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Abstract
We examine the adiabatic preparation of crystalline phases of Rydberg excitations in a one-
dimensional lattice gas by frequency sweep of the excitation laser, as proposed by Pohl et al
(2010 Phys. Rev. Lett. 104 043002) and recently realized experimentally by Schauß et al (2015
Science 347 1455). We find that the preparation of crystals of a few Rydberg excitations in a
unitary system of several tens of atoms requires exceedingly long times for the adiabatic
following of the ground state of the system Hamiltonian. Using quantum stochastic (Monte
Carlo) wavefunction simulations, we show that realistic decay and dephasing processes affecting
the atoms during the preparation lead to a final state of the system that has only a small overlap
with the target crystalline state. Yet, the final number and highly sub-Poissonian statistics of
Rydberg excitations and their spatial order are little affected by the relaxations.

Keywords: optical lattice, crystalline phase, strongly interacting Rydberg atoms

(Some figures may appear in colour only in the online journal)

1. Introduction

Atoms in high-lying Rydberg states strongly interact with
each other via the long-range dipole–dipole or van der Waals
potentials [1, 2]. These interactions can suppress multiple
Rydberg excitations of atoms within a certain blockade dis-
tance from each other [3], and are being explored for
obtaining ordered phases of interacting many-body systems
and simulating quantum phase transitions [4–13].

Several conceptually different approaches have been
suggested for the preparation of crystalline order of Rydberg
excitations in spatially-extended ensembles of cold atoms.
These include direct (near-)resonant laser excitation of
strongly-interacting Rydberg states in continuous or lattice
gases [14–19], and the deceleration and storage in one-
dimensional (1D) atomic medium of propagating light pulses

forming the so-called Rydberg polaritons under the conditions
of electromagnetically induced transparency [20, 21]. A
common feature of all these schemes is that the resulting
spatially-periodic structure of Rydberg excitations has finite
density–density correlation length, while their number exhi-
bits highly sub-Poissonian statistics characterized by negative
Mandel parameter 1 -Q 0.5. The Rydberg excitations then
essentially form a liquid rather than a crystal phase with long-
range order.

To achieve perfect Rydberg crystals with long—ideally
infinite—correlation length, an adiabatic preparation protocol
of the ground state of an Ising-type Hamiltonian for inter-
acting Rydberg gases has been proposed [22–25]. An
experimental realization involving a few Rydberg excitations
in a 1D lattice of several tens of sites was recently reported in
[26]. Our aim here is to critically re-examine this protocol,
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taking into account realistic relaxation processes affecting the
atoms. We find that, under typical experimental conditions, it
is not feasible to attain the perfectly-ordered ground state of
the Hamiltonian even for three or four Rydberg excitations in
a finite 1D lattice gas. This is because the atomic decay and
dephasing during the exceedingly long preparation time
required for the adiabatic evolution of the system spoil the
adiabaticity and significantly reduce the overlap of the final
state of the system with the target ground state of the
Hamiltonian. This overlap, or fidelity, is largest at some
intermediate value of the preparation time, and maximizing
the probability of the ordered state of Rydberg excitations
requires therefore a compromise between the adiabatic fol-
lowing and decoherence. Even though the perfectly-ordered
state cannot be obtained with high fidelity, good spatial
ordering of Rydberg excitations is still achieved.

2. The adiabatic preparation protocol

We consider a system of N atoms trapped in a 1D optical
lattice potential, with one atom per lattice site, assuming no
site-occupation defects. A spatially-uniform time-dependent
laser field couples the ground state ñg∣ of each atom to the
Rydberg state ñr∣ with the Rabi frequency W t( ) and detuning
d w wº -t rg( ) . In the frame rotating with the laser field
frequency ω, the system is described by the Ising-spin-1

2
-like

Hamiltonian
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where s m nº ñ ámn
j

jjˆ ∣ ∣ are the projection (m n= ) or transition
(m n¹ ) operators for atom j, while D = C rij ij6

6 is the
strength of the (repulsive, >C 06 ) van der Waals interaction
between the Rydberg-excited atoms i and j separated by
distance rij.

Our aim is to prepare the ground state of Hamiltonian(1)
in the classical limit ofW l 0. The complete basis consists of
states with = ¼n N0, 1, 2, , Rydberg excitations. On an N-
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are degenerate, having the energy d= -E nn . Interactions
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where = -l a N 1( ) is the length of the system, i.e., the
distance between the first and last atoms, with a the lattice
constant. The energy spectrum En{ } versus detuning d is
schematically shown in figure 1. For negative detunings
d d= 0, the ground state of the system corresponds to the
=n 0 excitation state ñR0∣ with =E 00 , while for positive

d d� n the ground state corresponds to the lowest-energy n
excitation state ñRn

min∣ , such that < oE En n
min

1
min which leads

to d �n
C n

l2
6

7

6 .
In the adiabatic preparation protocol [22–26],

we start with the state ñR0∣ and the laser detuning
having some negative value d < 0 which we then
slowly increase till reaching some positive final value d d� n.
As we vary the detuning, the energies ¼E n0,1, ,

min cross at

around d d=l l0,0 1 1 2 d= l,C
l 2 3

6
6 d¼ - l� , ,C

l n n
2

1
6

7

6 ( )
- - -� C n n

l
1 26

7 7

6

[( ) ( ) ] [22]. Of course, with vanishing field
amplitudeW l 0, there is no coupling and thereby transitions
between the energy levels En, and the system initially in state

ñ = ¼ ñR gg g0∣ ∣ will remain in that state irrespective of d .
Hence, as we change the detuning, the field W should be non-
zero when the energy levels ¼E n0,1, ,

min cross, which would lead
to avoided crossings and adiabatic following of the ground
state of the system. The initial state with zero Rydberg
excitations ñR0∣ is coupled by the field to the symmetric
single excitation state ñR1∣ with the collectively-enhanced rate

W = Wl N ,0 1

Figure 1. Diagram of energies En of Hamiltonian(1) in the limit of
W l 0 versus laser detuning d , for =n 0, 1, 2, 3, 4 Rydberg
excitations of atoms in a lattice. Thick lines correspond to the lowest
energy En

min within the n-excitation subspace, while thin dotted lines
with the same slope (and color) denote the excited state energies
with the same .n 2.
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which leads to a large level repulsionoW l0 1 in the vicinity of
d l0 1. Next, state ñR1∣ is coupled to the lowest-energy double-
excitation state ñ º ¼ ñR r g grN2

min
1∣ ∣ with a much smaller

rate of

W =
W

l
N

2
1 2

and the corresponding level repulsion around d l1 2 is small
oW l1 2. In turn, state ñR2

min∣ is coupled to the lowest-energy
triple-excitation state ñ º ¼ ¼ ñ+R r g gr g grN N3

min
1 1 2∣ ∣ ( )

(assuming odd N) with the single-atom transition rate

W = Wl2 3

and the levels are repelled by oW l2 3 around d l2 3. The
lowest-energy four-excitation state

ñ º ¼ ¼ ¼ ñ+ +R r g gr g gr g grN N N4
min

1 2 3 2 1 3∣ ∣ ( ) ( ) (assuming
= +N k6 1 with = ¼k 1, 2, 3, ) is coupled to the three-

excitation state ñR3
min∣ only via three-photon process, and thus

the transition amplitude is small [22]
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6
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The successive transitions to higher .n 4 excitation states
involve -n2 5( )-photon processes yielding therefore even
smaller transition amplitudes W - ln n1( ) .

As we change the laser detuning, our intention [22–
24, 26] is that, in the vicinity of d - ln n1( ) , the system adia-
batically follows the ground state ñ l ñ-R Rn n1

min min∣ ∣ .
According to the Landau–Zener formula [27, 28], the
probability of non-adiabatic transition ñ l ñ- -R Rn n1

min
1

min∣ ∣
is given by p a~ - W - lp exp 2 n nn.a. 1

2( ∣ ∣ )( ) , where a =

d- =¶
¶ -

¶
¶

E E
t n n t1

min min∣ ∣ is determined by the rate of change of
detuning d . Hence, due to the small values of the effective
Rabi frequencies W - ln n1( ) for .n 4, adiabatic population of
states beyond =n 3 will be difficult to achieve. We therefore
mainly focus on preparing adiabatically the triple-excitation
state ñR3

min∣ , but we will briefly consider longer lattices which
can accommodate =n 4 excitations under otherwise similar
conditions. Notice also the bottleneck for the transition

ñ l ñR R1 2
min∣ ∣ , due to the smallness of the effective Franck–

Condon factor ( =f N2 ) of W l1 2, as compared to W l0 1

( =f N ) and W l2 3 (f= 1). As will be illustrated below, this
fact has rather interesting implications for the adiabatic
preparation of the target double- and triple-excitation states

ñR2
min∣ and ñR3

min∣ .
We shall consider unitary dynamics of the system, as

well as the influence of relaxation processes. These include
spontaneous decay of atoms from the Rydberg state ñr∣ to the
ground state ñg∣ with rate Gr, and dephasing of the atomic
transition ñ « ñg r∣ ∣ with rate Gz due to non-radiative colli-
sions with the background atoms, external and trapping field
noise, Doppler broadening, laser linewidth, and decay of the
intermediate atomic state ñe∣ to the ground state ñg∣ when

ñ « ñg r∣ ∣ is a two-photon transition [18, 26]. The corresp-
onding Lindblad generators for the decay and dephasing
processes are s= GL

j j
r r gr

ˆ ˆ and s s= G -Lz
j

z
j j

rr gg
ˆ ( ˆ ˆ ), and the

total decay rate of coherence sá ñrgˆ on the transition ñ « ñg r∣ ∣

is then g º G + G2 zrg
1
2 r [17, 29]. We assume closed systems

in which �s s+ = " Îj N1,j j j
gg rrˆ ˆ [ ] is preserved throughout

evolution.
To simulate the dissipative dynamics of the many-body

system, we employ the quantum stochastic (Monte-Carlo)
wavefunctions [30]. In each quantum trajectory, the state of
the system Y ñt∣ ( ) evolves according to the Schrödinger
equation  

�
¶ Yñ = - Yñt

i∣ ˜ ∣ with an effective Hamiltonian

�  = - L
i
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is the non-Hermitian part which does not preserve the norm of
Yñ∣ during the evolution. The evolution is interrupted by

random quantum jumps Yñ l YñL z
j

r,∣ ˆ ∣ with probabilities

º áY YñW L Lz
j

z
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z
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r, r, r,
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, where the normalized wavefunction of
the system at any time t is given by
Y ñ = Y ñ áY Y ñt t t t∣ ¯ ( ) ∣ ( ) ( )∣ ( ) . The expectation value of

any observable '̂ of the system is then obtained by averaging
over many, �M 1, independently simulated trajectories,
' ' 'rá ñ = = å áY Y ñTr

M m
M

m m
1ˆ [ ˆ ˆ ] ¯ ∣ ˆ ∣ ¯ , while the density

operator is given by r = å Y ñáYt t t
M m

M
m m

1ˆ ( ) ∣ ¯ ( ) ¯ ( )∣ .
We define the populations of the lowest-energy n-exci-

tation states as rº á ñP R Rn n n
min min min∣ ˆ ∣ . The mean number of

Rydberg excitations within an ensemble of N atoms is
sá ñ = áå ñn j

N j
rrˆ , while the probabilities = áS ñpn n

ˆ of n exci-
tations are defined through the corresponding projectors

sS º �j
N j

0 gg
ˆ ˆ , s sS º å � ¹j

N j
i j
N j

1 rr gg
ˆ ˆ ˆ , etc. Obviously

á ñ = ån n pn n. To quantify the probability distribution of
Rydberg excitations, we use the Mandel Q parameter [31]

º
á ñ - á ñ

á ñ
-Q

n n

n
1, 4

2 2
( )

where á ñ = ån n pn n
2 2 . A Poissonian distribution

= á ñ -áp n nen
n n ! leads to =Q 0, while <Q 0 corresponds

to sub-Poissonian distribution, with = -Q 1 attained for a
definite number n of excitations, pn=1.

In the numerical simulations, we truncate the total
Hilbert space to =nmax 5 Rydberg excitations and, upon
verifying convergence, choose some minimum distance
between the excitations, .- ºi j dmin 1∣ ∣ , which leads to

� =
- - -⎜ ⎟⎛

⎝
⎞
⎠

N d n
n

dim
1 1

n
d ( )( )( ) , reducing thereby sig-

nificantly the computational Hilbert space.

3. Results of simulations

In our simulations, we use system parameters similar to
those in recent experiments [18, 26] i.e., we assume 87Rb
atoms in a lattice with =a 532 nm excited from the
ground state ñ º = = - ñg S F m5 , 2, 2F1 2∣ ∣ , by a two-
photon process via a non-resonant intermediate state
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ñ º = = - ñe P F m5 , 3, 3F3 2∣ ∣ , to the Rydberg state
ñ º = - ñr S m43 , 1 2J1 2∣ ∣ with the van der Waals interac-

tion constant p m´�C 2 2.45 GHz m6
6. The time-dependent

Rabi frequency W t( ) and detuning d t( ) of the excitation laser
(s) are also chosen to have similar values to those in [26],
which were optimized for preparing the =n 3 Rydberg
excitation ground state in a ~N 20 site lattice. We note that
the precise shape of the W t( ) pulse of certain duration τ and
the corresponding linear variation of d t( ) are important for the
quantitative characterization of the final state of the system,
but the general conclusions of our study are qualitatively valid
for other similar preparation strategies involving pulsed W t( )
with simultaneous monotonic increase of d t( ) [22–25].

In figure 2 we show the dynamics of a representative
system of =N 19 atoms subject to an appropriate laser pulse
(top panel) of duration t m= 12 s leading, in the unitary
regime of G = G = 0zr , to the final probability >p 0.993 of
=n 3 Rydberg excitations and quite large population
�P 0.733

min of the target ground state. This preparation time
τ is significantly longer than in the experiment [26] with
t m� 4 s, but obtaining the target ground state ñR3

min∣ with
higher probability of >P 0.93

min would require even slower
preparation with 2t m20 s (see figure 3). If we now add
realistic decay and/or dephasing of the atoms, the population

P3
min of the target final state would considerably decrease, see

figure 2. Simultaneously, the spatial distribution of Rydberg
excitations, while still retaining order imposed by the open
boundary conditions [14, 16, 17] will resemble perfect crystal
even less.

In figure 3 (top panel), we show the fidelity ºF P3
min of

attaining the target crystalline state of =n 3 Rydberg exci-
tations in the =N 19 site lattice, for unitary (G = G = 0zr )
and dissipative (G ¹ 0zr, ) cases, as a function of the prep-
aration time τ (varying τ means rescaling by the same amount
the time-dependence of both W t( ) and d t( ), see figure 2 (top
panel)). We observe that, in all cases, the fidelity is rather low,
1F 0.2 for t m= 4 s [26]. The resulting spatial distribution

of Rydberg excitation probabilities sá ñjrrˆ is also very similar in
all cases of G G, zr .

In order to obtain a suitable measure for crystalline order
in the finite system, we fit the central peak of sá ñjrrˆ in the
vicinity of = +j N 1 2c ( ) with a Gaussian
sá ñ - -� A j j wexp 2j

rr c
2 2ˆ [ ( ) ( )] and extract its width w

shown in figure 3 (bottom panel). For t m= 4 s we obtain
�w a1 for all cases, which corroborates the above assertion

that the final spatial density distribution of Rydberg excitation
sá ñjrrˆ with or without relaxations is nearly indistinguishable.
Apparently, when the preparation time τ is too short, the
system cannot adiabatically follow the sequence of the low-
est-lying states ñ l ñ l ñ l ñR R R R0 1 2

min
3
min∣ ∣ ∣ ∣ and the

final state has a significant admixture of the higher lying states
which are still, however, mostly within the =n 3 excitation
subspace due to the large energy gap with the manifold of
higher n states.

Increasing the preparation time τ obviously improves the
adiabaticity of the unitary evolution attested by the mono-
tonous increase of the final fidelity F of the target state and
the decrease of w, as seen in figure 3. But when we add
realistic decay and dephasing, the advantages of slower
preparation largely disappear, because the relaxation

Figure 2. Dynamics of the system with =N 19 atoms initially in the
ground state ñR0∣ , subject to the time-dependent field with the Rabi
frequency W t( ) (left vertical axis) and detuning d t( ) (right vertical
axis) shown in the top panel. The lower panels show the time-
dependence of probabilities pn of n Rydberg excitations (dashed
lines) and populations Pn

min of the lowest-energy n-excitation states
ñRn

min∣ (thick solid lines), for = ¼n 0, 1, ,5, in the absence or
presence of atomic decay Gr and dephasing Gz. The inset in each
panel shows the corresponding spatial structure of the Rydberg
excitation probabilities sá ñjrrˆ of atoms =j N1, 2 ,..., at the final time
τ. The graphs with decay and dephasing were obtained upon
averaging over M=150–200 independent realizations (Monte-
Carlo trajectories) of the numerical experiment.

Figure 3. Final fidelity ºF P3
min (top panel), and corresponding

width w (in units of a) of the spatial distribution of sá ñjrrˆ at the lattice
center jc=10 (bottom panel), versus the preparation time τ, in the

=N 19 site lattice (as in figure 2) for various values of relaxation
constants G G, zr (see the legend).
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processes acting for longer time induce more decoherence and
deplete the crystalline ground state of the system. Remark-
ably, the mean number of Rydberg excitations and the
corresponding statistics characterized by the highly sub-
Poissonian Mandel Q parameter, are considerably less sus-
ceptible to relaxations, as shown in figure 4. Note that if, for
the given parameters of the system, we view the final spatial
distribution of Rydberg excitations sá ñjrrˆ with the corresp-
onding finite resolution w, it would appear nearly indis-
tinguishable from the crystalline state.

As promised above, in figure 5 we show the final fide-
lities, together with the mean excitation numbers and the
corresponding Q parameters, for a shorter lattice of =N 13
sites that can accommodate =n 2 excitations, and for a
longer lattice of =N 31 sites with up to =n 4 excitations, for
the same parameters as in the previous figures. The smaller
preparation fidelity of the longer =n 4 crystal is to be
expected, as the system has to adiabatically follow more
(avoided) level crossings, the last of which in the vicinity of
d l3 4 has very small level repulsion oW l3 4. What is more
surprising, however, is that, for the same duration τ of the
process, the final population of the target double excitation
state ñR2

min∣ in the shorter lattice is smaller than the final
population of the target triple-excitation state ñR3

min∣ in an
appropriately longer lattice (see figure 3). This counter-
intuitive behavior can be understood from the following
consideration: due to the small effective coupling
W = Wl N21 2 between states ñR1∣ and ñR2

min∣ , and the
resulting small level repulsion in the vicinity of d l1 2, only a
fraction of population of state ñR1∣ is adiabatically converted
into the population of the =n 2 ground state ñR2

min∣ . On the
other hand, the =n 3 crystalline ground state ñR3

min∣ can be
populated not only from state ñR2

min∣ , but also from other
higher-energy double-excitation states ñR2∣ (see figure 2).
Thus, much of the population remaining in ñR1∣ after its
(avoided) level crossing with ñR2

min∣ is transferred to the other
double-excitation states ñR2∣ , two of which,

¼ ¼ ñ+r g gr g ggN1 1 2∣ ( ) and ¼ ¼ ñ+gg gr g grN N1 2∣ ( ) , can later
be converted into ñR3

min∣ . Interestingly, this partial return of
population from the higher energy states to the adiabatic
ground state of the system leads to its final population which

is larger than would follow from a naïve use of the inde-
pendent, or sequential, level crossing approximation [28].

4. Discussion and conclusions

To summarize, we have shown that preparing small crystals
of merely two to four Rydberg excitations in a lattice gas of
several tens of atoms using the adiabatic protocol [22–24]
requires exceedingly long times to effect a slow-enough
change of detuning of the laser field irradiating the atoms.
Then, under typical experimental conditions [18, 26] the
relaxation processes affecting the atoms during such long
preparation times cause multiple transitions between the
diabatic energy levels and deplete the adiabatic crystalline
ground state of the system. The resulting mixed final state is
then essentially a steady-state of the dissipative system
[14, 16] subject to a uniform driving laser with the same final
detuning.

In an experiment, the fidelity of preparation of a target
crystalline state of n excitations of atoms in a 1D lattice is the
probability of simultaneously detecting n Rydberg atoms at
equidistant positions, which is obtained from many repeti-
tions of the preparation and site-resolved measurement cycles.
In our somewhat idealized treatment, we assumed a perfect
lattice of atoms with unity filling of each site, and neglected
the motion of Rydberg-excited atoms and their detection
errors. Clearly, the initial site-occupation defects of the trap-
ped ground-state atoms, the motion and loss of the untrapped
Rydberg-excited atoms, as well as finite detection efficiency
will result in further reduction of the measured preparation
fidelities of crystalline phases of Rydberg excitations.

While these results may appear discouraging for the
prospects of attaining sizable crystals of Rydberg excitations
in laser-driven atomic media, our simulations of dissipative
dynamics of the system still reveal spatial ordering of Ryd-
berg excitations and highly sub-Poissonian probability

Figure 4. Mean number of Rydberg excitations á ñn (main panel) and
the corresponding Mandel Q parameter (inset), versus the prep-
aration time τ, for the =N 19 site lattice with various G G, ;zr all
parameters and correspondence of symbols/lines are the same as in
figure 3. Figure 5. Fidelities ºF P2

min (top left) and ºF P4
min (top right),

mean number of excitations á ñn (middle) and the corresponding Q
parameters (bottom panels), versus the preparation time τ, for the
lattice of =N 13 (left column) and =N 31 (right column) atoms.
Notice the difference in the vertical axes scales. All parameters and
correspondence of symbols/lines are the same as in figures 3 and 4.
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distribution of the excitation number, which should not be
very sensitive to site-occupation defects. We note that similar
and even larger structures can be obtained, or ‘grown’, per-
haps more efficiently if, instead of slowly changing the
detuning of the laser uniformly irradiating a chain of atoms
initially in the ground state, one sweeps the laser beam with a
fixed frequency form the one end of the chain to the
other [11].

We hope that our analysis and result are both stimulating
and important for the general field of simulating interacting,
dissipative many-body systems and imitating their various
phases with Rydberg atoms.
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