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Abstract 

The influence of pump-field phase diffusion on the gain in a non-degenerate double-A non-inversion laser is studied. The 
phase diffusion of the lower-level coherence leads to loss contributions which are not directly proportional to the number 
density of atoms and occur in addition to the well known effect of reduced coherent population trapping. Lasing without 
inversion is however still possible even if the phases of the pump fields are not locked. 

In recent years the possibility of coherent light amplification without the need of population inversion 
(LWI) became a subject of  intensive theoretical [1 ] and experimental [2] activity. One particular atomic 
system capable of amplifying without inversion is the double-A scheme shown in Fig. 1 [3 ]. Atomic coherences 
generated by the intense driving fields reduce the absorption of a pair of  appropriately phased probe fields. 
The build-up of the coherence between the two lower levels, which plays the most important role, is equivalent 
to optical pumping into a certain coherent superposition of these levels. The pair of probe fields does not 
couple to this state if the relative phase is chosen correctly and hence the population is trapped in the coherent 
superposition state 3. A small population in the upper lasing level, smaller than the population in each of the 
lower states, provided for instance by pumping out of  one particular sublevel of the ground state manifold, 
then leads to amplification. It should be noted, that the presence of other coherences makes amplification 
possible even if the population in the coupled superposition state(s) is larger than the population in the upper 
lasing level [ 5 ]. 

Since the coherence between the lower levels depends on the relative phase of the two driving fields, diffusion 
of this phase leads to a decay of the coherence and therefore to a decay of the trapping state [6,7 ]. That is why 
it is reasonable to expect that LWI gain will be decreased in the presence of phase diffusion. The lower level 
coherence also depends on the relative amplitude of the two driving fields and hence amplitude fluctuations 
will influence the laser gain too. Unlike the phase fluctuations, the amplitude fluctuations are superimposed on 

I Permanent address: Institut fiir Theoretische Physik, Ludwig-Maximilians-Universit/it, 80333 Miinchen, Germany. 
2 Also: Max-PlancbInstitut f'tir Quantenoptik, 85748 Garching, Germany. 
3 The phenomenon of coherent population trapping has been extensively studied in the past. For early work see for instance 
Ref. [4]. 
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Fig. 1. Double-A configuration. Strong bichromatic fields of Rabi-frequency I21 and t22 generate coherence between levels 
bl and b2 (and other coherences) allowing non-inversion amplification of appropriately phased probe fields ol and c~ 2. 
Collisions induce population exchange between lower levels with rate 7c. 

the large mean values of the driving fields (they are believed to be far above the threshold), and are neglected 
for the present discussion. 

The  analysis shows that in addition to the gain reduction due to the decrease of population trapping [6,7] 
there is another effect which gives rise to a reduction of the gain. In the bichromatic scheme non-inversion 
amplification occurs only under two-photon resonance conditions, that is if the oscillation frequency of the 
coherence exactly matches the beat frequency of the two probe fields. The diffusion of the relative phase of the 
two driving fields, on the other hand, is equivalent to a fluctuating beat frequency which leads to a fluctuating 
oscillation frequency of the coherence. Therefore the two-photon resonance condition is only fulfilled in the 
mean and there will be additional contributions to the absorption. Unlike the absorption contributions due 
to the reduced population trapping, they are not directly proportional to the number of  atoms and cannot be 
compensated by increasing the driving field intensities. 

The semiclassical properties of the double-A-scheme of Fig. 1 can be described with a set of  density matrix 
equations in a rotating frame. Since we are interested here only in the linear gain of the system, we may treat 
the interaction with the single-mode probe fields, characterized by the coherent amplitudes ~ and ~2, in a 
perturbative way. 

In the zeroth order in the probe fields, but in all orders in the Rabi-frequencies t21 and 122 of the driving 
fields we have the set of equations: 

d 
--~iPcc = - F p c c  + i(g2~Pcbt - c . c . )  + i(t2~peb2 --C.C.), ( la)  

d 
-~Pbl,2bl, 2 -~- 71,2pcc + 7/l,2Paa - 2ycPbt,2bl, 2 + YcPbob o + YcPb2,1b2, I -- i(Ql*,2Pcbl,2 -- C.C.), (Ib) 

d 
-d~Pbobo = 70flcc + 7~flaa -- 27cPbob o + ~C~Olb I "~" ~cPb2b 2 JI- R(flaa - Pbob o ), ( l c )  

d -½ ( F  + 27c)Pcb~,: + iQI,2 (flcc pbt2bl2) iQ2,1Pb2,1bL2, ( ld)  "~Pcbl, 2 = -- • , -- 

d 
" ~ P b l b  2 = --27cPb,b2 + iQ2Peb, -- iQ~Pcb2, ( l e )  

d 
- ~  paa = - F ' paa + R ( Pbo bo -- paa ) , ( lf)  

where 

/ "  = ~,, + ~,2 + ~,o, /" '  = ~,~ + y~, + ~,~, (2 )  

71, being the radiative decay rates out of level c and 7~, are the corresponding decay rates out of  level a to the 
level bu. Note, that we have included a collisional population exchange between the lower levels with rate 7c. 
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In order to make the discussion more transparent we have assumed resonant driving fields. R describes the 
pumping rate from bo which provides the population in the upper level a of  the probe transitions. 

We now analyze the influence of  phase diffusion of  the driving fields. For this we assume independent, 
freely diffusing phases of  the driving fields [ 8] 

~21,2 = ~2~2 exp (i~bl,2), (3) 

with 

~1,2 =/zi ,2 (t), (4) 

(gl,2(t)) = 0, (g t ( t ) l t n ( t ' ) )  = Art  J t n J ( t -  t ' ) .  (5) 

Eqs. (1) are therefore stochastic equations with multiplicative white noise, which gives rise to noise-induced 
drift terms that alter the semiclassical evolution of  the system. In order to make these effects transparent 
we introduce the new variables ~cb~a = Pcb~a exp(-i~bl,2), Pb~b2 = Pb~b2 exp [i(~bl - ~ 2  )]. The corresponding 
equations of  motion read: 

d ( d )  
~-~Pcbl.2 = "~Pcbl,2 exp(-i~bl,2) - i/~l 2(t)Pcbl2, (6a) 

d ( d )  
" ~ 1 b 2  = "~/~'lb2 exp[i(~l  - q~2)] + i [ # l ( t )  - #2(t)l~,~b2. (6b) 

We can perform the average with respect to the phase fluctuations. Noting that for multiplicative white noise 
we have [81 

t 

(#1 (t)~a,, (t)) = (#1 (t)~cb~ ( t -  e)) + / dT(#~ (t)~cb, (~)) 

t 

(#1 (t)Pcb~ (t -- e )) -- i / dz (#1 ( t )#l  (~)) (Pcb~ (z -- )) £ 

' /  / i - + ( - i )  2 d~ d z ' ( g l ( t ) # l ( Z ) # ( Z ' ) ) ( ~ C b l ( Z ' - - e ) )  + . . . . .  gAUl(Pcb~ (t -- e)) + O(e) ,  (7) 

we find in the limit e ~ 0 
d - 

"~(Pcbl.2) = --½ (F  + 2~'c + AUl,2)(Pcbl.2) -t- ig2~2 ((pcc) - ( P b l , 2 b l , 2 ) )  - -  i~2°,1 (Pb2,1bla), (8a) 

d - • 0 - .  -~(Pb,b2) = - - [2~  + ½ (AUl + AUZ)](kb,b2) + 1 ~  (P~b,) --i~O*(kcb2)" (8b) 

Eq. (8) shows, that the phase diffusion leads to additional coherence decay terms. The linewidth of  the fields 
adds to the decay rates of  the corresponding optical coherence and the diffusion coefficient of  the relative 
phase, which is here the sum of  the two linewidth, adds to the decay of  the lower level coherence [6,7]. 

We solve Eqs. ( l a ) - ( l e )  and (8) in steady-state. For simplification we assume ~o = /20 = ~ = g2*, 
?l = ~'2 = ?0 = ? and the same for the values with primes. We find for the degree of  coherence between bl 
and b2 and the population in bo, c and a: 

(Pb tb2 )  4.Q2F 
(Pbb) - -  D ' (9a) 
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(l~bo) (R + F')[4122(2ycl"c + FYc) + Fc2F(F + F¢)] 
(Pbb) = D(ycR + y 'R + FTc) ' (9b) 

(p¢¢) 802Fc 
- - -  ( 9 c )  

<Pbb> D ' 

(paa) = R[4£22(2ycFc + Fyc) + r?r<r + r~)] (9d) 
(Pbb) D(ycR + ~"R +ryc) ' 

where F¢ = 27¢ + ½(Avl + AVE), and D = 4£22(F + 2F¢) + FFc(F + F¢). In Eqs. (9) we have neglected 
the linewidth contributions to the usually much larger optical decay rates. Eq. (9a) shows a reduction of the 
degree of coherence and therefore a reduction of coherent population trapping with increasing F¢, an effect 
discussed in Refs. [6,7]. Associated with this is an enhanced optical pumping into level b0. 

For F¢ << F the decrease of  coherence can be compensated by increased driving field strength. The enhanced 
population in b0 is rather of advantage for the practical implementation of cw-laser operation due to the 
following reasons. Suppose that the pump fields are perfectly coherent and there are no collisions. As one can 
see from Eqs. (9), the populations in b0 and therefore in a are zero. In other words all the population will be 
optically pumped into the uncoupled combination of states b~ and b2 regardless of  the initial conditions, and 
therefore the system has zero gain in the steady state. That is continuous-wave LWI is not possible in such a 
system. However if phase diffusion or collisions are present, paa is no longer zero. This leads (if the coherence 
Pb~b2 is not completely destroyed) to positive gain in the steady state and allows continuous-wave LWI. 

We are now in a position to discuss the influence of the pump-laser phase diffusion on the LWI dynamics 
in first order of the probe fields. In this case the equations of motion for the atomic variables read 

d 
-d-~Pabl,2 = --Yabl,zPabl,2 + igl,2Oq,2 (paa -- Pbl,2bl, 2 ) -- ig2,1a2,1Pbz,lbi, 2 + i~l,2Pa¢, (10a) 

d 
" ~ p a c  = --YacPac - - ig :qPc*b t  -- ig2t~2Pc*b2 4- i-Q~pabl 4- iff22*Pab2. ( 1 0 b )  

Here gu = (Pu/ti)(V/hV~,/2eoV) are the atom-field coupling strengths, Pu and v u being the dipole matrix 
element and the transition frequency ( =  field frequency) of the corresponding probe transition. V is the 
interaction volume. In the following we assume gt = g2 = g. The relaxation rates are YabL2 = y¢ + F ' / 2  
and Yac = Yd + (F  + F ' ) / 2 .  We assumed here that there is no population exchange between levels a and c 
but included a dephasing rate Yd between the two levels. Eqs. (10) have stochastic character because of the 
stochastic nature of £2t,2 and Pblb2. In order to see the effect of the pump-field phase diffusion on the gain one 
has to consider the evolution of the mean photon numbers (not the coherent amplitudes) of both fields. 

d . i * -~i(aua~) = - gN(~uPaba) + C.C. (11) 

Here N is the number of atoms in the interaction volume. As will be seen later on, the field intensities are 
coupled to the real part of  cross-correlation function (a~a: exp(i¢/)), ~u = ~b2- ~bl, for which one finds the 
equation of motion 

d . • . -~(atct2 exp(i~u)) = - ½ (Aut + Av2)(a~a2 exp(i~u)) - igN(a~Pab2 exp(i¥))  + lgN(pab, a: exp0~) ) ,  (12) 

where the first term on the r.h.s, is a noise induced drift term similar to that appearing in Eq. (8b). We proceed 
by evaluating the expressions on the r.h.s, of  Eqs. (11 ) and (12) in the adiabatic limit. We find for example 

d . . 
0 ----- - ~  (Pabl a t )  ----- --~ab(Pabl Ogt) 4- i g ( a ~ a t  ( p u  - / : ~ b ) )  

- ig(a~a2 exp(ig')/~b2) + iO (a~pac exp(iq~t )) + igN(pab ~ Pab~ ). (13) 
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The last term on the r.h.s, is of higher order in the coupling strength and will be disregarded. Eq. (13) shows 
the above mentioned coupling of the field intensities to the cross-correlation function. As will be explained in 
the following the zeroth order density matrix elements p.., Pbb, and Pbtb2 can be factorized out in the second 
and third term. Let us for example consider the term (ni2phb2), with n12 = c~c~2 exp(iv) .  The time evolution 
of nt2 is given by 

d -~n12(t) = -ilzt2(t)nl2(t) + higher order terms in g, (14) 

where/z~2 = #l -/*2. Formally integrating Eq.(14) yields the iterative expression 

t 
(nl2(t)pblbz (t)} = (n12(t - e )~hb2 (t)) - i / dZ (nlz(Z ~ )) (/,112 (T)Pbl b2 (T)) 

t /  

' /  
( - i )  2 [ !  dT dz'(n~2(¢ - e))(~l~(~)~e(~')Pb~h(~)) + "'" + higher order terms in g. (15) + 

Making use o f  (fll2(T)&lb 2 ( f ) )  = ½(~lJ/I + AP2)(Pblb2(~)), one can see, that all but the first term vanish or 
are proportional to powers of e larger than one. Hence only the first term survives in the limit ~ - ,  0. Similar 
arguments apply to the second term on the r.h.s, of  Eq. (13), and therefore the zeroth order matrix elements 
can be factorized and (Pab~} can be expressed in terms of the field intensity ( ~ ) ,  the cross-correlation 
function ( ~ 2  exp (iq/)), and ( ~  pac exp (i~b~)). In a similar way one can derive a set of algebraic equations for 
the other quantities on the r.h.s, of  Eqs.(11 ) and (12) as well as for (~pac exp(i~bt )) and ( ~ p ~  exp(i~b2)). 
Inserting the solutions into the equations of motion of the field intensities and the cross-correlation function 
eventually yields 

d . --d-~(txloq) = (a  + B)(cz;al) - ( / / +  B)Re[(a~ot2exp(iv))],  

d . "~(~2Ot2) = (A -[- B)(a~a2) - ( / / +  B)Re[(a ;a2exp(i¥)}] ,  

d . . 
- d - ~ R e [ ( o q a 2 e x p 0 ¥ ) } ]  = (A + B - d ) R e [ ( ~ a 2 e x p ( i ~ ) } ]  - ½ / / ( o ~ l }  - i • 

where d = ½ (Av l  + Av2) and 

2g2N 
A - D ~ab + ~ ((paa) -- (Pbb}) + ~"~'(Pblb2) 

~2 + (~'.b + ~)  (~b,b~'] AT 2g2N [ ' ~ "  ((paa) -- (ebb)) 
-- D 

B 2 g 2 N 2 ~ a b ~ 2 " ' "  ( 2f22~ ' 

(16a) 

(16b) 

(16c) 

(17) 

where we have a~ain neglected the linewidth contributions to the optical decay rates. The eigenvalues and 
eigensolutions of Eqs. (16) are 

~t = A + B ,  Jl -- ~1 - 82, (18a) 

A 2 f A + B - - ~ -  +AT(AT+B) , J~ = (AT + B)(8~ + ~2) + (~1 -~2)~t2, (18b) 
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2 3 = A + B - ~ +  + A ( A +  B) , J 3 =  (A+B)(hlWh2)+(21-23)h12, (18c) 

where h~ = (a*~au) and hi2 = (nl2). In order to simplify the further discussion we disregard the contributions 
due to coherences other than the one between bl and b2, in particular due to the a-c coherence. This corresponds 
for example to the case of  strong collisional dephasing of the a-c coherence, such that 122/?ac << Yah. We would 
like to emphasize though that all the following conclusions remain qualitatively the same if the a-c coherence 
is taken into account. Under these conditions the eigenvalues take on the simple form 

21 - 2 g 2 N  ((paa) - (Pbb)), (19a) 
Yah 

N 2g N - 22 = 2g2-  ((p~) - (l~,b)) -- I(Avl + Av2) - ~(AL'I + + . " - Z - - ( ~ )  , (19b) 
}'ab 

2g2N((paa)  - (Pbb)) -- ¼(Avl + Av2) + ~(At ' l  + + ---~-~ab (/gblb2) 23 = 7a""'~ (19C) 

Under non-inversion conditions the only positive eigenvalue is 23, which therefore determines the gain. The 
diffusion of the relative phase of the driving fields leads to a decrease of  ]Pb~b2 [, as per Eq. (9a) and hence 
to an enhanced loss term in Eq. (19c) [6,7]. In addition to this there is a loss contribution, which is not 
simply proportional to the number of  atoms. The physical origin of these additional losses are the imposed 
fluctuations of  the oscillation frequency of the lower-level coherence leading to a partial violation of the 
two-photon-resonance condition. In the limit N ~ 0, 23 of course vanishes regardless of the magnitude of the 
phase diffusion. 

In order to estimate the size of the additional absorption contribution, we have to compare g2N(p~a)/Tab 
with A~/I + A~'2. We note, that for optical wavelength g2N/7ab is of order ls -1 times the number density in 
c m  -3.  The additional loss contributions due to the finite linewidth of the driving fields therefore becomes 
important only for systems with rather low densities of atoms in the excited state, which is however the case 
of interest for non-inversion amplification. 

It is interesting to note, that 21 is also eigenvalue of the equations of motion of the mean coherent amplitudes. 
Its negativity indicates a locking of the two amplitudes leading to strongly correlated output fields 4. 

In conclusion, we have found that the gain in a non-degenerate double-A laser under non-inversion conditions 
is affected by the phase diffusion of driving fields in two ways. 

First the phase diffusion leads to a decay of the coherent trapping state. I f  the linewidth is small compared to 
the optical decay rates, this effect can however be compensated by increased pump-field intensities. Associated 
with the reduced population trapping is an enhanced optical pumping into the uncoupled ground state b0, 
which can be useful for a practical implementation of continuous wave LWI. 

We also found another linewidth effect on the laser gain, which is particularly important for small densities 
of excited atoms. The diffusion of the relative phase of the two driving fields leads to a fluctuating oscil- 
lation frequency of the coherence. Therefore the two-photon resonance condition required for non-inversion 
amplification of a bichromatic probe field is only fulfilled in the mean and the gain is reduced 3. 

The financial support of  the Office of  Naval Research, the Welch foundation, and the Texas Advanced 
Research and Technology Program is gratefully acknowledged. 

4 This effect is related to the phenomenon of pulse matching recently discussed by Harris [9]. 
The effects discussed in this paper are of course not present in a degenerate scheme, where a single driving field coherent 

or incoherent couples both lower levels. In such a ease there are a priori no fluctuations in the beat note between the "two" 
driving fields. Furthermore the lower-level coherence undergoes a forced "oscillation" with frequency zero and hence a single 
probe field is always in "two-photon" resonance. 
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