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Abstract

Edge modes in topological insulators are known to be robust against defects. We investigate if this also
holds true when the defect is not static, but varies in time. We study the influence of defects with time-
dependent coupling on the robustness of the transport along the edge in a Floquet system of helically
curved waveguides. Waveguide arrays are fabricated via direct laser writing in a negative tone
photoresist. We find that single dynamic defects do not destroy the chiral edge current, even when the
temporal modulation is strong. Quantitative numerical simulation of the intensity in the bulk and
edge waveguides confirms our observation.

1. Introduction

Topological insulators are materials that are insulators in their volume but conduct current at their surfaces.
This surface current is robust against certain defects [ 1-3]. In this paper we study if the surface current is also
robust against dynamic defects, i.e. imperfections at the surface that show a time-dependent behavior.

The research on topological insulators goes back to the discovery of the Quantum Hall effect [4]: applying a
high magnetic field to a two dimensional electron gas at low temperatures results in a drop of the resistance at
certain field strengths. This means that current is conducted almost dissipation-less. Although by now many
semiconductors have been proven to show topological behavior, engineering topological insulators in
semiconductor compounds often requires changing the material properties, e.g. by doping [5]. A different
approach is to apply a time-periodic drive. It has been shown that such a time-periodic drive can induce
topological behavior in a system, which is topologically trivial without the drive [6, 7]. Such a system is called a
Floquet topological insulator (FTT). The big advantage of this method is that the properties of the system can be
tuned externally. Floquet periodic drive can also be used to create effective magnetic fields in model systems
based on cold atoms or photons which scarcely couple to real magnetic fields.

In FTTs defects are generically time-dependent due to the time-periodicity of the driving field. This makes
them more complex than defects in static systems. For example it has been proposed that disorder can induce
transitions between topologically trivial and non-trivial systems in FTTs [8]. Also, it has been suggested that
certain time-dependent disorder can change the energy of an edge state in a 1D SSH model, when chiral
symmetry is broken [9]. This raises the question if a topological edge state in an FTTis still robust in the presence
of atime-dependent defect.

In solids, defects are not easy to control, and systematic tuning of the parameters is difficult. Therefore, many
model systems have been proposed, in which specific effects can be studied methodically. Among them are
experiments with ultracold atoms [10, 11], optical ring resonators [3], gyromagnetic photonic crystals [2] and
optical waveguide arrays [12—15]. In 2013 the first topological insulator for light in the visible spectrum was
realized [12]. This made photonic topological insulators not only interesting as model systems, but also for
opticsitself, e.g. to enable robust optical data transfer [16]. The setup in [12] consists of an array of evanescently
coupled waveguides arranged on a honeycomb lattice. In waveguide systems the propagation of light is described
by the paraxial Helmholtz equation [12]

© 2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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which is mathematically analog to the Schrodinger equation, with an effective potential
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(see[12]). Here, n(x, y)is the refractive index profile and n,,, the refractive index in the waveguide.

kwg = nyg2m/\is the wavevector in the waveguide and corresponds to the mass in the Schrédinger equation,
and U is the amplitude of the electric field. Propagation distance along the waveguide axis z corresponds to time.
For this reason we can use zand time synonymously. The intensity distribution of light coupling between
waveguides therefore represents the density distribution of electrons in an atomic lattice. Both can be described
by the same Hamiltonian in tight binding approximation

H =Y, bun + 8551 bmn + 8 i + hec 3)
m,n

for a honeycomb lattice with two sites a and b per unit cell. 4, +1,nl;m,n creates a particle at site a,, ; , and
destroys one at site b, , with hopping amplitude ¢, where m, n enumerate the sites. The underlying lattice of the
waveguide positions determines the band structure just as the atomic lattice does. This model system of
evanescently coupled waveguides is especially suited to examine edge transport behavior, since a sharp edge is
needed for that. In, e.g. cold atoms experiments a sharp boundary is hard to obtain as the atoms are usually
trapped in soft potentials. Furthermore, we can insert defects in a controlled way, which is not easily possible in
condensed matter systems.

By Fourier transformation of @ and b one obtains the band structure of the system, which up to this point
corresponds to a topologically trivial photonic graphene band structure [17]. To induce non-trivial topological
behavior time reversal symmetry must be broken by applying a periodic drive (Floquet [7, 18-20]). In waveguide
systems this is done by curving the waveguides helically [12]. Then, n(x, y) and, therefore, Vin equation (2) are
no longer stationary, but vary along z. To remove this z-(time-)dependency, the coordinates are transformed to a
reference frame that is rotating, in which the waveguides appear stationary. The effect of the curling then is
absorbed by a time-dependent vector potential in the transverse plane

A(z) = 277TngR(sin(27rz/Z), —cos(2nz/2)) (4)

with R being the helix radius and Z the helix pitch. A (z) corresponds to an ac-field [21]. Due to the vector
potential the coupling cacquires an additional phase, the Peierls phase [22]. Thus the complex coupling attains
the form

c— cexp(iA(z) - d), (5)

where d is the distance between waveguide sites. We look at the time evolution of the waveguide system
stroboscopically. The evolution operator U(Z) describes how the light intensity evolves in the coupled waveguide
system within a period Z. This can be used to define an effective Hamiltonian H.g setting

U(Z) = exp(—iH2). (6)

Now, we use the static effective Hamiltonian to characterize the topology of the system. As shown in [11] the
effective Hamiltonian resembles a Haldane phase [23] in the regime of a fast periodic drive. The quasienergy
band structure of the waveguide system is shown in figure 4(a) [7, 18—20]. The band structure hosts chiral edge
states similar to a Quantum Hall system. Such an edge state encircles the structure clock- or anti-clock-wise. It
cannot reverse its direction due to topological order. This is why these so called Chern insulators are robust
against certain defects, in the sense that at a simple defect no backscattering of the edge mode or scattering into
the bulk occurs. Defects in a FTI are generically time periodic with the same period as the external drive. Thus we
want to examine the robustness of topological edge states against dynamic defects in a waveguide setup of a FTT.
This setup is suited well, as it comes with almost arbitrary time-resolution. So far it has been shown in
experiments that a topological edge mode survives ‘wrong’ edge termination, a missing waveguide [12], obstacles
[2] and certain kinds of disorder [3]. However, none of these defects change in time. Still, there are experiments
that implement time-modulation of the coupling: in [24, 25] it is used to realize a photonic anomalous FTI, and
in [26] to induce losses. Yet, both experiments apply this modulation globally for different purposes and do not
study the impact on the robustness of the chiral current. For clarity of the effects, we look at a single defect at the
zigzag edge that is curled differently than the other waveguides, thus involving time-dependent coupling. We
examine three kinds of dynamic defects (see figure 1); in each case the defect waveguide substitutes an outer
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Figure 1. Stylized waveguide samples with different kinds of defects: (a) straight defect, (b) defect with opposite helicity, (c) defect
shifted by halfa helix pitch, (d) missing waveguide for comparison. In each case the defect waveguide substitutes an outer waveguide at
the zigzag edge of the honeycomb lattice.

waveguide at the zigzag edge of the honeycomb lattice: (a) a straight waveguide, (b) a waveguide with opposite
helicity, and (c) a waveguide with the same helicity but shifted by half a helix pitch in the z-direction (rotation
phase-shifted by 7)*. When transforming the coordinates of the whole system to the rotating frame, the time-
dependency cancels for the coordinates of all waveguides but the defect. This is why we call the defect dynamic,
in contrast to the rest of the waveguides resting in the rotating frame. The time-dependency of the defect position
results in a time-dependent distance d (z) between defect and neighboring waveguides. This has two effects: first,
the real part of the coupling c now becomes time-dependent, as it decreases exponentially with |d| [27]. Second,
with d(z) also the Peierls phase changes (see equation (5)). Therefore, this might be similar to realizinga
magnetic defect in a Quantum Hall phase.

2.Methods

2.1. Sample fabrication

To model topological insulators with defects by means of classical optics, we fabricate arrays of evanescently
coupled waveguides. These waveguides are about 1 ym in diameter at an aspect ratio of 1:500, and helically
curved. We fabricate the inverse of the sample by 3D-lithography (direct laser writing, DLW) [28]. DLW works
by two-photon-polymerization of a liquid negative tone photoresist (IP-Dip, Nanoscribe). Aberrations of the
laser focus used for writing are corrected by a spatial light modulator [29, 30] (for more details of this fabrication
method read [28]). In standard writing configuration the height of the structures is limited by the working
distance of the objective. As the waveguide structures are required to be quite high (about 500 ;zm normal to the
substrate), we use DLW in Dip-In configuration [31], which means that the writing-objective is dipped right into
the resist applied to the bottom of a glass cover-sheet. The structure then is built layer by layer (starting at the
glass sheet) by moving the objective in the z-direction. To minimize the stress onto the structure that occurs due
to shrinkage during development, the structure is put onto a grid [32, 33]. Besides leading to uniform shrinking
of the structure, it also helps to remove the unpolymerized resist from the waveguide channels during
development. The inverse sample is developed in PGMEA and Isopropanol for about 45 min and 30 min
respectively. Subsequently, the channels are infiltrated with a different material, creating low-loss 3D
waveguides (figure 2). As infiltration material we use SU8-2 (Microchem). The infiltrated sample is baked on a
hotplate to solidify the SU8. The resulting refractive indices are about 1.59 for the SU8 waveguide and 1.54 for
the surrounding material (IP-Dip).

The common method to fabricate waveguide arrays for FT1s is the femtosecond laser writing method [12]:
femtosecond laser pulses locally change the refractive index in a 10 cm long glass block by about
An =6 x 10 *to 10> [34]. By moving the glass relatively to the laser focus almost arbitrary trajectories of
the waveguides can be written. However, the focus determines the cross-section of the waveguides, making them
elliptical. Thus, the coupling between waveguides is not isotropic and has to be corrected by adjusting the
spacing between waveguides.

Our fabrication method results in circular cross-sections of the waveguide channels. By choosing a higher
refractive index contrast of An = 0.05 the bending losses can be reduced and tighter curling is possible. At the
same time, coupling between waveguides can still be kept large (about one hop per 60 pm propagation) by
decreasing the spacing between waveguides to about 1.5 pm. This also allows to reduce the overall length of the

4 . Co . ; . .
The three examined defects were chosen to share the Z-periodicity with the usual waveguides. Using defects with a different Z or even non-
periodic trajectory would also be possible.
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Figure 2. (a) and (b): Scanning electron microscopy images of inverse waveguide samples: (a) top view and (b) view tilted by 42°
(structure with supporting framework). (c) The unfilled waveguides (dark) are infiltrated with SU8 by capillary forces. Microscope
images are taken at intervals of a few seconds.

sample to about half a millimeter. Furthermore, the waveguide diameter is chosen small enough to still be in the
single-mode regime. A further degree of freedom is the choice of the infiltration material, allowing to easily tune
the refractive index contrast between waveguide and surrounding.

Due to the tight curling there is a slight coupling between polarizations, but on a negligible order. We tracked
this in the simulations: if E, (linear polarization in the x-direction) is coupled into the waveguides, the intensity
in E, is 2% of E, at maximum after 467.5 jzm of propagation for the set of strong defects. For weak defects it is
even less.

We fabricate two sets of samples for each of the four defect cases with different parameters. The first one is
for weak modulation of the coupling between defect and neighbors, i.e. large spacing between waveguides
a=1.65 ym and small helix radius R = 0.36 pm atahelix pitch of Z = 72 ym and waveguide radius of
r = 0.37 pm. The coupling constant between two regular waveguides for this set is numerically calculated to be
¢ ~ 16 300 m~!. Note, that while the distance d between defect and neighboring waveguide varies
symmetrically as, e.g.

d = (—a/2 + Rcos(2wz/Z), \J3 /2a + RsinQ2nz/Z)) @)

for the straight defect, coupling does not, as it decays exponentially with |d| [27]. Time-(z-)averaging yields
average defect coupling constants of only 3% compared to the coupling between two usual waveguides.
Therefore we call the defects of this set of parameters weak dynamic defects.

The second set gives strong modulation in coupling, as a = 1.40 pm and R = 0.89 pmat Z = 85 ym and
r = 0.49 um. Here, the averaged defect coupling constant c4 differs more from the usual coupling
(¢ &~ 23 000 m~"). For the defect with opposite helicity the defect coupling ¢, is about 70% of ¢, for the phase-
shifted defect 150% of c and for the straight defect 180% of c. Note that for this set of parameter the straight and
the phase-shifted defect are overlapping with their neighbors at certain times.

2.2. Measurement setup

The beam from a tunable fs-pulsed TiSa-laser (680—1080 nm) is expanded and focused through objective 1 onto
the input facet of the waveguide sample (figure 3). The intensity distribution at the output facet is imaged by
objective 2 and alens onto CMOS-camera 1 (Thorlabs). A movable slit in front of objective 1 allows to create an
angle in the incoupling beam and thus to select k,-components for excitation (see band structure in figure 4). To
see the excitation area, the reflection of the laser beam at the input facet is imaged by means of a beam splitter,
objective 1 and alens onto CMOS-camera 2. By using white light from a lamp we can image the output- (input-)
facet of the sample onto camera 1 (camera 2) to identify the waveguide sites.

3. Results

3.1. Experiment

To observe the effect of a dynamic defect, an edge mode is excited at the position indicated by a dashed ellipse in
figure 6. This is done by coupling an elliptically shaped laser beam into four waveguides at the zigzag edge. We
select ky/3 a & 7, where a chiral edge state exists at the zigzag edge (see figure 4). The excitation area is imaged

4
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Figure 3. Schematic illustration of the measurement setup.
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Figure 4. (a) Floquet band structure of the honeycomb geometry without defect (quasienergy E divided by coupling c). While we
assume periodic boundary conditions along x, we consider a finite size system along y. Therefore, the band structure shows two chiral
edge modes on opposite sites in y-direction, which are the edge states for the zigzag edge. (b) Geometry of defect with opposite helicity
for small a; green: nearest-neighbors, blue: next-nearest neighbors.

onto camera 2 and the output distribution onto camera 1. The sample can be moved along the x- and y-axis by
linear actuators to excite different waveguides. Comparing the location of the excited waveguides at the input
and output plane we can see how far and in which direction the edge state has moved along the sample. By tuning
the wavelength of the laser beam we can tune the coupling constant to some extent [27] which has the same effect
as fabricating a new sample with different waveguide spacing a. We need the edge mode to move far enough
along the zigzag edge to see if it walks around the defect. Thus we use a wavelength of A = 810 nm on the sample
with bigger a (set of weak dynamic defects) and of A = 710 nm on the one with smaller a (set of strong dynamic
defects).

Figure 5 shows the intensity distribution in the output plane of the sample for weak defects (small helices)
and figure 6 for strong defects (large helix radius). Sample heights are 6.5Z and 5.5Z respectively, and
correspond to the propagation distance. As the heights are not integer multiples of Z, the defect seems to be
farther away from the edge than the rest. However, the defect’s mean position still coincides with a lattice site (see
insets to figures 5 and 6).

We firstlook at the case of one waveguide missing at the edge (figures 5(d) and 6(d)). For both sets of
parameters the edge state behaves as shown in other setups before, e.g. in [12]: the edge mode moves around the
defect, i.e. along the new edge, without observable scattering into the bulk. This indicates that we have indeed a
photonic topological insulator.

While the edge state in a topological insulator has no other possibility than to move around a missing
waveguide, its behavior at dynamic defects is yet unknown. The wrong Peierls phase of the defect coupling could
lead to scattering into the bulk. However, in all the cases of dynamic defects studied here, the edge mode moves
along the edge regardless of the defect (figures 5 and 6(a)—(c)). Yet, the light does not just move around the defect
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Figure 5. Weak dynamic defects: measured (left) and numeric (right, see section 3.2) intensity distributions at the output facet of the
samples. The edge modes, excited at the location of the dashed ellipse, move around different kinds of defects: (a) straight defect, (b)
defect with opposite helicity, (c) defect shifted by half a helix pitch, (d) missing waveguide. White circles indicate edge waveguides.
Intensity is scaled to maximum separately for each image. The insets show the geometry at the defect. Output after z = 471(38) pm
(experiment) and z = 468 pm (simulation) of propagation. Differences between experiment and simulation are due to fabrication
imperfections and slight deviations in the location of excitation.

asin the missing waveguide case, but also through it. For large waveguide spacing a (weak defects) the light
mainly goes through the defect waveguide. As there is almost no difference between the average defect coupling
constant and the usual coupling constant (see section 2.1), the defect waveguide seems not to be noted as defect
atall, despite the wrong Peierls phase in the coupling.

For small values of a (strong defects) light partially moves around the defect and partially through it. At
certain times, coupling of the light to non-neighboring waveguides outweighs nearest-neighbor coupling
(figure 4(b)). At other times, coupling of the defect to any other waveguide is much smaller than between the
surrounding ones. In this case the light partially moves around the defect and partially through it. This means
that time-dependency may also give rise to other effects [24]. What is noted though, is that the intensity
decreases dramatically in the case of overlapping waveguides. This is attributed to losses due to mode-
mismatching, as the cross-section of the joined waveguides is not circular any more. However, this does not
contradict the robustness of the edge mode, as the topological protection is only valid against backscattering and
not against particle loss [35].

The experiment suggests that edge modes in topological insulators are still robust in the presence of a single
dynamic defect.

3.2. Numerical simulations

To analyze the robustness of the transport along the edge quantitatively, numerical calculations are performed.
We examine the portion of intensity in the bulk and edge waveguides along z, to see if the defect causes light to
scatter into the bulk. In contrast to the experimental realization, the numerical simulations allow the intensity
distribution to be analyzed at multiple values of zin one run. Experimentally, one would need to fabricate many
samples of different heights to access multiple z-slices. As the numerical calculations match the measurements
well (compare figures 5 and 6), we use the OptiBPM software (Optiwave), which relies on the beam propagation
method.
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Figure 6. Strong dynamic defects: measured (left) and numeric (right, see section 3.2) intensity distributions at the output facet of the
samples. The edge modes, excited at the location of the dashed ellipse, move around different kinds of defects: (a) straight defect, (b)
defect with opposite helicity, (c) defect shifted by half a helix pitch, (d) missing waveguide. White circles indicate edge waveguides.
Intensity is scaled to maximum separately for each image. The insets show the geometry at the defect. Output after z = 465(15) pm
(experiment) and z = 467.5 um (simulation) of propagation. Differences between experiment and simulation are due to fabrication
imperfections and slight deviations in the location of excitation.

In the simulation, three waveguides at the edge are excited by Gaussian beams with a phase difference of 7.
This corresponds to a transversal wavevector component of k,~/3a = 7. Videos showing the propagation of
the edge mode around the defect were constructed via the simulations and can be found in the supplementary
material (supplementary material is available online at stacks.iop.org/NJP/19/083003 /mmedia). For weak
defects the videos basically show that light mainly moves through the defect waveguide, in accordance to the
measurements. However, the overall loss in intensity due to bending is severe. For strong dynamic defects the
videos show another interesting effect, that is not captured by the single images obtained by measurements:
some defects seem to retard part of the initial wave-packet and split it in parts, that subsequently move along the
edge separately. This is visible in the video for the straight defect and the defect with opposite helicity.

For quantitative analysis the intensity in the edge waveguides as well as in the bulk waveguides is summed up
for each z-step and normalized to the intensity at the excitation point (z = 0). For some samples with defects,
the edge mode partially moves through and partially around the defect (see videos and section 3.1). Therefore,
also the waveguides immediately surrounding the defect are counted as edge waveguides in these cases.
Waveguides considered as edge waveguides are indicated by white circles in figure 6. Note, that the edge modes
are localized with some finite localization length and thus extend into bulk waveguides. Therefore we make a
small error in counting only the intensity in the edge waveguides. However, thoroughly distinguishing between
intensity from edge and bulk modes in the same waveguide is not possible.

The simulated situation corresponds to a scattering experiment: a wave-packet (excited at the three
waveguides atz = 0) travels along the edge, meets the defect and interacts with it for a certain time interval
(100 pm < Zgeaprer < 600 m), and then moves on along the edge. To determine if the defect causes scattering
into the bulk, we examine the intensity in the edge and in the bulk waveguides. We need to look at both
intensities, as we have to distinguish between two effects: scattering into the bulk, and losses into the continuum
induced by the defect. In addition to that, overall losses are present in our system. These are mainly absorption
and bending losses and lead to an exponential decay of the intensities (compare for figures 7 and 8(a)). For the




I0OP Publishing

New]. Phys. 19(2017) 083003

CJorgetal

® &y = (811 + 94) um

exp(=z/§w)

O straight defect

x defect with opp. helicity

o phase-shifted defect

+ missing waveguide

» no defect (perfect edge)
—— fit to perfect edge

300 600

900

a) 02
0.14
=
g
E
= 008 |
=
O
0.02 |
0
b) 13
14}
2
g
g 1
(]
on
el
- 06
E !
=}
=
0.2
0

z/um
3
n
&gt T+
®x , . o .
% o = e T,
a (u] (=] a - B
Koo, ° DDDD gf 0 o o
SO 0fg 0 mo o o
Yo o o
X3 oo R 0 jon
x QDQ " QQ@ ° o
Qg Xt x® xgmg) o, o & +~5€O++g
+ 0, Topp T x0° %0
x Xoxox X ok KX
x X X x X X
300 600 900

Figure 7. Numerical calculations for weak dynamic defects: intensity in edge (red) and bulk (blue) for samples with and without
defects. (b) Normalized to fitting curve for the edge intensity of the defect-free sample to remove overall losses.
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Figure 8. Numerical calculations for strong dynamic defects: intensity in edge (red) and bulk (blue) for samples with and without
defects. (b) Normalized to fitting curve for the edge intensity of the defect-free sample to remove overall losses. The dip in (a) and peak
in (b) around z & 200 pm results from counting waveguides surrounding the defect as edge waveguides (see white circles in figure 6).
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samples with large a (weak dynamic defects, figure 7) the bending losses are bigger. We expected this since the
helix pitch is smaller than for the other set of parameter and also A is increased. To separate these overall losses
from the dynamics, we fit an exponential decay to the curves of the defect-free sample (perfect edge) for

Z 3> Zscarter Where the influence of the defect is negligible. The edge intensities in figures 7 and 8(b) are then
normalized to the respective fit. The gray shading indicates the intensity range for the defect-free sample. We
assume that intensity, that is radiated off due to bending, is picked up by neighboring waveguides and thus leads
to fluctuations of the data.

Figures 7 and 8 show two things: first, the exponential decay rate for z >> zyae; is not influenced by any of
the examined defects, as one would expect. This means, that the normalized curves are approximately constant
for z > Zatter-

Second, the defects do notlead to scattering into the bulk, but only to losses into the continuum. Figures 7
and 8(a) show that the intensity in the bulk does not rise above the value for the defect-free sample. The drop in
the intensity in the edge therefore has to be interpreted as loss into the continuum. This drop is most prominent
for the sample with the phase-shifted and with the straight strong dynamic defect (figure 8(b)). Considering both
the bulk and edge intensity indicates, that rather than scattering into the bulk, the intensity is radiated away. This
can be explained by mode mismatching, as the phase-shifted and the straight defect are overlapping with their
neighbors at certain z.

In conclusion, the numeric simulation indicates that dynamic defects do not lead to scattering into the bulk.
Thus, the topological edge mode is still robust in their presence.

4. Conclusion and outlook

The examined single dynamic defects seem to have no influence on the robustness of a chiral edge mode in a FTT.
This is confirmed by measurements as well as numerical calculations. In all cases of the studied defects no
scattering into the bulk occurs, rather the mode partially moves around the defect and partially through it. Even
when the defect is overlapping with its neighbors at times, the edge mode is surprisingly robust against scattering
into the bulk. In that case however, a lot of light is radiated off due to mode-mismatching. Further investigation
is needed to see if a bigger amount of dynamic defects might lead to a different behavior (i.e. scattering into

the bulk).

Coupling of edge modes to bulk modes should in principle be possible, if the defect has the ‘right’
quasienergy, i.e. that of the bulk bands. Energy of a single waveguide can for example be shifted by tuning the
refractive index of that defect [36]. In our work, we study defects driven by the same frequency as the bulk
waveguides. It remains an open question whether different parameters of the drive (frequency as well as driving
amplitude) may allow a strong coupling between the defect and the bulk modes. We believe this is an important
extension of our present work and it needs further investigation. Also, we think that fine tuning the defect
driving parameters may allow to increase the scattering into the bulk modes.

The presented method used to fabricate the waveguide samples is quite flexible. For example it allows to
change the refractive index contrast easily by infiltrating the inverse sample with different materials. In the same
way, nonlinear materials can be used to form waveguides, to observe the effects of nonlinear waveguides on the
topological robustness.
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