density correlations at short times a light-
cone structure is clearly visible. Once the front of the light
cone has passed, correlations between the dissipative site and
sites inside the cone are established which are much longer
ranged than in the initial Mott-insulating state. An interesting
question is if the dissipative dynamics can create truly long-
range correlations. Numerically, this question is very difficult
to address because a large number of trajectories are required
to obtain reliable results for two-point correlation functions.
Based on the data for times J t < 10 we cannot decide if the
correlations are truly long ranged, power-law decaying, or even
exponentially decaying with a very long correlation length.

Starting from initial states with different initial filling of the
dissipative site we studied if the Lindblad dynamics can lead to
different steady or metastable states. While the Hartree-Fock
equation of motion approach suggests a bistability, similar
to the one seen in a cold gas experiment in the superfluid
regime, such a behavior is not confirmed in the effective
fermion model. For the small dissipation rate γ considered,
all initial states with different filling of the lossy site seem to
lead to the same steady state. We showed, in particular, that
the numerically calculated dynamics starting from the state
where the lossy site is initially empty is in good agreement

063625-10



CURRENT REVERSALS AND METASTABLE STATES IN . . . PHYSICAL REVIEW A 96, 063625 (2017)

with the effective fermion model result. This underlines that
the effective fermion model is a useful approach to understand
the qualitative features of the open Bose-Hubbard dynamics at
short and intermediate times deep inside the Mott-insulating
regime.

The chosen model and parameters can be realized in a cold
gas experiment. Detecting the doublons moving away from
the dissipative site would be an indicator for the separation of
holon-doublon pairs by the dissipation. While the considered
system does not have a sharp event horizon, studying particles
expelled from the dissipative region might be a step towards
realizing sonic analogs of gravitational black holes. In order
to achieve a full analogy, local losses in Bose gases in the
superfluid phase in higher dimensions need to be realized
[42]. Such systems are, however, more difficult to analyze
theoretically beyond the mean-field level so that a careful study
of losses in one-dimensional lattice models might be a useful
interim goal.
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APPENDIX: ENTANGLEMENT ENTROPY

The QT-LCRG algorithm is based on approximating the
time-evolved state as a matrix product. The success of such
an approach hinges on the amount of entanglement entropy
produced by the time evolution. The Hilbert space is truncated
using a reduced density matrix ρred = trEρ, where ρ is the full
density matrix and E the part of the system which is traced
out. The entanglement entropy is then given by

Sent = −tr{ρred ln ρred} (A1)

and is bounded by ln χ , where χ is the dimension of ρred. Since
the matrix dimensions which can be handled numerically are
limited in practice, only states with Sent < χ can be faithfully
represented [43]. It is therefore interesting to study the time
evolution of the entanglement entropy for the lossy BHM.

In the QT approach, Sent(t) will be different for each
trajectory. In order to simulate the time evolution we have
to keep a sufficient number of states χ such that the entropy
for the QTs with the most entanglement always remains small
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FIG. 17. Entanglement entropy S0
ent for U = 12 and (a) γ =

0.025, (b) γ = 0.1.

compared to ln χ . In the following, we will concentrate on
the entanglement entropy S0

ent obtained by tracing out all sites
in the density matrix to the right of the lossy site j = 0. Note
that the system is not translationally invariant. In the algorithm
we also need the reduced density matrix where all sites to the
right of j = 1 are traced out. For small loss rates the entropies
for both matrices are, however, similar so that it suffices to
consider S0

ent here. In Fig. 17 the maximal, minimal, and the
entropy averaged over all QTs are shown for γ = 0.025 and
γ = 0.1.

Quantum jumps typically lead to an abrupt increase of
the entanglement entropy. Trajectories therefore exist which
already have significant entanglement at short times. The
imaginary part of the effective Hamiltonian, on the other
hand, suppresses entanglement. At short and intermediate
times, the trajectory with the minimal entanglement is the
one which contains no quantum jumps, while the trajectory
with the maximal entanglement contains many jumps. At long
times the two curves for the extrema apparently converge,
pointing to a NESS or metastable state which has low
entanglement. The average entanglement entropy first shows
an approximately logarithmic growth, reaches a maximum,
and then starts dropping almost linearly. For the simulations
this means that one has to keep sufficient states to overcome the
maximum in the entanglement entropy at intermediate times.
The simulation time is then not restricted by a growing S0

ent—as
is typically the case for quenches in closed quantum systems—
but rather by the number of renormalization-group steps which
can be performed before the accumulated truncation error leads
to a breakdown. For small dissipation rates the QT-LCRG
is therefore an attractive tool to investigate the long-time
dynamics of infinite one-dimensional quantum systems.
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