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Realization of fractional Chern insulators in the thin-torus limit with ultracold bosons
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Topological states of interacting many-body systems are at the focus of current research due to the exotic
properties of their elementary excitations. In this paper we suggest a realistic experimental setup for the realization
of a simple version of such a phase. We show how δ-interacting bosons hopping on the links of a one-dimensional
ladder can be used to simulate the thin-torus limit of the two-dimensional (2D) Hofstadter-Hubbard model at
one-quarter magnetic flux per plaquette. Bosons can be confined to ladders by optical superlattices, and synthetic
magnetic fields can be realized by laser-assisted tunneling. We show that twisted boundary conditions can be
implemented, enabling the realization of a fractionally quantized Thouless pump. Using numerical density-
matrix-renormalization-group calculations, we show that the ground state of our model is an incompressible
symmetry-protected topological charge density wave phase at average filling ρ = 1/8 per lattice site, related to
the 1/2 Laughlin-type state of the corresponding 2D model.
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I. INTRODUCTION

For a long time it was believed that distinct phases of
matter can be classified entirely by the concept of spontaneous
symmetry breaking, which is formulated mathematically in the
Ginzburg-Landau theory. With the discovery of the quantum
Hall effect [1,2] it has become clear that this classification has
to be extended by the inclusion of topological orders [3]. More
recently, the discovery of topological insulators [4–8] and
subsequent theoretical analysis [9–12] have revealed that the
class of topologically ordered states contains a large number
of phases, at least some of which have concrete physical
implementations and can be observed in experiments.

When the quantum Hall effects were discovered [1,13],
solid-state systems were the most promising candidates to
search for new phases of matter. Nowadays ultracold atom
experiments constitute a promising alternative platform for
a systematic search for novel states of matter [14]. Their
large length scales make a number of new measurement
methods available, and the cleanness allows for long coherence
times. These ingredients have enabled the observation of the
superfluid-to-Mott-insulator transition in the Bose-Hubbard
model [15], which can be understood from the Ginzburg-
Landau paradigm. Over the last century, great effort has been
devoted to the observation of topological phase transitions in
such systems, going beyond the Ginzburg-Landau paradigm.
In particular, systems with synthetic magnetic fields were
studied [16–28], where analogs of the quantum Hall effects
were predicted to be observable. Recently this goal has been
achieved and topological phase transitions were observed in
systems of essentially noninteracting ultracold quantum gases
[29,30]. While all possible topological phases of noninter-
acting fermions in arbitrary dimensions have been classified
[9], it is established that interactions can enrich the number
of possible topological phases enormously; see, e.g., [12].
The resulting phases attract much attention because they can
support exotic excitations with fractional charge and statistics
[31–35], which have possible applications for topological
quantum computation [36,37].

In this paper we propose a setup for the realization of
topological states in strongly interacting bosons; see Fig. 1.

To this end, we consider the thin-torus limit [38–40] of a
two-dimensional (2D) fractional Chern insulator on a square
lattice [41,42] and show how it can be implemented in current
experiments with ultracold quantum gases. The resulting
ground state is a charge density wave (CDW) at average
filling ρ = 1/8 per lattice site, related to the ν = 1/2 Laughlin
state [35] in the 2D limit. It can be interpreted as well as
a symmetry-protected topological phase [40] (protected by
inversion symmetry). In addition, our model includes the
possibility of twisted boundary conditions around the short
perimeter of the torus, with a fully tunable twist angle θx ;
see Fig. 1(b). Adiabatically changing this twist angle by 2π

realizes a many-body version of a Thouless pump [43,44],
which is fractionally quantized; see Fig. 1(c).

The paper is organized as follows. In Sec. II we introduce
the model and show that it is identical to the thin-torus limit
of the 2D Hofstadter-Hubbard model. Possible experimental
realizations are discussed. In Sec. III we elucidate on the
topological properties in the noninteracting case and show
that they enable a realization of a Thouless pump. In Sec. IV
we return to the discussion of interacting bosons, where
density-matrix-renormalization-group (DMRG) results for the
melting of the CDW at weak interactions and the system in a
harmonic trap are presented. The topological classification of
the ground state is carried out in Sec. V before we close our
discussion with a summary and an outlook in Sec. VI.

II. MODEL

We consider the following Bose-Hubbard-type model of
bosons hopping between the links of a 1D ladder [see
Fig. 1(a)]:

Ĥ = −J

L∑
j=1

[â†
j+1,Lâj,L + σ (−1)j â†

j+1,Râj,R + H.c.]

−
L/2∑
n=1

(t1â
†
2n−1,Lâ2n−1,R + t2â

†
2n,Lâ2n,R + H.c.)
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FIG. 1. (Color online) Using commensurate optical lattice poten-
tials, interacting bosons in 1D ladder systems (a) can be realized.
When the hopping elements across the ladder alternate between
values t1 and t2 [see Eq. (3)] and every second hopping on one
leg along the ladder has a phase π , the thin-torus limit of the
2D Hofstadter-Hubbard model (at flux per plaquette α = 1/4) can
be realized (b). Which of the hoppings on the right leg have a
nontrivial phase π depends on the value of σ = ±1. The boundary
conditions are periodic across the ladder, with a tunable twist angle θx ,
corresponding to magnetic flux θx/2π threading the smaller perimeter
of the torus. The ground state is an incompressible CDW with average
occupation ρ = 1/8 per lattice site, related to the 1/2 Laughlin state
of the 2D model. The density distribution 〈n̂j,L〉 = 〈n̂j,R〉 is shown
in two unit cells, chosen from a larger system with open boundary
conditions, for different values of θx in (c). This corresponds to a
quarter cycle of the fractionally quantized Thouless pump.

+ U

2

L∑
j=1

∑
μ=L,R

â
†
j,μâj,μ(â†

j,μâj,μ − 1)

+V

L∑
j=1

∑
μ=L,R

[j − (L + 1)/2]2â
†
j,μâj,μ. (1)

Here âj,μ annihilates a boson on the left (μ = L) or the right
(μ = R) leg of the ladder at the horizontal link j . The first
line describes hopping along the ladder (vertical links) with
amplitude J . On the right leg an additional phase π is picked
up on every second bond, for σ = +1 from even j to odd
j + 1 and for σ = −1 from odd j to even j + 1. Along the
horizontal bonds the tunneling rates are alternating between t1
and t2, both assumed to be real-valued and positive. In the third
line we added on-site Hubbard-type interactions of strength U

everywhere. The model is completed by an external harmonic
trapping potential in the fourth line.

Below we show that the model (1) is equivalent to the thin-
torus limit of the 2D Hofstadter-Hubbard model. Afterwards
we discuss possible experimental realizations with ultracold
atoms using currently available technology based on the
experimental setups described in [26–28,30].

A. Relation to the thin-torus limit of the
Hofstadter-Hubbard model

Now we show how the model (1) can be related to the
thin-torus limit of the 2D Hofstadter-Hubbard model with flux
per plaquette α = 1/4 (in units of the flux quantum). The latter
is described by a Hamiltonian [41,42]

ĤHH = −J
∑
〈i, j〉

(â†
i â je

−iφi, j + H.c.) + U

2

∑
j

n̂ j (n̂ j − 1),

(2)

FIG. 2. (Color online) (a) For the 2D Hofstadter-Hubbard model
at flux per plaquette α = 1/4 we make a gauge choice leading to a
two-by-two magnetic unit cell. Supplemented by twisted boundary
conditions in the x direction (twist angle θx), an effective 1D ladder
model is obtained when the thin-torus limit is considered (b). For
notational simplicity, the imaginary unit i = eiπ/2 is used to express
the complex hopping elements in (b). When an additional gauge
transformation is applied, leaving invariant the magnetic flux 
1,2 in
every plaquette, the ladder model described by Eq. (1) is obtained (c).

where n̂ j = â
†
j â j and φi, j are Peierls phases picked up when

hopping from site j to a neighboring site i . When a particle
is hopping around a plaquette these phases sum up to π/2,
which can be achieved, e.g., with the gauge choice φi, j shown
in Fig. 2(a). Next we consider this model on a torus of
size Lx × Ly with twisted boundary conditions along x, i.e.,
ψ(xm + Lx) = eiθx ψ(xm), where xm is the coordinate of the
mth particle, m = 1, . . . ,N . Such boundary conditions can be
implemented by adding additional phases θx to the hoppings
from (Lx,jy) to (1,jy) for all jy = 1, . . . ,Ly .

We perform the thin-torus limit by setting the length Lx = 2
equal to two lattice sites, yielding an effective ladder system
as shown in Fig. 2(b). Because of the periodic boundary
conditions along x there are two possibilities for how a boson
can tunnel from the left to the right leg of the ladder, originating
from paths across the top and the bottom of the torus.
When summing up these contributions, we obtain complex
hoppings across the ladder τ1 = J (1 + e−iθx ) from (2n − 1,L)
to (2n − 1,R) and τ2 = iJ (1 − e−iθx ) from (2n,L) to (2n,R)
[site-labels as in Eq. (1)], see Fig. 2(c). The hopping elements
along the legs of the ladder are real and given by −J at links
(2n − 1,R) to (2n,R) and J at all other links.

To show the equivalence of the thin-torus Hofstadter-
Hubbard model to the Hamiltonian (1) we now define t1,2 :=
|τ1,2|, yielding

t1 = J
√

2(1 + cos θx), t2 = J
√

2(1 − cos θx), (3)

such that the absolute values of all hopping amplitudes in both
models coincide. Thus, we only have to calculate the magnetic
fluxes through each of the plaquettes of the ladder and show
that they coincide in both models. In the thin-torus limit of
the 2D model we obtain fluxes 
1 = (1 + sgn sin θx)/4 and

2 = (1 − sgn sin θx)/4 in units of the magnetic flux quantum;
see Figs. 2(b) and 2(c). Choosing

σ = −sgn sin θx (4)

in Eq. (1) we obtain the same fluxes in the 1D ladder model.
Therefore, the thin-torus limit of the α = 1/4 Hofstadter-
Hubbard model is equivalent to the model (1), up to a unitary
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gauge transformation Û (θx) which depends explicitly on the
twist angle θx .

Quasi-1D ladder systems were investigated before, and it
was shown that effective gauge fields give rise to interesting
physical effects such as Meissner currents [45,46]. A version of
the thin-torus limit of the Hofstadter model at arbitrary flux per
plaquette α was also studied already in [47]. In contrast to our
model, this work did not take into account periodic boundary
conditions across the ladder, resulting in a homogeneous flux

1 = 
2 = α per plaquette and equal hopping amplitudes
corresponding to |t1| = |t2| = |J | using our notations. As a
consequence, the authors could study interesting edge states,
carrying chiral currents along opposite edges of the ladder.
Within our model, on the other hand, we can study the effect
of tunable twisted boundary conditions across the ladder. In
addition, we study interactions between bosons.

B. Possible experimental implementation

Next we discuss a possible experimental realization of
our scheme. The first required ingredient is a superlattice
for creating ladders (with a four-site unit cell), which has
been implemented experimentally; see, e.g., [46,48]. The
second ingredient is a (staggered) artificial gauge field, which
has been experimentally demonstrated as well [26–30]. The
implementation of the Hamiltonian (1) is motivated and very
closely related to the recent experiment [30], and we think that
alternative realizations should be possible.

To begin with, our scheme requires a cubic lattice created
by standing waves with short wavelength λS in both x and
y directions. We choose the origin such that lattice sites
are centered at xj,L = 0, xj,R = λS/2, yj,μ = (j − 1)λS/2.
Additional standing waves with long wavelength λL = 2λS

are required in both directions. The strong long lattice along
x separates the individual ladders, whereas the weaker long
lattice along y induces a staggered potential of strength �

along the legs that is indicated by white and gray filled sites in
Fig. 3(a). This staggered potential is required for realizing the
artificial magnetic field. We denote the bare hopping elements
in the so-obtained ladder by Jy (along the ladder) and Jx

(across the ladder).
The alternating flux 
1,2 = 0,1/2 (in units of the magnetic

flux quantum) can be realized with a similar configuration as
in the experiment [30], where a homogeneous flux of α = 1/4
was realized via laser-assisted tunneling [19]. Bare hopping
along the legs is strongly suppressed by the staggered potential
� � Jy and has to be restored by resonant modulation of
the potential landscape. This can be achieved by a time-
dependent potential of the form V (x,y,t) = V0 cos(�t +
gx,y), and as pointed out by Kolovsky [25] the freedom in
choosing the phase shifts gx,y makes it possible to implement
Peierls phases and thus to create artificial gauge fields. To
implement a suitable time-dependent potential experimentally,
two sidebands of the long-wavelength laser can be employed.
They make up four additional beams, two red-detuned ones
with frequencies ωr1 and ωr2 and two blue-detuned ones at fre-
quencies ωb1 and ωb2. When the red sidebands are sufficiently
far detuned from the blue sidebands, i.e., ωrj − ωbj � �

for both j = 1,2, interference terms between them can be
neglected and they can be treated separately form each other.

FIG. 3. (Color online) (a) Possible realization of the ladder sys-
tem with half a magnetic flux-quantum piercing every second
plaquette; cf. [30]. By interference of standing waves from a red (r)
and a blue (b) detuned sideband of the long-lattice laser in the
x direction, with corresponding slightly detuned running waves along
the y direction, two independent lattice modulations [upper (blue) and
lower (red) plot in (b)] are created. Each acts on a single leg of the
ladder and they move in opposite directions along y, as shown by the
amplitude of the modulations for different times in (b).

We now move on by constructing suitable interference
patterns between the red-detuned and blue-detuned pairs of
beams, respectively, with relative frequencies ωi = ωi2 − ωi1,
where i = r,b. These beat notes give rise to the required
modulation of the potential at frequency �, and we chose
them to be ωr = −�, ωb = �. As in [30], both beams r1
and b1 are retroreflected in the x direction to form standing
waves [see Fig. 3(a)], and they interfere with running waves
r2 and b2 in the y direction. This configuration gives rise to
the time-dependent interference patterns shown in Fig. 3(b),

Vr (x,y,t) = V0/4[1 + 4 cos2(kLx)

+ 4 cos(kLx) cos(kLy + �t − π/4)], (5)

Vb(x,y,t) = V0/4[1 + 4 sin2(kLx)

+ 4 sin(kLx) cos(kLy − �t − π/4)]. (6)

From Fig. 3(b) we recognize that the phase of the retroreflected
red sideband is chosen such that the resulting modulation
is restricted to the left leg of the ladder and moves in the
negative y direction in time. The blue sideband, however,
leads to a modulation restricted to the right leg of the
ladder which is moving in the positive y direction in time.
This counterdirected movement of the potential modulation
introduces angular momentum into the system, which mimics
the effect of a magnetic field. Note that the additional standing
waves in Eq. (6) sum up to a constant overall energy shift
only. The described setup is completely analogous to the one
implemented in [30], except for the phases chosen for the
different laser beams.

Now, as desired, every lattice site is subject to a
time-dependent modulation of the local potential Vj,μ =
V0 cos(�t + gj,μ) (with μ = L,R). From Eq. (6) we read
off the phase shifts, which are given by gj,L = −3π/4 +
jπ/2 and gj,R = 3π/4 − jπ/2. To proceed and calculate the
resulting Peierls phases, let us consider the simplified case
when two lattice sites 1 and 2 are coupled by a hopping element
Jy , where the second site is detuned by an energy � � Jy
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from the first one. Resonant periodic modulations of the local
potentials V1,V2 with frequency � and phases g1 and g2 restore
strong hopping. Indeed, the effective tunneling matrix element
from 1 to 2 is given by Jeff = J (e−ig1 − e−ig2 )/

√
2 [25,30],

where we defined the amplitude J as

J = JyV0/(
√

2�). (7)

Returning to the ladder model, in this way we find for the
induced hoppings

J(j,L),(j+1,L) = −eijπJyV0/(2�)(eigj,L − eigj+1,L)

= Jeijπ/2, (8)

J(j,R),(j+1,R) = −eijπJyV0/(2�)(eigj,L − eigj+1,L)

= Je−ijπ/2. (9)

The above configuration can be mapped to Eq. (1) via a gauge
transformation.

Finally we turn to the implementation of the hoppings t1,2

connecting the legs of the ladder. Without further modifications
of the described setup, they are given by t1 = t2 = Jx . Choos-
ing the modulation strength V0 such that J = Jx/

√
2 readily

realizes the cases θx = ±π/2. They are of special relevance,
because the resulting model is inversion symmetric around
the center of links on the legs. As shown below, the model
supports inversion-symmetry-protected topological phases at
these points. In order to realize arbitrary values of θx , the
hoppings t1,2 can be manipulated with a second independent
square lattice rotated by 45◦, such that the potential barrier
along every second horizontal bond of the ladder is increased
when the lattice is properly adjusted. To this end an additional
sideband of the short-wavelength laser is added in the x and
y directions and both beams are retroreflected. The resulting
interference pattern realizes the required rotated square lattice
with lattice constant λS/

√
2. Last, we note that the periodic

modulation used to restore hoppings along the ladder reduces
the tunneling amplitudes t1,2 between the legs. This gives rise
to effective hoppings teff

1,2/t1,2 = 1 − (2 − √
2)V 2

0 /(4�2), but
the effect can be neglected for large �.

III. TOPOLOGY IN THE NONINTERACTING SYSTEM:
THOULESS PUMP

We start the analysis of our model by investigating
noninteracting bosons. In this case all properties of the band
structure immediately follow from the 2D Hofstadter model
[49]. The lowest band of the 2D Hofstadter Hamiltonian at
α = 1/4 is characterized by a Chern number C = 1, which
gives rise to a quantized Hall current perpendicular to an
applied external force. We show below that such quantized
particle transport along the 1D ladder survives in the thin-torus
limit, when the external force is induced by inserting magnetic
flux through the smaller perimeter of the torus. Experimentally,
this corresponds to an adiabatic change of the twisted boundary
conditions, ∂tθx �= 0. A change of θx by 2π can also be
interpreted as one cycle of a Thouless pump [43].

Now we discuss the relation between Bloch wave functions
of the 1D and 2D models. At α = 1/4 the 2D Hofstadter model
has a four-site unit cell. Using the gauge choice introduced
earlier in Fig. 2(a), we can calculate the Bloch Hamiltonian

Ĥ(kx,ky) of the 2D model, resulting in Bloch wave functions
|u(kx,ky)〉 (see, e.g., Supplemental Material in [30] for a
concrete calculation). When performing the thin-torus limit
as described in Sec. II A, the Bloch wave functions do not
change, except that the quasimomentum kx across the resulting
ladder is replaced with the angle θx defining the twisted
periodic boundary conditions. The Bloch wave function in
the thin-torus limit thus reads |u(θx,ky)〉. By applying the
gauge transformation Û (θx) (see Sec. II A), we also obtain
the Bloch function of the 1D ladder model (1), |v(θx ; ky)〉 =
Û (θx)|u(θx,ky)〉, at a given twist angle θx . Consequently,
the Bloch bands εn(kx,ky) labeled by n = 1, . . . ,4 (i.e., the
eigenenergies of the Bloch-Hamiltonian) of the 2D Hofstadter-
Hubbard model coincide with those of the 1D ladder model
(1), εn(θx ; ky).

From the Bloch wave functions we now derive the topo-
logical properties of the 1D ladder model (1). To this end
we calculate the Zak phase [50] ϕZak(θx) for a path through
the Brillouin zone (BZ) along ky and for a given value of
θx . Because the Zak phase is invariant under the gauge trans-
formation Û (θx), the 1D ladder model reproduces the result
ϕZak(θx)|H of the 2D Hofstadter model, ϕZak(θx) = ϕZak(θx)|H.
Zak phases can be measured in ultracold atom systems using
Ramsey interferometry in combination with Bloch oscillations
[51]. A similar measurement in the simplified 1D model would
thus make it possible to study the Berry curvature of the 2D
Hofstadter model; see also [52,53].

A characteristic feature of the Hofstadter model at α = 1/4
is that its lowest band is topologically nontrivial, with a Chern
number CH = 1. The Chern number can be directly related to
the winding of the Zak phase [54],

CH = 1

2π

∫
BZ

dkx∂kx
ϕZak(kx)|H. (10)

For the 1D ladder model the winding of the Zak phase
equivalently defines the Chern number,

C = 1

2π

∫ 2π

0
dθx∂θx

ϕZak(θx). (11)

Now we discuss the physical consequences of the nontrivial
Chern numbers C = CH = 1. In the case of the 2D Hofstadter
model, it is related to the Hall current induced by a constant
external force [1,2]. This current was recently measured with
essentially noninteracting atoms, in ultracold Fermi gases [29],
and also with ultracold bosons homogeneously populating the
lowest Bloch band [30]. In the thin-torus limit of the Hofstadter
model, a constant force around the short perimeter of the torus
can be applied by adiabatically changing the twist angle in
the boundary conditions, F ∝ ∂tθx . Like in the 2D model, this
leads to a Hall current perpendicular to the induced force—i.e.,
along the ladder—which is quantized and proportional to the
Chern number C.

An alternative interpretation of the quantized current in the
1D model (1) is given by the concept of a Thouless pump
[43]. To understand this, we note that the Zak phase is related
to the macroscopic polarization P = aϕZak/2π , where a is
the extent of the magnetic unit cell in the y direction [55].
Now, by definition (11), it follows that the Zak phase changes
continuously from 0 to C × 2π when the parameter θx is
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adiabatically changed by 2π in a time T . This corresponds
to a quantized change of the polarization by �P = Ca, or a
quantized current Ca/T . Below (in Sec. V) we give an intuitive
explanation of the microscopic mechanism of this effect in the
1D ladder system.

Experimentally the Thouless pump could be detected by
loading noninteracting ultracold atoms (bosons or fermions)
into the lowest Bloch band. Then, comparing in situ images
of the atomic cloud before and after adiabatically changing
θx by 2π reveals the quantized current. This is similar to
the measurements performed recently on the 2D Hofstadter
model [29,30]. Now we turn to the discussion of interacting
atoms, where we give an example for a fractionally quantized
Thouless pump corresponding to a Chern number C = 1/2.

IV. INTERACTING TOPOLOGICAL STATES

As a next step we add local Hubbard-type interactions
between the bosons to the investigation of our model. In the 2D
limit of the Hofstadter-Hubbard model the existence of an in-
compressible Laughlin-type ground state has been established
numerically for fluxes within a range α = 0, . . . ,0.4 [41,42].
For α = 1/4 studied in this paper we thus expect a fractional
Chern insulator at a magnetic filling ν = N/Nφ = 1/2, where
N is the number of particles and Nφ the number of flux quanta
in the system. The average occupation number of each lattice
site is thus ρ = 1/8 in this phase. Now we show using DMRG
calculations that in the thin-torus limit an incompressible
CDW survives at the same filling. We study the robustness
of this phase when the interaction strength U is lowered. In a
harmonic trap the incompressible phase is shown to be robust
enough to form plateaus of constant density.

A. Grand-canonical phase diagram

We use a matrix product state (MPS)-based algorithm
to find the ground state of finite-size ladder systems with
open boundary conditions (obc) [56]. MPSs are very well
suited to approximate the CDW-like states we expect in the
incompressible phase and can—with increased resources—
also describe the melting of the CDW at fillings near ρ = 1/8.
By varying the chemical potential we have determined the
ground-state energy for particle numbers around N ≈ Ly/4
(corresponding to ρ = 1/8) and three different interaction
energies U/J = 2,5,∞. Due to symmetries it is sufficient to
consider twist angles from the parameter space θx ∈ [0,π/2].

We now define the critical chemical potentials μ1/8± as
the upper and lower boundaries of the incompressible CDW
phase. In Fig. 4(a) we show the corresponding particle-hole
gap �CDW = μ1/8+ − μ1/8− extrapolated to thermodynamic
limit from finite system results at Ly = 16,24,32. Strong
interactions stabilize the nontrivial CDW that is protected by
a gap on the order of �U=∞

CDW ≈ J/6. At moderate interaction
U = 5 the incompressible phase is still protected by �U=5

CDW ≈
J/12, whereas for U = 2 the gap almost closes and the CDW
phase vanishes.

The topological nature of our system and the presence of
obc edges have to be taken into account when analyzing the
dependence of the particle number N (μ) on the chemical
potential, as shown in Fig. 4(b). At θx = 0 we find a single

FIG. 4. (Color online) (a) The particle-hole gap �CDW of the in-
compressible phase at filling ρ = 1/8 for varying interaction strength
U/J = ∞,5,2 extrapolated from finite system size calculations at
Ly = 18,24,32. This gap corresponds to the plateaus in the ρ(μ)
diagrams shown in (b) for U/J = ∞ at system size Ly = 48. Note
that for θx = π/2 the plateau has a kink in its middle where ρ(μ)
changes, corresponding to the addition of a single particle. This is not
a bulk effect, however, because the additional particle is localized at
the edge of the system.

plateau at filling ρ = 1/8; however, at θx = π/2 this plateau
is split by the addition of a single particle at intermediate
chemical potential. This is an edge effect and strongly
dependent on the choice of boundary conditions [57], allowing
us to interpret the full plateau as an incompressible bulk phase.

B. Harmonic trapping potential

The incompressible, integer filling phases of the conven-
tional Bose-Hubbard model can be nicely demonstrated in
harmonically trapped systems where Mott-insulating plateaus
of constant density emerge, surrounded by superfluid regions
(“wedding-cake” structure). We here show that in a similar
fashion the nontrivial CDW phase on the ladder could be
visualized in harmonically trapped gases.

Using the MPS code (with increased bond dimension to
correctly describe the compressible regions in the trap) we
have calculated the density distribution in traps up to size
Ly = 128 for fixed global chemical potential μ. The trap depth
V is chosen such that from local density approximation we
expect a wedding-cake structure of quarter filling in the center,
a compressible transition region, and a large incompressible
region of filling ρ = 1/8 before vacuum. As we show in Fig. 5,
this picture is well reproduced by the numeric simulation,
where the local density 〈n̂j,L〉 reveals the CDW nature. To
check the incompressibility of the phases, we calculated an
averaged density nj = 1/8

∑j+2
i=j−1〈n̂i,L + n̂i,R〉. It illustrates

the two density plateaus which lie within the extent predicted
by the local chemical potential μ(x) = μ + Vtrap(x) and the
critical chemical potentials μ1/8,± calculated in the previous
section.

The outer incompressible phase is the CDW state at filling
ρ = 1/8 we are mostly interested in, corresponding to a half-
filled lowest Bloch band. The inner incompressible phase at
quarter filling corresponds to a completely filled lowest Bloch
band and is similar to the Mott phase of bosons in the lowest
band of the 1D Su-Schrieffer-Heeger model [57].
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FIG. 5. (Color online) Local density of hard-core bosons with
U/J = ∞ at θx = 0 in a harmonic trap centered around j = 64.5
with V = 8.4 × 10−5J and μ = −2.4J and Ly = 128. While the
density along the left leg (blue squares) demonstrates the density
wave character, the averaged density (black solid line) reveals
incompressible phases at fillings ρ = 1/4 and ρ = 1/8. The vertical
red lines indicate the phase boundaries between compressible and
incompressible (blue shading) phases in local density approximation.

V. TOPOLOGICAL CLASSIFICATION AND
FRACTIONAL THOULESS PUMP

Now we discuss the topological properties of the ρ = 1/8
CDW phase. We distinguish two cases for the classification of
the phase, the 1 + 1D model where the second dimension is
defined by the twist-angle θx = 0, . . . ,2π and the 1D model
at points of highest symmetry θx = ±π/2. In the first case,
robust topological properties carry over from the ν = 1/2 LN
state from the 2D Hofstadter-Hubbard model. In the second
case, the CDW constitutes a (inversion-) symmetry-protected
topological phase (SPT) which is not robust against disorder.

A. 1 + 1D model and fractional Thouless pump

The 1/2 LN state in the 2D Hofstadter-Hubbard model is
characterized by a fractionally quantized Chern number C =
1/2 [42,58], and, as shown shortly, this carries over to the
1 + 1D gapped CDW state. Before going through the details
of the calculation, however, let us give an intuitive physical
picture.

As mentioned above, the Chern number is directly related
to the quantized Hall current in the 2D model (on a torus). If
one unit of magnetic flux is introduced through the perimeter
of the torus, i.e., �θx = 2π , a quantized Hall current around
the torus is induced. While in the case of an integer-quantized
Chern number C = p the state returns to itself immediately,
when C = p/q takes a fractional value the state returns to
itself only after introduction of q flux quanta, �θx = q × 2π .

As discussed in the noninteracting case, an integer-
quantized Thouless pump still exists in the thin-torus limit
when the twist angle θx is adiabatically increased. This
mechanism carries over to the ρ = 1/8 CDW, as can be
understood from a simple Gutzwiller ansatz. To this end we
approximate the CDW by a product state,

|CDW〉 =
∏
n

b̂
†
2n(θx)|0〉, (12)

FIG. 6. (Color online) Approximate Wannier orbitals (blue
shaded) at the points θx of highest symmetry.

where b̂
†
j (θx) creates a boson in the Wannier orbital corre-

sponding to unit cell j . To understand how the Wannier orbitals
depend on θx , we approximate them at the points of highest
symmetry, θx = 0,π/2,π, . . .. To this end we search for the
state of lowest energy within each unit cell and note that,
in principle, the residual coupling between unit cells could
be treated perturbatively. The result is illustrated in Fig. 6.
At θx = 0 the hoppings are J , t1 = 2J , and t2 = 0, such
that Wannier orbitals are localized on every other rung, with
an energy of −t2 = −2J to zeroth order in the described
perturbation theory. At θx = ±π/2, on the other hand, the
hoppings read J and t1 = t2 = √

2J such that considering
only rungs is not sufficient. Instead, we compare the energy
of a particle hopping around a single four-site plaquette with
zero and π flux, respectively. While in the latter case there are
two degenerate states with energy −√

3J , for vanishing flux
we find a nondegenerate state with lower energy −(1 + √

2)J .
Although we consider only local Hubbard-type interac-

tions, the CDW state (12) is stabilized by a finite gap �CDW to
any excitations (it can also be interpreted as a Mott insulator).
This is due to a hopping-induced finite-range interaction. If
we calculate the Wannier orbitals beyond the zeroth-order
approximation introduced above, nearest and next-nearest
neighbor orbitals acquire a finite overlap. Thus, if the twist
angle θx is adiabatically changed, the state (12) follows the
modified Wannier orbitals. Because they reconnect to their
neighbors after a full pumping cycle (see Fig. 6), a quantized
atomic current flows along the ladder. Because—assuming
periodic boundary conditions along y—the state only returns
to itself after two full pumping cycles, the Thouless pump is
fractionally quantized, with a coefficient (the Chern number)
C = 1/2. This quantization is robust against any perturbations
which are small compared to the gap �CDW. The Thouless
pump is also illustrated in Fig. 1(c).

Now we turn to a more formal topological classification of
the 1 + 1D model, following [44]. To this end we calculate the
many-body Chern number of the ρ = 1/8 CDW state. Because
periodic boundary conditions are required along the ladder (in
the y direction), we restrict our analysis in this section to the
exact diagonalization of small systems (instead of performing
DMRG calculations as before). Before starting, we note that
on a torus the CDW ground state is twofold degenerate
(in thermodynamic limit Ly → ∞), as expected from the
topologically protected twofold ground-state degeneracy of
the 1/2 LN state in the 2D Hofstadter model. Naively
this degeneracy can be understood in 1D from the obvious
ambiguity in the choice of occupied orbitals in Eq. (12):
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FIG. 7. (Color online) The U(2) Wilson-loop phase ϕW(θx) =
Im ln detŴ (θx) is shown for the ρ = 1/8 CDW, the winding of which
gives the total Chern number. We used exact diagonalization for a
system of size Lx = 2, Ly = 12 with periodic boundary conditions
and N = 3 particles for Nφ = 6 flux quanta.

Choosing odd orbitals instead, |CDW′〉 = ∏
n b̂

†
2n+1(θx)|0〉,

yields an equivalent but orthogonal CDW state. We saw already
in the discussion above that |CDW〉 can be adiabatically
transformed into |CDW′〉 without closing the bulk gap by
applying one full Thouless pumping cycle.

The many-body Chern number is defined, in analogy
to the single-particle case, by employing twisted boundary
conditions. In the 1D thin-torus-limit model we thus have
a 2D parameter space spanned by the external parameter
θx = 0,...,2π and the the twist angle θy = 0,...,2π of the 1D
ladder model. However, because the ground state is twofold
degenerate (for some values θx,y this is true even in a finite
system), only the total Chern number of both states can
be defined. It can most conveniently be calculated as the
winding of the U(2) Wilson loop Ŵ , which is a non-Abelian
generalization of the Zak phase [59,60]. It is defined via

Ŵ (θx) = P̂ exp

[
−i

∫ 2π

0
dθyÂ(θ )

]
, (13)

where Â(θ) is the non-Abelian Berry connection [59] and
P̂ denotes path ordering. Then its winding yields the total
Chern number Ctot, which divided by the number of degenerate
states Ndeg—in our case Ndeg = 2—yields the fractional Chern
number,

C = 1

Ndeg

1

2π

∫ 2π

0
dθx∂θx

Im ln detŴ (θx)︸ ︷︷ ︸
=ϕW

. (14)

The Wilson loop phase can easily be evaluated numerically in a
gauge-independent way (see, e.g., [60]), and in Fig. 7 we show
ϕW (θx) for the thin-torus model. We observe a winding by 2π ,
which, as expected, results in a many-body Chern number
C = 2π/(2 × 2π ) = 1/2.

B. 1D model and SPT CDW

At special values of the twist angle θx = ±π/2 the
model (1) is inversion-symmetric around the center of links
on the legs of the ladder. In this case, the CDW phase can be
understood as a SPT phase [40]. To come up with an elegant

formal classification, the spontaneous breaking of inversion
symmetry by the CDW has to be carefully accounted for. We
postpone this issue to a forthcoming publication, where related
models will be discussed [61]. Here we restrict ourselves to the
definition and calculation of a topological invariant ν, which
is quantized to ν = 0,π and protected by inversion symmetry.

The topological invariant we employ is the many-body Zak
or Berry phase defined by twisted boundary conditions along
the ladder [57,62]. Like in the case of the Chern number in the
1 + 1D case, we introduce the twist angle θy ; however, now
the second parameter θx = ±π/2 is fixed. In practice, the most
convenient way to implement twisted boundary conditions is
to multiply the hopping elements from the last to the first sites
of the ladder (which realize periodic boundary conditions) by
the complex phase eiθy . Then the eigenstate |�(θy)〉 depends
on θy and the Berry phase can be calculated as usual,

ν =
∫ 2π

0
dθy〈�(θy)|i∂θy

|�(θy)〉. (15)

From inversion symmetry it follows that ν = 0,π is strictly
quantized [50,63].

To calculate the topological invariant ν, we restrict our-
selves to the simple representation (12) of the CDW state
|�〉. Then we distinguish four different cases, characterized by
θx = ±π/2 and by which of the two states |CDW〉 and |CDW′〉
we use. To begin with, we note that only for, say, θx = π/2 the
link with the complex phase eiθy is part of an atomic orbital,
as defined in the discussion of Fig. 6. Then in the trivial case
θx = −π/2, |�〉 is independent of θy and thus ν = 0 vanishes
for both CDW states. For θx = +π/2, on the other hand, we
have to distinguish between CDW and CDW ′. Only for one
of the two states—say for |CDW〉—the link with the complex
phase eiθy is part of an occupied atomic orbital. Thus, for the
state described by CDW ′ the wave function |�〉 is independent
of θy and ν = 0 again. Finally, we show that the state CDW
is topologically nontrivial with ν = π . To this end, note that
there is an occupied atomic orbital on the link connecting the
last and the first rung of the ladder. The energy of this orbital
cannot be changed by the complex phase eiθy , which is merely
a gauge transformation, but the eigenfunction of the orbital
ψm(θy) (with m = 1, . . . ,4 labeling the four sites) depends on
θy . In fact, a simple calculation shows that the corresponding

Berry phase is
∫ 2π

0 dθy

∑
m ψ∗

mi∂θy
ψm = π . Because |CDW〉

is a simple product state, it follows that ν = π in this case.

VI. SUMMARY AND OUTLOOK

In summary, we have proposed and analyzed a realistic
setup for the realization of a topologically nontrivial CDW
state (at filling ρ = 1/8) of strongly interacting bosons in a
1D ladder geometry. Our model was derived by taking the
thin-torus limit of the 2D Hofstadter-Hubbard model at flux
α = 1/4 per plaquette. The ν = 1/2 Laughlin-type fractional
Chern insulator in this 2D model is directly related to the
1D CDW at filling ρ = 1/8. As a consequence, the CDW
has interesting topological properties: When adiabatically
introducing magnetic flux θx/2π through the small perimeter
of the thin torus, which can be realized by changing the
hoppings in our model, a fractionally quantized Hall current
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is induced along the ladder. Alternatively, the CDW phase
can be interpreted as inversion SPT phase, characterized by
a quantized topological invariant taking values ν = 0,π . We
used DMRG calculations to determine the particle-hole gap
of the CDW and found values of �CDW ∼ 0.1J , a sizable
fraction of the bare hopping J . When placed in a harmonic
trap, the wedding-cake structure of the density provides a clear
signature of the appearance of the topological CDW state.

Investigating the thin-torus limit of fractional Chern in-
sulators is a promising route to gain understanding of more
complicated, but closely related, topologically ordered states
in 2D systems [38–40,64]. In this work we showed how
the thin-torus limit can be realized experimentally with
ultracold atoms, including the possibility of fully tunable
twisted boundary conditions. Similar ideas can be carried over
to photonic systems, where synthetic gauge fields can also
be implemented, see e.g. [65–69] and strong nonlinearities
on a single-photon level are realized, e.g., using Rydberg
atoms [70,71]. Therefore, an interesting future direction
for such experiments would be the observation of more
complicated thin-torus models, going beyond the analog of
the simple 1/2 LN state and including, for instance, states
related to the non-Abelian Read-Rezayi series [39,64,72].

Once a system like the one described in this paper is
realized, an important question is how to witness its topological

properties. The quantized transport connected to the Chern
number could be measured by taking in situ images of the
atomic cloud. A more direct measurement of the topological
invariant would be desirable, which should also be able to
measure the invariant ν characterizing the SPT order. Such
measurements have been performed in noninteracting systems
[51,53] using a combination of Ramsey interferometry and
Bloch oscillations, and they could be extended to interacting
systems in the future [73].

Note added in proof. Recently, we became aware of
the following works discussing closely related systems
[74–76].
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