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Renormalization group approach 

to the Fröhlich polaron model: 

application to impurity-BEC 

problem
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When a mobile impurity interacts with a many-body system, such as a phonon bath, a polaron is 

formed. Despite the importance of the polaron problem for a wide range of physical systems, a 

���Ƥ����������������������������������������������������������������������������������Ǥ�����������������
a renormalization group approach for analyzing a paradigmatic model of polarons, the so-called 

Fröhlich model, and apply it to a problem of impurity atoms immersed in a Bose-Einstein condensate 

of ultra cold atoms. Polaron energies obtained by our method are in excellent agreement with recent 

diagrammatic Monte Carlo calculations for a wide range of interaction strengths. They are found 
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current experiments with ultra cold atoms are discussed.

A general class of fundamental problems in physics can be described as an impurity particle interact-
ing with a quantum reservoir. This includes Anderson’s orthogonality catastrophe1, the Kondo effect2, 
lattice polarons in semiconductors, magnetic polarons in strongly correlated electron systems and the 
spin-boson model3. The most interesting systems in this category can not be understood using a simple 
perturbative analysis or even self-consistent mean-field (MF) approximations. For example, formation of 
a Kondo singlet between a spinful impurity and a Fermi sea is a result of multiple scattering processes4 
and its description requires either a renormalization group (RG) approach5 or an exact solution6,7, or 
introduction of slave-particles8. Another important example is a localization delocalization transition in 
a spin bath model, arising due to “interactions” between spin flip events mediated by the bath3.

While the list of theoretically understood non-perturbative phenomena in quantum impurity prob-
lems is impressive, it is essentially limited to one dimensional models and localized impurities. Problems 
that involve mobile impurities in higher dimensions are mostly considered using quantum Monte Carlo 
(MC) methods9–11. Much less progress has been achieved in the development of efficient approximate 
schemes. For example a question of orthogonality catastrophe for a mobile impurity interacting with a 
quantum degenerate gas of fermions remains a subject of active research12,13.

Recent experimental progress in the field of ultracold atoms brought new interest in the study of 
impurity problems. Feshbach resonances made it possible to realize both Fermi14–19 and Bose polar-
ons20,21 with tunable interactions between the impurity and host atoms. Detailed information about 
Fermi polarons was obtained using a rich toolbox available in these experiments. Radio frequency (rf) 
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spectroscopy was used to measure the polaron binding energy and to observe the transition between 
the polaronic and molecular states14. The effective mass of Fermi polarons was studied using measure-
ments of collective oscillations in a parabolic confining potential15. Polarons in a Bose-Einstein conden-
sate (BEC) received less experimental attention so far although polaronic effects have been observed in 
nonequilibrium dynamics of impurities in 1d systems20–22.

The goal of this paper is two-fold. Our first goal is to introduce a theoretical technique for analyzing 
a common class of polaron problems, the so-called Fröhlich polarons. We develop a unified approach 
that can describe polarons all the way from weak to strong couplings. Our second goal is to apply this 
method to the problem of impurity atoms immersed in a BEC. We focus on calculating the polaron 
binding energy and effective mass, both of which can be measured experimentally. For this particular 
polaron model in a BEC we address the long-standing question how the polaron properties depend on 
the polaronic coupling strength, and whether a true phase transition exists to a self-trapped regime. 
Our results suggest a smooth cross-over and do not show any non-analyticity in the accessible param-
eter range. Moreover we investigate the dependence of the groundstate energy on the ultra-violet (UV) 
cut-off and point out a logarithmic UV divergence. Considering a wide range of atomic mixtures with 
tunable interactions23 and very different mass ratios available in current experiments24–44 we expect that 
many of our predictions can be tested in the near future. In particular we discuss that currently available 
technology should make it possible to realize intermediate coupling polarons.

Previously the problem of an impurity atom in a superfluid Bose gas has been studied theoretically 
using self-consistent T-matrix calculations45 and variational methods46, and within the Fröhlich model 
in the weak coupling regime47–49, the strong coupling approximation50–54, the variational Feynman path 
integral approach55–57 and the numerical diagrammatic MC simulations58. These four methods predicted 
sufficiently different polaron binding energies in the regimes of intermediate and strong interactions, 
see Fig.  1. While the MC result can be considered as the most reliable of them, the physical insight 
gained from this approach is limited. The method developed in this paper builds upon earlier analytical 
approaches by considering fluctuations on top of the MF state and including correlations between dif-
ferent modes using the RG approach. We verify the accuracy of this method by demonstrating excellent 
agreement with the MC results58 at zero momentum and for intermediate interaction strengths.

Our method provides new insight into polaron states at intermediate and strong coupling by showing 
the importance of entanglement between phonon modes at different energies. A related perspective on 
this entanglement was presented in Ref.  59, which developed a variational approach using correlated 
Gaussian wavefunctions (CGWs) for Fröhlich polarons. Throughout the paper we will compare our RG 
results to the results computed with CGWs. In particular, we use our method to calculate the effective 
mass of polarons, which is a subject of special interest for many physical applications and remains an 
area of much controversy.

The Fröhlich Hamiltonian represents a generic class of models in which a single quantum mechanical 
particle interacts with the phonon reservoir of the host system. In particular it can describe the interac-
tion of an impurity atom with the Bogoliubov modes of a BEC50,52,56. In this case it reads (ħ =  1)

Figure 1. By applying a rf-pulse to flip a non-interacting (left inset) into an interacting impurity state 
(right inset) a Bose polaron can be created in a BEC. From the corresponding rf-spectrum the polaron 
groundstate energy can be obtained. In the main plot we compare polaronic contributions to the energy Ep 
(as defined in Eq. (25)) predicted by different models, as a function of the coupling strength α. Our results 
(RG) are compared to calculations with correlated Gaussian wavefunctions (CGWs)59, MC calculations by 
Vlietinck et al.58, Feynman variational calculations by Tempere et al.56 and MF theory. We used the standard 
regularization scheme to cancel the leading power-law divergence of Ep. However, to enable comparison 
with the MC data, we did not regularize the UV log-divergence reported in this paper. Hence the result is 
sensitive to the UV cutoff chosen for the numerics, and we used the same value Λ 0 =  2000/ξ as in58. Other 
parameters are M/m =  0.263158 and P =  0.
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Here M denotes the impurity mass and m will be the mass of the host bosons, âk is the annihilation 
operator of the Bogoliubov phonon excitation in a BEC with momentum k, P and R are momentum and 
position operators of the impurity atom, d is the dimensionality of the system and Λ 0 is a high momen-
tum cutoff needed for regularization. The dispersion of phonon modes of the BEC and their interaction 
with the impurity atom are given by the standard Bogoliubov expressions56
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with n0 being the BEC density and ξ =  (2mgBBn0)−1/2 the healing (or coherence) length and c =  (gBBn0/m)1/2 
the speed of sound of the condensate. Here gIB denotes the interaction strength between the impurity atom 
with the bosons, which in the lowest order Born approximation is given by gIB =  2πaIB/mred, where aIB is 
the scattering length and = +− − −m M mred

1 1 1 is the reduced mass of a pair consisting of impurity and 
bosonic host atoms. Similarly, gBB is the boson-boson interaction strength. The analysis of the UV diver-
gent terms in the polaron energy will require us to consider a more accurate cutoff dependent relation 
between gIB and the scattering length aIB (see methods).

The Fröhlich Hamiltonian (1) for an impurity atom in a BEC is characterized by only two dimen-
sionless coupling constants when expressing lengths in units of ξ and energies in units of c/ξ. Firstly the 
mass ration M/m enters the kinetic energy of the impurity and determines the strength of long-range 
phonon-phonon interactions mediated by the impurity atom. Secondly, impurity-phonon interactions 
are determined by the scattering length aIB and the BEC density n0 and can be parametrized by the 
dimensionless coupling strength56

α π ξ= . ( )n a8 30 IB
2

In order to calculate the energy of the impurity atom in the BEC one needs to consider the full 
expression = +E E EIMP IB

0
B, where =E g nIB

0
IB 0 is the MF interaction energy of the impurity with bos-

ons from the condensate, and  = ˆEB FROL gs
 is the groundstate energy of the Fröhlich Hamiltonian. 

From now on we will call E IB
0  the impurity-condensate interaction energy and EB the polaron binding 

energy. Only EIMP is physically meaningful and can be expressed in a universal cutoff independent way 
using the scattering length aIB. Precise conditions under which one can use the Fröhlich model to 
describe the impurity BEC interaction, and parameters of the model for specific cold atoms mixtures are 
discussed in the discussion section. We point out that the Fröhlich type Hamiltonians (1) are relevant 
for many systems besides BEC-impurity polarons. Its original and most common use is in the context of 
electrons coupled to crystal lattice fluctuations in solid state systems60. Another important application 
area is for studying doped quantum magnets, in which electrons and holes are strongly coupled to mag-
netic fluctuations. Motivated by this generality of the model (1) we will analyze it for a broader range of 
parameters than may be relevant for the current experiments with ultra cold atoms.

Results

As a first step we apply the standard Lee-Low-Pines (LLP)61 unitary transformation to the Fröhlich 
Hamiltonian, which separates the total polaron momentum P as a conserved quantity. Next, we apply a 
second exact unitary transformation, which displaces the phonons by the MF polaron solution αkMF61. 
This brings the Hamiltonian into the form (see also method section for a self-contained derivation)

 ∫ ∫ ′
= + Ω +

⋅
Γ Γ . ( )

∼
′

′
ˆ ˆ ˆ ˆ† k kE a a
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: : 4k k k k k
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Here EB
MF is the polaron binding energy obtained from MF theory and the MF phonon dispersion is 

denoted by Ωk
MF. MF polaron theory was formulated for this problem in48, and we give a self-contained 



www.nature.com/scientificreports/

4Scientific RepoRts | 5:12124 | DOi: 10.1038/srep12124

summary in the methods section. Moreover we defined αΓ = ( + ) +ˆ ˆ ˆ ˆ ˆ† †a a a a:k k k k k k
MF

, : ... : stands for 
normal-ordering and we introduced the short-hand notation ∫ ∫= <Λ

d kk k
d

0
.

RG Analysis. In this section we provide the RG solution of the Hamiltonian (4), describing quantum 
fluctuations on top of the MF polaron state. We begin with a dimensional analysis of different terms in 
(4) in the long wavelength limit, which establishes that only one of the interaction terms is marginal and 
all others are irrelevant. Then we present the RG flow equations for parameters of the model, including 
the expression for the polaron binding energy. We note that electron-phonon interactions of the Fröhlich 
type, see Eq. (1), have been treated before using a different RG formalism62,63. There, phonons were 
integrated out exactly, and in contrast to the method introduced below all information about phonon 
correlations in the polaron cloud was lost.

Our approach to the RG treatment of the model (4) is similar to the “poor man’s RG” in the context 
of the Kondo problem. We use Schrieffer-Wolff type transformation to integrate out high energy phonons 
in a thin shell in momentum space near the cutoff, Λ  −  δΛ  <  k <  Λ , using 1/Ω k as a small parameter (Ω k 
being the frequency of phonons in the thin momentum-shell, where initially Ω = Ωk k

MF). This transfor-
mation renormalizes the effective Hamiltonian for the low energy phonons. Iterating this procedure we 
get a flow of the effective Hamiltonian with the cutoff parameter Λ .

To analyze whether the system flows to strong or weak coupling in the long wavelength limit |k|ξ ≪  1 
we consider scaling dimensions of different operators in (4). We fix the dimension of âk using the con-
dition that ∫ Ω

<Λ
ˆ ˆ†d k a ak k kk

d  is scale invariant. In the long wavelength limit phonons have linear disper-

sion Ω k ∝  |k|, which requires scaling of âk as Λ−
+d 1
2 . Scaling dimensions of different contributions to the 

interaction part of the Hamiltonian (26) is shown in Table 1. We observe that, as the cutoff scale tends 
to zero, most terms are irrelevant and only the quartic term ∫ ′

′ ′′
⋅ ˆ ˆ ˆ ˆ† †a a a ak k

k k k kkk M2
 is marginal. As we 

demonstrate below, this term is marginally irrelevant, i.e. in the process of RG flow the impurity mass M 
flows to large values. This feature provides justification for doing the RG perturbation expansion with 
1/M as the interaction parameter. Also, an irrelevance of the interaction under the RG flow physically 
means that at least slow phonons in the system are Gaussian. This provides an insight why the variational 
correlated Gaussian wavefunctions59 are applicable for the Fröhlich Hamiltonian under consideration.

By starting from the Hamiltonian (4) and calculating its RG flow we find that the general RG 
Hamiltonian can be written in the following way,

H M∫ ∫(Λ) = + (Ω + ( + )) + ′ ′ Γ Γ .
( )

∼
′µ µν ν
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1

Note that the interaction is now characterized by a general tensor %µν
−1 [the indices µ =  x, y, z, ... label 

cartesian coordinates and they are summed over when occurring twice], where the anisotropy originates 
from the conserved total momentum of the polaron P =  Pex, breaking the rotational symmetry of the 
system. Due to the cylindrical symmetry of the problem, the mass tensor has the form 
% % % %( )= , , , …⊥ ⊥diag , and we find different flows for the longitudinal and the transverse com-
ponents of the mass tensor. While % can be interpreted as the (tensor-valued) renormalized mass of the 
impurity, it should not be confused with the mass of the polaron. The first line of Eq. (5) describes the 
diagonal quadratic part of the renormalized phonon Hamiltonian. It is also renormalized compared to 
the MF expression Ωk

MF,

% ( )ωΩ = + − ⋅ − . ( )µ µν ν
− k P Pk k

M
1
2 6k k

1
ph

The momentum carried by the phonon-cloud, Pph, acquires an RG flow, describing corrections to the MF 
result Pph

MF. In addition there is a term linear in the phonon operators, weighted by

operator scaling (Λξ ! 1)

âk Λ −(d+1)/2

∫ α α′ ′
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k k k kk
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MF MF Λ d

∫ α′ ′
′ ′<Λ

⋅ ˆ ˆ ˆ†d kd k a a ak k
k k k kk

d d
M2

MF Λ d/2

∫ ′ ′
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k k k kk

d d
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Λ 0 =  1

Table 1.  Dimensional analysis is performed by power-counting of the different terms describing 
quantum fluctuations around the MF polaron state. We fixed the scaling dimension of âk such that 
∫ Ω ∼ Λ
<Λ

!ˆ ˆ†d k a ak k kk
d 0 is scale-invariant.
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By comparing Eq. (5) to Eq. (4) we obtain the initial conditions for the RG, starting at the original 
UV cutoff Λ 0 where   (Λ ) =

∼ ∼
RG 0 LLP,
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Here we use the notation ∫ −d pd
F

1  for the integral over the d −  1 dimensional surface defined by momenta 
of length |p| =  Λ . The energy correction to the binding energy of the polaron beyond MF theory, 
= + ∆E E EB B
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B
RG, is given by
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Note that, in this expression, we evaluated the renormalized impurity mass % (Λ = )µν k  at a value of 
the running cutoff Λ  =  k given by the integration variable k =  |k|. Similarly, it is implicitly assumed that 
Pph(k) and %( )k  appearing in the expressions for Wk and Ω k, see Eqs (7) and (6), are evaluated at Λ  =  k.

Figure 2 shows typical RG flows of %µν and −P Pph ph
MF. For ξΛ /1 1  we observe quick convergence 

of these coupling constants. One can see comparison of the MC and RG calculations58 for the polaron 
binding energy at momentum P =  0 in Fig. 1. The agreement is excellent for a broad range of interaction 
strengths. We will further discuss these results below.

����ơ�����������Ǥ� In a three dimensional system (d =  3), examination of the binding energy of the 
polaron EB shows that it is UV divergent. To leading order it scales linearly with the UV cut-off, EB ~ Λ 0. 
This divergence is known from MF polaron theory, and it can be regularized by using the second order 
Lippman-Schwinger equation to relate the scattering length aIB to the interaction strength gIB which 
determines the impurity-condensate interaction (see methods for a brief review). From our RG protocol, 
in addition, we obtain a sub-leading logarithmic UV divergence, EB ~ − log(Λ 0ξ). To obtain cut-off inde-
pendent polaron energies EIMP we developed a regularization scheme which cancels the log-divergence, 
by including beyond-MF effects in the Lippman-Schwinger equation. The details of this scheme will be 
presented in a separate publication64. All other observables discussed in this paper, such as the effective 
polaron mass, are UV convergent, and thus no regularization will be required.

Polaron Energy. The impurity energy (calculated from the RG and using our regularization scheme) 
is shown in Fig. 3 as a function of the polaronic coupling strength α. The resulting energy is close to, 
but slightly above, the MF energy. [This result might be surprising at first glance, because MF polaron 
theory relies on a variational principle and thus yields an upper bound for the groundstate energy. 
However, this bound holds only for the binding energy EB, defined as the groundstate energy of the 
Fröhlich Hamiltonian, and not for the entire impurity Hamiltonian including the condensate-impurity 
interaction.] We thus conclude that the large deviations observed in Fig. 1 of beyond MF theories (MC, 
RG, variational) from MF are merely an artifact of the logarithmic UV divergence which was not prop-
erly regularized. We note that this also explains — at least partly — the unexpectedly large deviations of 
Feynman’s variational approach from the numerically exact MC results, reported in58, since Feynman’s 
model does not capture the log-divergence58.

Our results have important implications for experiments. The relatively small difference in energy 
between MF and (properly regularized) RG in Fig. 3 demonstrates that a measurement of the impurity 
energy alone does not allow to discriminate between uncorrelated MF theories and extensions thereof 
(like RG or MC). Yet such a measurement would still be significant as a consistency check of our regu-
larization scheme. To find smoking gun signatures for beyond MF behavior, i.e. for a regime dominated 
by quantum fluctuations, other observables are required such as the effective polaron mass, which we 
discuss next.
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Figure 2. Typical RG flows of the (inverse) renormalized impurity mass %−1 (a) and the excess phonon 
momentum −P Pph ph

MF along the direction of the system momentum P (b). Results are shown for different 
coupling strengths α (defined in Eq. (3)) and we used parameters M/m =  0.3, P/Mc =  0.5 and Λ 0 =  20/ξ in 
d =  3 dimensions.

Figure 3. The impurity energy EIMP(α), which can be measured in a cold atom setup using rf-
spectroscopy, is shown as a function of the coupling strength α. Our prediction from the RG is given by 
the solid black line, representing the fully regularized impurity energy. We compare our results to MF theory 
(dashed). Note that, although MF yields a strict upper variational bound on the binding energy EB, the MF 
impurity energy EIMP is below the RG prediction because the impurity-condensate interaction EIB

0  was 
treated more accurately in the latter case. We used parameters M/m =  0.26316, Λ 0 =  2000/ξ, P =  0 and set 
the BEC density to n0 =  ξ−3.
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�ơ������� �������� ����Ǥ� In Fig.  4 we show the polaron mass calculated using several different 
approaches. In the weak coupling limit α →  0 the polaron mass can be calculated perturbatively in α, 
and the lowest-order result is shown in Fig. 4. We observe that in this limit, all approaches follow the 
same line which asymptotically approaches the perturbative result (as α →  0). The only exception is the 
strong coupling Landau-Pekkar approach, which yields a self-trapped polaron solution only beyond a 
critical value of α54.

For larger values of α, MF theory sets a lower bound for the polaron mass. Naively this is expected, 
because MF theory does not account for quantum fluctuations due to couplings between phonons of 
different momenta. These fluctuations require additional correlations to be present in beyond MF wave-
functions, like e.g. in our RG approach, which should lead to an increased polaron mass. Indeed, for 
intermediate couplings α 1 1 the RG, as well as the variational approach using CGWs, predict a polaron 
mass >M Mp p

MF which is considerably different from the MF result48.
In Fig. 4 we present the most interesting aspect of our analysis, which is related to the nature of the 

cross-over from weak to strong coupling polaron regime. While Feynman’s variational approach predicts 
a sharp transition, the RG and CGWs results show no sign of any discontinuity in the accessible parame-
ter range. Instead they suggest a smooth cross-over from one into the other regime. This is also expected 
on general grounds, and rigorous proofs were given for generic polaron models in Refs  65, 66. The 
proofs do not apply to the Fröhlich Hamiltonian in a BEC, see Eq. (1), however. Interestingly, for closely 
related Fröhlich polarons with acoustic phonons, indications for a true phase transition were found in the 
solid-state context67. It is possible that the sharp crossover obtained using Feynman’s variational approach 
is an artifact of the limited number of parameters used in the variational action. It would be interesting 
to consider a more general class of variational actions20,68.

In Fig.  4 we calculated the polaron mass in the strongly coupled regime, where α ≫  1 and the 
impurity-boson mass ratio M/m =  0.26 is small. It is also instructive to see how the system approaches 
the integrable limit M →  ∞ when it becomes exactly solvable48. Figure 5 shows the (inverse) polaron mass 
as a function of α for different mass ratios M/m. For M ≫  m, as expected, the corrections from the RG 
are negligible and MF theory is accurate. When the mass ratio M/m approaches unity, we observe devi-
ations from the MF behavior for couplings above a critical value of α which depends on the mass ratio. 
Remarkably, for very large values of α the mass predicted by the RG follows the same power-law as the 
MF solution, with a different prefactor. This can be seen more clearly in Fig. 6, where the case M/m =  1 is 
presented. This behavior can be explained from strong coupling theory. As shown in54 the polaron mass 
in this regime is proportional to α, as is the case for the MF solution. However prefactors entering the 
expressions for the weak coupling MF and the strong coupling masses are different.

To make this more precise, we compare the MF, RG and strong coupling polaron masses for M/m =  1 
in Fig. 6. We observe that the RG smoothly interpolates between the weak coupling MF and the strong 
coupling regime. While the MF solution is asymptotically recovered for small α →  0 (by construction), 
this is not strictly true on the strong coupling side. Nevertheless, the observed value of the RG polaron 
mass in Fig. 6 at large α is closer to the strong coupling result than to the MF theory.

Now we return to the discussion of the polaron mass for systems with a small mass ratio M/m <  1. In 
this case Fig. 5 suggests that there exists a large regime of intermediate coupling, where neither strong 
coupling nor MF theory can describe the qualitative behavior of the polaron mass. This is demonstrated 
in Fig. 4, where our RG approach predicts values for the polaron mass midway between MF and strong 

Figure 4. The polaron mass Mp (in units of M) is shown as a function of the coupling strength α. We 
compare our results (RG) to variational calculations using CGWs59 and MF calculations, strong coupling 
theory54 and Feynman’s variational path-integral approach55. The path-integral results were obtained by 
Wim Casteels57, and we are grateful to him for providing this data to us. We used parameters M/m =  0.26, 
Λ 0 =  200/ξ and set P/Mc =  0.01.
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coupling, for a wide range of couplings. In this intermediate-coupling regime, the impurity is constantly 
scattered on phonons, leading to strong correlations between them.

Thus measurements of the polaron mass rather than the binding energy should be a good way to dis-
criminate between different theories describing the Fröhlich polaron at intermediate couplings. Quantum 
fluctuations manifest themselves in a large increase of the effective mass of polarons, in strong con-
trast to the predictions of the MF approach based on the wavefunction with uncorrelated phonons. 
Experimentally, both the quantitative value of the polaron mass, as well as its qualitative dependence on 
the coupling strength can provide tests of our theory. The mass of the Fermi polaron has successfully 
been measured using collective oscillations of the atomic cloud15, and we are optimistic that similar 
experiments can be carried out with Bose polarons in the near future. Alternatively, momentum resolved 
radio-frequency spectroscopy can be used to measure the mass of the polaron, see e.g.48. If imbalanced 
atomic mixtures are used, the polaron-polaron interactions need to be sufficiently weak to prevent the 
system from phase-separation, as discussed in Ref. 69 using the strong-coupling approximation.

Discussion

Now we discuss conditions under which the Fröhlich Hamiltonian can be used to describe impurities in 
ultra cold quantum gases. We also present typical experimental parameters and show that the interme-
diate coupling regime α ~ 1 can be reached with current technology. Possible experiments in which the 
effects predicted in this paper could be observed are also discussed.

To derive the Fröhlich Hamiltonian Eq. (1) for an impurity atom immersed in a BEC52,56, the Bose 
gas is described in Bogoliubov approximation, valid for weakly interacting BECs. Then the impurity 
interacts with the elementary excitations of the condensate, which are Bogoliubov phonons. In writing 
the Fröhlich Hamiltonian to describe these interactions, we included only terms that are linear in the 

Figure 5. The inverse polaron mass M/Mp is shown as a function of the coupling strength α, for various 
mass ratios M/m. We compare MF (dashed) to RG (solid) results. The parameters are Λ 0 =  2000/ξ and we 
set P/Mc =  0.01 in the calculations.

Figure 6. The polaron mass Mp/M is shown as a function of the coupling strength for an impurity 
of mass M = m equal to the boson mass. We compare the asymptotic perturbation and strong coupling 
theories with MF and RG, which can be formulated for all values of the coupling strength. We used 
parameters Λ 0 =  200/ξ and P/Mc =  0.01.
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Bogoliubov operators. This implicitly assumes that the condensate depletion ∆ n caused by the impurity 
is much smaller than the original BEC density, ∆ n/n0 =  1, giving rise to the condition52

ξ . ( )�g c4 12IB
2

When this condition is not fulfilled, other interesting phenomena like the formation of a bubble polaron70 
can be expected which go beyond the physics described by the Fröhlich model.

To reach the intermediate coupling regime of the Fröhlich model, coupling constants α larger than 
one α 2 1 are required (for mass ratios M/m ≃  1 of the order of one). This can be achieved by a suffi-
ciently large impurity-boson interaction strength gIB, which however means that condition (12) becomes 
more stringent. Now we discuss under which conditions both α 2 1 and Eq. (12) can simultaneously be 
fulfilled. To this end we express both equations in terms of experimentally relevant parameters aBB 
(boson-boson scattering length), m and M which are assumed to be fixed, and we treat the BEC density 
n0 and the impurity-boson scattering length aIB as experimentally tunable parameters. Using the 
first-order Born approximation result gIB =  2πaIB/mred Eq. (12) reads

ε π= ⎛
⎝
⎜⎜ +

⎞
⎠
⎟⎟⎟ ,

( )
/ !

�m
M

a a n: 2 1 1 13
3 2

IB BB 0

and similarly the polaronic coupling constant can be expressed as

α π= .
( )

a n
a

2 2
14

IB
2

0

BB

Both α and ε are proportional to the BEC density n0, but while α scales with a IB
2 , ε is only proportional 

to aIB. Thus to approach the strong coupling regime aIB has to be chosen sufficiently large, while the BEC 
density has to be small enough in order to satisfy Eq. (13). When setting ε =  0.3 ≪  1 and assuming a 
fixed impurity-boson scattering length aIB, we find an upper bound for the BEC density,

≤ = . × × ( + / )
⎛

⎝
⎜⎜⎜
/ ⎞

⎠
⎟⎟⎟⎟
⎛

⎝
⎜⎜⎜
/ ⎞

⎠
⎟⎟⎟⎟
,

( )
− −

− −

n n m M a a a a4 9 10 cm 1
100 100 150 0

max 15 3 2 IB 0
2

BB 0
1

where a0 denotes the Bohr radius. For the same fixed value of aIB the coupling constant α takes a max-
imal value

α
π

= . × ( + / )
( )

−m M a
a

0 3 2 1
16

max 1 IB

BB

compatible with condition (12).
Before discussing how Feshbach resonances allow to reach the intermediate coupling regime, we 

estimate values for αmax and n0
max for typical background scattering lengths aIB. Despite the fact that these 

aIB are still rather small, we find that keeping track of condition (13) is important. To this end we con-
sider two experimentally relevant mixtures, (i) 87Rb (majority) -41K20,29 and (ii) 87Rb (majority) -133Cs25,28. 
For both cases the boson-boson scattering length is aBB =  100a0

23,24 and typical BEC peak densities real-
ized experimentally are n0 =  1.4 ×  1014cm−3 29. In the first case (i) the background impurity-boson scat-
tering length is aRb−K =  284a0

23, yielding αRb−K =  0.18 and ε =  0.21 ≪  1. By setting ε =  0.3 for the same 
aRb−K, Eq. (15) yields an upper bound for the BEC density = . × −n 2 8 10 cm0

max 14 3 above the value of 
n0, and a maximum coupling constant α = .− 0 26Rb K

max . For the second mixture (ii) the background 
impurity-boson scattering length aRb−Cs =  650a0

28 leads to αRb−Cs =  0.96 but ε =  0.83 <  1. Setting ε =  0.3 
for the same value of aRb−Cs yields = . × −n 0 18 10 cm0

max 14 3 and α = .− 0 35Rb Cs
max . We thus note that 

already for small values of α 2 1, Eq. (13) is not automatically fulfilled and has to be kept in mind.
The impurity-boson interactions, i.e. aIB, can be tuned by the use of an inter-species Feshbach reso-

nance23, available in a number of experimentally relevant mixtures26,31,37–39,42,43. In this way, an increase 
of the impurity-boson scattering length by more than one order of magnitude is realistic. In Table 2 we 
show the maximally achievable coupling constants αmax for several impurity-boson scattering lengths and 
imposing the condition ε <  0.3. We consider the two mixtures from above (87Rb −  41K and 87Rb −  133Cs), 
where broad Feshbach resonances are available20,26,37,38. We find that coupling constants α ~ 1 in the 
intermediate coupling regime can be realized, which are compatible with the Fröhlich model and respect 
condition (12). The required BEC densities are of the order n0 ~ 1013 cm−3, which should be achievable 
with current technology. Note that when Eq. (12) would not be taken into account, couplings as large as 
α ~ 100 would be possible, but then ε ~ 8 ≫  1 indicates the importance of the phonon-phonon scatterings 
neglected in the Fröhlich model. Bose polarons in such close vicinity to a Feshbach resonance have also 
been discussed in Refs 45, 46.
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Methods

	�Ú������ ������������ ��� ���� ��������� �����Ǥ The Hamiltonian (1) describes a translationally 
invariant system. It is convenient to perform the LLP transformation61 that separates the system into 
decoupled sectors of conserved total momentum,

∫= = ⋅ ( )
ˆ ˆ ˆ ˆˆ †R kU e S d k a a 17

iS d
k k

  ( )∫ ∫ ω= = − + + ( + ) . ( )−
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †P kU U

M
d k a a d k a a V a a1

2
[ ] 18k k k k

d
k k

d
k kLLP FROL

2

The transformed Hamiltonian (18) does no longer contain the impurity position operator R. Thus P in 
equation (18) is a conserved net momentum of the system and can be treated as a �-number (rather 
than a hermitian operator). Alternatively, the transformation (17) is commonly described as going into 
the impurity frame, since the term describing boson scattering on the impurity in (18) is obtained from 
the corresponding term in (1) by setting R =  0. The Hamiltonian (18) has only phonon degrees of free-
dom but they now interact with each other. This can be understood physically as a phonon-phonon 
interaction, mediated by an exchange of momentum with the impurity atom. This impurity-induced 
interaction between phonons in Eq. (1) is proportional to 1/M. Thus in our analysis of the polaron prop-
erties, which is based on the LLP transformed Fröhlich Hamiltonian, we will consider 1/M as controlling 
the interaction strength.

���������� ���������Ƥ�����������������Ǥ� In this section we briefly review the MF approach to 
the polaron problem, which provides an accurate description of the system when quantum fluctuations 
do not play an important role, e.g. for weak coupling α "  1 or large impurity mass. We discuss how 
one should regularize the MF interaction energy, which is UV divergent for d ≥  2. To set the stage for 
subsequent beyond MF analysis of the polaron problem, we derive the Hamiltonian that describes fluc-
tuations around the MF state.

The MF approach to calculating the ground state properties of (18) is to consider a variational wave-
function in which all phonons are taken to be in a coherent state61. The MF variational wavefunction 
reads

∏∫ψ α= = .
( )

α − . .ˆ†
e 0

19
k

k
k

d a
MF

h ck k
3 MF

It becomes exact in the limit of an infinitely heavy (i.e. localized) impurity. Energy minimization with 
respect to the variational parameters αk gives

( )
α

ω
= −

Ω
= −

+ − ⋅ −
,

( )P P

V V

20
k

k
k

k k

k
k
M M

MF
MF

2 ph
MF2

where Pph
MF is the momentum of the system carried by the phonons. It has to be determined self-consistently 

from the solution (20),

∫ α= . ( )P kd k 21k
d

ph
MF MF 2

The MF character of the wave function (19) is apparent from the fact that it is a product of wave func-
tions for individual phonon modes. Hence it contains neither entanglement nor correlations between 
different modes. The only interaction between modes is through the selfconsistency equation (21).

aRb−K/a0 284. 994. 1704. 2414. 3124. 3834.

α −Rb K
max 0.26 0.91 1.6 2.2 2.9 3.5

−n [10 cm ]0
max 14 3 2.8 0.23 0.078 0.039 0.023 0.015

aRb−Cs/a0 650. 1950. 3250. 4550. 5850. 7150.

α −Rb Cs
max 0.35 1.0 1.7 2.4 3.1 3.8

−n [10 cm ]0
max 14 3 0.18 0.02 0.0073 0.0037 0.0022 0.0015

Table 2.  Experimentally the impurity-boson scattering length aIB can be tuned by more than one order 
of magnitude using a Feshbach-resonance. We consider two mixtures (87Rb −  41K, top and 87Rb −  133Cs, 
bottom) and show the maximally allowed BEC density n0

max along with the largest achievable coupling 
constant αmax compatible with the Fröhlich model, using different values of aIB.
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Properties of the MF solution have been discussed extensively in Refs  48, 61, 71. Here we reiterate 
only one important issue related to the high energy regularization of the MF energy45,48,56. In d ≥  2 
dimensions the expression for the MF energy,

∫
( )

= − −
Ω

,
( )<Λ

E P
M

P
M

d k V
2 2 22kk

d k
B
MF

2 ph
MF 2

2

MF
0

is UV divergent as the high momentum cutoff Λ 0 is sent to infinity. In order to regularize this expression 
we recall that the physical energy of the impurity is a sum of E IB

0  and the polaron binding energy EB. If 
we use the leading order Born approximation to express gIB =  2πaIB/mred, we observe that the MF polaron 
energy has contributions starting with the second order in aIB. Consistency requires that the 
impurity-condensate interaction energy =E g nIB

0
IB 0 is computed to order a IB

2 . The Lippman-Schwinger 
equation provides the relation between the microscopic interaction gIB, the cutoff Λ 0 and the physical 
scattering length aIB

72
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To second order in aIB one has

∫
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Now we recognize that in the physically meaningful impurity energy = +E E EIMP IB
0

B
MF the UV diver-

gence cancels between E IB
0  and EB

MF.
Thus separation of the impurity energy into the impurity-condensate interaction =E n gIB

0
0 IB and the 

binding energy EB is not physically meaningful. A decomposition of the impurity energy in orders of the 
scattering length aIB, on the other hand, is well defined,

π
= + ( ),

( )
E a n

m
E a2

25pIMP
IB 0

red
IB
2

where the second-order term is referred to as the polaronic energy of the impurity56.
The main shortcoming of the MF ansatz (19) is that it discards correlations between phonons with 

different energies and at different momenta. In this paper we develop a method that allows us to go 
beyond the MF solution (19) and include correlations between modes. In the following we demonstrate 
how this can be accomplished, and discuss physical consequences of phonon correlations. To simplify 
the subsequent discussion we perform a unitary transformation that shifts the phonon variables in Eq. 
(18) by the amount corresponding to the MF solution,

  

∫

∫ ∫ ′

α= ⎡
⎣⎢
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⎦⎥

= = + Ω +
⋅

Γ Γ , ( )
∼

′
′

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

†

† † k k

V d k a

V V E a a
M

exp h c

2
: : 26

k k

k k k k k

d

k kk
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see Eq. (4) in the main text. Note that the absence of terms linear in âk in the last equation reflects the 
fact that αkMF correspond to the MF (saddle point) solution. We emphasize that (26) is an exact rep-
resentation of the original Fröhlich Hamiltonian, where the operators âk describe quantum fluctuations 
around the MF polaron.

���������������
�ƪ������������Ǥ� We now derive the RG flow equations of the general Hamiltonian 
(5), which should be supplemented by the initial conditions in Eq. (8). To this end we separate phonons 
into “fast” ones with momenta p and “slow” ones with momenta k, according to Λ  −  δΛ  <  |p| <  Λ  and 
|k| ≤  Λ  −  δΛ . Then the Hamiltonian (5) can be split into

H H H H

H

H M

∫
∫ ∫

( )
(Λ) = + +

= ⎡
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Ω + + ⎤
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† †d p a a W a a

d k d pk p 27
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where we use the short-hand notations ∫ ∫=d p d pp
d d

F fast
 and ∫ ∫=d k d kk

d d
S slow

. The slow-phonon 
Hamiltonian  ̂S is given by Eq. (5) except that all integrals only go over slow phonons, ∫ ∫→<Λ

d k d kk
d d

S
. 
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In  ̂F we do not have a contribution due to the interaction term since it would be proportional to δΛ 2 
and we will consider the limit δΛ  →  0. We can obtain intuition into the nature of the transformation 
needed to decouple fast from slow phonons, by observing that for the fast phonons the Hamiltonian (27) 
is similar to a harmonic oscillator in the presence of an external force (recall that Γ̂p contains only linear 
and quadratic terms in ( )ˆ †a p ). This external force is determined by the state of slow phonons. Thus it is 
natural to look for the transformation as a shift operator for the fast phonons,

∫= ⎛
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with coefficients F̂p depending on the slow phonons only, i.e. ⎡
⎣⎢ ,

⎤
⎦⎥ =

( )ˆ ˆ †F a 0p p . One can check that taking

% %

% %( )
∫ ∫

∫ ∫

α α α

α

=
Ω
⎡
⎣
⎢ + Γ ⎤

⎦
⎥ −
Ω
⎡
⎣
⎢ Ω ( − )

+ + Γ Γ
⎤

⎦
⎥
⎥ ( )

µ µν ν µ µν ν

µ µν ν σ σλ λ

− −

− −

ˆ ˆ ˆ ˆ

ˆ ˆ

†F W p d kk p d k k a a

W p d kk p d kk

1 1

29

p
p

p p k
p

p k k k k

p p k k

d d

d d

MF 1
S 2

MF 1
S

MF MF

MF 1
S

1
S

eliminates non-diagonal terms in ( )ˆ †a p  up to second order in 1/Ωp. After the transformation we find
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which is valid up to corrections of order /Ω1 p
2 or δΛ 2. The last equation describes a change of the zero-point 

energy δE0 of the impurity in the potential created by the phonons, and it is caused by the RG flow of the 
impurity mass. To obtain this term we have to carefully treat the normal-ordered term Γ Γ ′ˆ ˆ: :k k  in Eq. (5). 
[The following relation is helpful to perform normal-ordering, ′δ αΓ Γ = Γ Γ − ( − ) Γ +′ ′

ˆ ˆ ˆ ˆ ˆk k: : [ ]k k k k k k
MF 2 .] 

We will show later that this contribution to the polaron binding energy is crucial because it leads to a UV 
divergence in d ≥  3 dimensions.

From the last term in Eq. (30) we observe that the ground state |gs〉  of the Hamiltonian is obtained by 
setting the occupation number of high energy phonons to zero, =ˆ ˆ†a ags gs 0p p . Then from Eq. (32) we read 
off the change in the Hamiltonian for the low energy phonons. From the form of the operator ∆Ω̂p in Eq. (31) 
one easily shows that the new Hamiltonian   δ+ˆ ˆ

S S is of the universal form  ∼RG, but with renormalized 
couplings. This gives rise to the RG flow equations for the parameters in  (Λ)

∼
RG  presented in Eqs (9–11).

Calculation of the polaron mass. In this section we provide a few specifics on how we calculate 
the polaron mass. We relate the average impurity velocity to the polaron mass Mp and obtain

Λ= −
( )
, ( ) = ( ),

( )Λ→

M
M

P
P

P P1
0

0 lim
34p

ph
ph 0 ph

where M is the bare impurity mass. The argument goes as follows. The average polaron velocity is 
given by vp =  P/Mp. The average impurity velocity vI, which by definition coincides with the average 
polaron velocity vI =  vp, can be related to the average impurity momentum PI by vI =  PI/M. Because 
the total momentum is conserved, P =  Pph +  PI, we thus have P/Mp =  vp =  vI =  (P −  Pph)/M. Because 
the total phonon momentum Pph in the polaron groundstate is obtained from the RG by solving the 
RG flow equation in the limit Λ  →  0, we have Pph =  Pph(0) as defined above, and Eq. (34) follows. We 
note that in the MF case this result is exact and can be proven rigorously, see48. This is also true for 
the variational approach based on CGWs59.
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