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We suggest a scheme for the preparation of highly correlated Laughlin states in the presence of synthetic
gauge fields, realizing an analogue of the fractional quantum Hall effect in photonic or atomic systems of
interacting bosons. It is based on the idea of growing such states by adding weakly interacting composite
fermions along with magnetic flux quanta one by one. The topologically protected Thouless pump
(“Laughlin’s argument”) is used to create two localized flux quanta and the resulting hole excitation is
subsequently filled by a single boson, which, together with one of the flux quanta, forms a composite
fermion. Using our protocol, filling 1=2 Laughlin states can be grown with particle number N increasing
linearly in time and strongly suppressed number fluctuations. To demonstrate the feasibility of our scheme,
we consider two-dimensional lattices subject to effective magnetic fields and strong on-site interactions.
We present numerical simulations of small lattice systems and also discuss the influence of losses.
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Introduction.—In recent years, topological states of
matter [1–8] have attracted a great deal of interest, partly
due to their astonishing physical properties (like fractional
charge and statistics), but also because of their potential
practical relevance for quantum computation [9,10]. While
these exotic phases of matter were first explored in the
context of the quantum Hall effect of electrons subject to
strong magnetic fields [11,12], there has been considerable
progress, recently, towards their realization in cold-atom
[13–16], as well as photonic [17–23], systems. Particularly
attractive features of such quantum Hall simulators are the
comparatively large intrinsic length scales which allow
coherent preparation, manipulation, and spatially resolved
detection of exotic many-body phases and their excitations.
In electronic systems, the preparation of topological

states of matter relies on quick thermalization and cooling
below the many-body gap. While this is already hard to
achieve in cold-atom systems (partly due to the small
required temperatures), cooling is even less of an option in
photonic systems due to the absence of effective thermal-
ization mechanisms. On the other hand, lasers with narrow
linewidths allow for a completely different avenue towards
preparation of extremely pure quantum states. For instance,
it was suggested to use the coherence properties of lasers to
directly excite two (and more) photon Laughlin (LN) states
in nonlinear cavity arrays [24], where the laser plays the
role of a coherent pump. However, this approach has the
inherent problem of an extremely small multiphoton
transition amplitude. While this might be acceptable for
small systems of N ¼ 2, 3 photons, it makes the prepara-
tion of true many-body states with N ≫ 2 practically
impossible. Moreover, the prepared states in this case

contain superpositions of different photon-numbers rather
than being Fock states.
In this Letter, we suggest an alternative scheme for the

preparation of topologically ordered states of strongly
interacting bosons, specifically for the 1=2 LN state, and
we discuss systems allowing for an implementation of
the scheme with state-of-the-art technology. It consists of
growing such states and makes direct use of the Thouless
pump [25] connected to the many-body topological invari-
ant. In the case of quantum Hall physics, the latter is
realized by local flux insertion in the spirit of Laughlin’s
argument for the quantization of the Hall conductivity σH
[26]: Introducing magnetic flux ϕ=2π ¼ 2 (in units of the
flux quantum) in the center of the system produces a
quantized outwards Hall current ∼σH∂tϕ, leaving behind a
hole, see Fig. 1(a).
In the next step, the so-created hole can be replenished

by a single boson. In view of the composite fermion (CF)
picture [27,28] of the fractional quantum Hall effect, this
refilling step can be interpreted as the addition of a single
CF (composed of a bare boson and one flux quantum) into a
free orbital of the CF Landau level (LL), using up the
remaining flux quantum. To refill the hole deterministically
by a single boson, we consider a coherent pump in the
center of the system. Excitations by more than one particle
are prohibited by the many-body gap, and the coherent
coupling can not decrease the total particle number because
the central cavity is empty initially. Thus, our final state has
sub-Poissonian boson number statistics. A complementary
scheme, where holes resulting from boson losses are
dynamically refilled in the entire system using single
photon pumps, has recently been suggested for photonic
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systems [29]. Our protocol, in contrast, does not rely on an
explicit single photon source.
A key advantage of our scheme, compared to [24,30,31],

is the ability to grow LN states with a size increasing
linearly in time. To reach N particles with given fidelity
1 − ε, the protocol has to be carried out sufficiently slowly
to avoid errors in the repumping protocol. For ε ≪ 1, the
total required time scales like

T ∼
N3=2

ΔLNε
1=2 ; ð1Þ

where ΔLN is the bulk many-body gap. In contrast to
previously proposed schemes [24,30,31], T only grows
algebraically with N.
Model.—We consider a 2D lattice with complex hopping

elements (amplitude J) realizing an effective magnetic
field, supplemented by Hubbard-type on-site interactions
(strength U). This model is illustrated in Fig. 1 and can be
described by the following Hamiltonian:

ĤintþĤ0¼
U
2

X
m;n

â†m;nâm;nðâ†m;nâm;n−1Þ

−J
X
m;n

½e−i2παnâ†mþ1;nâm;nþ â†m;nþ1âm;nþH:c:�;

where we used the Landau gauge and set ℏ ¼ 1. Following
Jaksch and Zoller’s proposal for the creation of synthetic
gauge fields [32], there have been numerous suggestions
regarding how this Hamiltonian can be implemented in
photonic [18,23,24,33,34], circuit-QED [35–37], or atomic
[31,38] systems, and in the last case, this goal has already
been achieved [15,16].
Local flux insertion can most easily be realized by

changing the hopping elements from site ðm ≥ 0; n ¼ 0Þ
to (m, 1) by a factor eiϕ, see Fig. 1(b). These links are, thus,
described by

Ĥϕ ¼ −J
X
m≥0

½e−iϕâ†m;1âm;0 þ H:c:�; ð2Þ

modifying the total magnetic flux through the central
plaquette to α − ϕ=2π. Ĥϕ is motivated by recent experi-
ments with photons [18,23], where the hopping phases can
locally and temporally be manipulated [39]. Finally to
replenish the system with bosons, we place a weak coherent
pump (Ω ≪ 4παJ) in the center,

ĤΩ ¼ Ωe−iωtâ†0;0 þ H:c: ð3Þ
In the following, we present the details of our scheme,
neglecting local boson losses (rate γ) for the moment. We
include losses again, afterwards, in the discussion of the
performance of our scheme.
Protocol—continuum.—We begin by discussing the

continuum case when the magnetic flux per plaquette
α ≪ 1 is small, allowing us to make use of angular
momentum Lz as a conserved quantum number. The
continuum can be described by LLs, which are eigenstates
of Ĥ0 in the limit α → 0 with energies En ¼ ðnþ 1=2Þωc
(n ¼ 0; 1; 2;…) and ωc ¼ 4παJ denoting the cyclotron
frequency, see, e.g., [28]. The magnetic length is defined as
lB ¼ a=

ffiffiffiffiffiffiffiffi
2πα

p
, where a denotes the lattice constant. In

symmetric gauge, the single particle states of the lowest LL
(LLL) are labeled by their angular momentum quantum
number l ¼ 0; 1; 2;… [28], and we define boson creation
operators of these orbitals as b̂†l . Now, we discuss the
preparation of filling ν ¼ N=Nϕ ¼ 1=2 LN states, but the
generalization to other fillings is straightforward.
To create the first excitation from vacuum j0i, we switch

on the coherent pump (3) with frequency ω ¼ ωc=2, which,
due the blockade [40] (caused by strong boson-boson
interactions), only allows a single particle to enter the
system. Since we drive locally in the center, no angular
momentum is transferred, and we, thus, arrive at the state
jΨ1i ¼ b̂†0j0i. This argument is true when excitations of
higher LLs can be neglected, allowing us to project the

coherent pump (3) into the LLL, ĤΩ ≈ ½b̂†0e−iωtΩð1Þ
eff þ H:c:�

with Ωð1Þ
eff ¼ Ω

ffiffiffi
α

p
. To this end, we require a weak pump,

Ω ≪ ωc, also sufficiently feeble for the blockade to work,

i.e., Ωð1Þ
eff ≪ ΔLN. In the continuum, the gap can be

estimated from ΔLN ≈min ðV0;ωcÞ, where V0 ¼ Uα=2
is given by Haldane’s zeroth-order pseudopotential [41].
To prepare jΨ1i from j0i as described, the coherent pump

has to be switched on for a time Tπ ¼ π=2Ωð1Þ
eff (corre-

sponding to a π pulse in the effective two-level system
defined by j0i and jΨ1i), which works when losses are

negligible, γ ≪ Ωð1Þ
eff [42].

Next, we adiabatically introduce two units of magnetic
flux into the center of the system. Thereby, the initial state
jΨ1i ¼ b̂†0j0i attains two units of angular momentum, and
we end up in jΨ2i ¼ b̂†2j0i [43]. This state has a ring
structure with a hole in its center, which—repeating the first
step of our protocol—can be replenished by an additional

FIG. 1 (color online). (a) The key idea of our scheme is to grow
LN states by introducing weakly interacting CFs into the system.
This is achieved by adding magnetic flux (arrows) in the center
and replenishing the arising hole by a new boson (red bullet).
(b) We consider the Hofstadter-Hubbard model (flux α per
plaquette). Additional flux ϕ can be introduced in the center
by adiabatically changing the complex phase of the hoppings
marked with a box. Furthermore, the central site is assumed to be
externally accessible for a coherent drive (Rabi frequency Ω).
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particle using the coherent pump. Because the latter only
couples to the center of the system, it can not reduce the
total particle number. The combined insertion of magnetic
flux and a boson can be understood as addition of a single
CF, with one flux-quantum binding to the boson to form a
CF in the reduced magnetic field corresponding to the
remaining flux quantum. Crucially, in contrast to the first
step, the new state is not the simple product state b̂†0jΨ2i.
Instead, the blockade mechanism allows us to pump only
into the N ¼ 2 LN state jLN; 2i, which is the only zero-
energy state with the correct total angular momentum
Lz ¼ 2, while all other states are detuned from the pumping
frequency by the gap ΔLN. As a consequence, the corre-
sponding Rabi frequency is reduced by a Franck-Condon

factor (FCF), Ωð2Þ
eff =Ω ¼ hLN; 2jb̂†0jΨ2i

ffiffiffi
α

p
.

Having established our protocol for two bosons, the
extension to N-particle LN states jLN; Ni is straightfor-
ward. In this case, local flux insertion is used to create the
state j2qh; N − 1i with two quasiholes (qh), which are
subsequently refilled by the coherent pump to prepare

jLN; Ni. The corresponding transition amplitude ΩðNÞ
eff is

reduced by a many-body FCF,

ΩðNÞ
eff =Ω ¼ ffiffiffi

α
p hLN; Njb̂†0j2qh; N − 1i: ð4Þ

Using exact diagonalization (ED) of small systems

(N ¼ 1;…; 9), we find that ΩðNÞ
eff is nearly constant as a

function of N, and we extrapolateΩð∞Þ
eff ≈ 0.70 Ω

ffiffiffi
α

p
. Thus,

our pumpworks equally for large and small boson numbers.
A natural explanation regarding why highly correlated

many-body states can be grown in the relatively simple
fashion described above is provided by the composite
fermion picture: LN states are separable (Slater determi-
nant) states of noninteracting CFs filling the CF-LLL [27].
Thus, introducing CFs one-by-one into the orbitals of this
LLL, LN states can easily be grown.
Protocol—lattice.—To ensure a sizable cyclotron gap

ωc, a not too small flux per plaquette α is desirable, where
lattice effects become important. We will now study this
regime, which is also of great experimental relevance
[15,16,23]. The spectrum of the Hamiltonian Ĥ0ðαÞ is
the famous Hofstadter butterfly [44], consisting of a self-
similar structure of magnetic sub-bands. When interactions
are taken into account, LN-type states can still be identified
at filling ν ¼ 1=2 [31,38].
The basic ideas directly carry over from the continuum to

the lattice case. Because the many-body Chern number is
strictly quantized, Laughlin’s argument shows that a hole
excitation can still be created by local flux insertion.
However, due to the formation of magnetic sub-bands,
such a quasihole becomes dispersive and will propagate
away from the center. This leaves us only a restricted time
to refill the defect, and leads to a reduced efficiency of
repumping. To circumvent this problem, we introduce a
trap for quasiholes. A static, repulsive potential of the form

Ĥpot ¼
X
m;n

gffiffiffiffiffiffi
2π

p
lB=a

e−ðm2þn2Þa2=2l2B â†m;nâm;n; ð5Þ

is sufficient for a gapped ground state at every point in the
protocol. An alternative would be to include carefully
chosen long-range hoppings leading to a completely flat
band [45].
In the following, we use ED to simulate our protocol for

small systems. To get rid of boundary effects, which can be
pronounced in small systems, we consider a spherical
geometry [46] and take into account lattice effects by
using a buckyball-type lattice. The hopping elements on all
links have amplitude J, and their phases were chosen such
that the flux per plaquette is α. Because the total flux Nϕ is
integer quantized, it holds α ¼ Nϕ=Np withNp ¼ 32 being
the number of plaquettes. We checked numerically (using
ED) that, for the values of α ≤ 0.2 used in this Letter, there
are gapped LN-type ground states, provided that the
condition Nϕ ¼ 2ðN − 1Þ for ν ¼ 1=2 LN states on a
sphere is fulfilled. We find gaps of the order ΔLN≈0.1J,
as predicted for a square lattice [31,38]. To describe the
effect of local flux insertion Nϕ→Nϕþϕ=2π, we slightly
increase α→ αþϕ=ð2πNpÞ everywhere, except on the
central plaquette where α → α − ð1 − 1=NpÞϕ=2π changes
by −ϕ=2π in thermodynamic limit (i.e., for Np → ∞).
Starting from an incompressible LN-type ground state, we
checked numerically that the correct number of low-lying
quasihole states is obtained and that they can be gapped out
by the potential Eq. (5) [47].
In Fig. 2, we present a numerical simulation of our full

protocol on the C60 buckyball lattice. We start from vacuum
andNϕ ¼ 0 flux quanta. Then, the coherent pump Eq. (3) is
switched on for a time TΩ ¼ 6π=Ω (with Ω ¼ 0.05J) and
one boson is inserted with an overlap close to one to the
target N ¼ 1 ground state. The driving frequency ω is

FIG. 2 (color online). Simulation of the full protocol on a C60

buckyball as described in the text, for U ¼ 10J and including the
static potential (5) with g ¼ J. The overlaps (solid line, con-
ditioned on the targeted particle number N—dotted line) together
with particle-number fluctuations (dashed-dotted line) indicate
the accuracy of our protocol.
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chosen to be resonant on the transition from the N ¼ 0 to
the N ¼ 1 ground state. After introducing two more flux
quanta in a time 2 × 20π=J, of the order 2π=ΔLN ≈ 60=J,
the whole protocol is repeated, and we, finally, arrive close
to a three particle LN-type ground state. We find that the
overlaps of the prepared states to the targeted N particle
ground states jgsNi are close to one after all steps, and the
overlaps conditioned on having the correct particle number
N (occurring with probability PN) are even larger. At the
end of the protocol, the N ¼ 3 boson ground state at Nϕ ¼
4 is prepared with high fidelity, which carries the signatures
of a LN-type state. Importantly, the particle number
fluctuations after a completed cycle are strongly suppressed
½hN̂2i − hN̂i2�=hN̂i ≪ 1.
In our simulations, we neglected edge effects and bulk

losses. The latter result in a finite boson lifetime, such that, in
the growing scheme, the mean density ρðrÞ decays with
the distance r from the center. In continuum, we find ρðrÞ ≈
ð1=4πl2

BÞexp½−γT0ðr2=4l2
BÞ�, with T0 being the duration of

a single step of the protocol. In a forthcoming publication
[48], we study larger systems using a simplified model of
noninteracting CFs on a lattice and show that our protocol
still works when edge-effects are taken into account.
In Fig. 2, we observe that the fidelity FN ¼ jhψðtÞjgsNij

for preparation of the N-particle LN-type ground state (gs)
is limited, mostly by the inefficiency of the pump. High
fidelity, however, is a prerequisite for measuring, e.g.,
braiding phases of elementary excitations, which play a
central role for topological quantum computation [10].
Taking into account couplings between low-energy states
of the N and N þ 1 boson sectors, induced by the coherent
pump (3), we find the following expression for the fidelity:

FN ∼ exp

�
−
�

Λ2

Δ2
LNT

2
0

þ γT0

N
2

�
N
2

�
: ð6Þ

The second term in the exponent describes boson loss,
whereas the first term takes into account imperfections of
the blockade in the repumping process with rates scaling
like ðΩeffΛ=ΔLNÞ2. Here Λ is a parameter depending on
nonuniversal FCFs, which, in the continuum case α → 0, is
found to be Λ ¼ 1.4 from finite-size extrapolations of ED
results. In a lattice, Λ takes larger values and, from Fig. 2,
we estimate Λ ≈ 10. In Eq. (6), we neglected fidelity losses
from flux insertion, which only leads to small corrections
of Λ however, even when using the approximation
T0 ≈ Tπ ¼ π=2Ωeff . We observe a competition between
losses∼T0 and errors of the pump∼1=T2

0. Thus, for a target
fidelity FN ¼ 1 − ε, only LN states of a restricted number
of bosons N ≤ Nmax can be grown,

Nmax ¼ 1.365ε3=5
�
ΔLN

Λγ

�
2=5

: ð7Þ

To do so, a time T ¼ NmaxT0 ¼ 1.22N3=2
maxε−1=2Λ=ΔLN is

required, which yields Eq. (1).

Experimental realization.—Our protocol can be imple-
mented in photonic cavity arrays [18,23,24,33,34], where
the main experimental challenges are the required large
interactions U ≳ J and small losses γ ≪ ΔLN=N5=2. Strong
nonlinearities can be realized, e.g., by placing single atoms
into the cavities [33] or coupling them to quantum dots [23]
or Rydberg gases [23,49,50]. Most promising are circuit-
QED systems, where loss rates γ ¼ ð0.1 msÞ−1 have been
achieved [51] (and γ ¼ 1 ms−1 seems feasible). The strong
coupling regime can be reached and single-photon non-
linearities U ¼ 100 MHz are realistic [37]. For the case
when U ≈ J and for α ≈ 0.1, the LN gap can be estimated
to ΔLN ≈ 0.05U ¼ 5 MHz [38], which corresponds to
ΔLN=γ ≈ 3 × 103. For an infidelity of ϵ ¼ 0.1, this yields
Nmax ¼ 7.4 in a continuum system (Nmax ¼ 3.4 for Λ ≈ 10
as in our simulation). To observe interesting many-body
physics on a qualitative level, ϵ ¼ 0.5 should be sufficient,
which results in Nmax ≈ 20 in continuum. To reach even
larger photon numbers, an array of multiple flux and
photon pumps could be envisioned.
Alternatively, our scheme could be realized in ultracold

atomic systems [15,16], where large interactions U and
negligible decay γ are readily available [52]. In this case, an
idea for realizing local flux insertion would be to use
optical Raman beams with nonzero angular momentum
[53], or as an alternative, quasiholes could be introduced by
placing a focused laser-beam close to the edge of the
system and increasing its intensity adiabatically [54].
Independent of the system, means for detecting LN-type
ground states are required, and several approaches were
discussed regarding how this can potentially be achieved
[24,31,55–59].
Summary and outlook.—We proposed a scheme for the

preparation of highly correlated LN states of bosons in
artificial gauge fields. LN states can be understood in terms
of weakly interacting CFs, and our protocol is based on the
idea of growing noncorrelated states of the latter. We
demonstrated that this can be achieved by first creating
LN quasihole excitations which are subsequently refilled
with bosons. Importantly, our protocol only requires a
preparation time scaling slightly faster than linear with
system size.
Our scheme is not restricted to the preparation of LN

states of bosons. For example, we expect that the ν ¼ 1
bosonic Moore-Read Pfaffian [5,60,61] supporting non-
Abelian topological order, can also be grown using our
technique. Moreover, preparing bosons in higher LLs
opens the possibility to simulate exotic Haldane pseudo-
potentials, mimicking the effect of long-range interactions
without the need to implement these in the first place.
We also expect that our scheme can be adapted for
the preparation of fractional quantum Hall states of
fermions.
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