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Abstract. – Resonant optical pumping in dense atomic media is discussed, where the ab-
sorption length is less than the smallest characteristic dimension of the sample. It is shown
that reabsorption and multiple scattering of spontaneous photons (radiation trapping) can
substantially slow down the rate of optical pumping. A very slow relaxation out of the target
state of the pump process is then sufficient to make optical pumping impossible. As model
systems an inhomogeneously and a radiatively broadened 3-level system resonantly driven with
a strong broad-band pump field are considered.

Introduction. – Optical pumping is an established technique in atomic and molecular
physics to selectively populate or depopulate specific states or superpositions [1,2]. It is based
on the absorption of photons of a specific mode and subsequent spontaneous emission into
many modes. The dissipative nature of the latter part makes it possible to transform mixed
into pure atomic states. From this there results the importance of optical pumping for state
preparation in systems with a thermal distribution of population and for laser cooling [3].

The maximum achievable rate of pumping is determined by the escape time of the emitted
photons, which in optically thin media is given by the free-space radiative lifetime. When the
medium becomes optically thick, however, i.e. when the absorption length becomes smaller
than the smallest sample dimension, the escape time of photons can be substantially reduced.
This phenomenon, known as radiation trapping [4], is due to reabsorption and multiple
scattering of spontaneously emitted photons and can drastically reduce the rate of optical
pumping in dense media. These limitations could be of major importance in many different
fields as, for instance, near-resonance linear and nonlinear optics in dense media [5, 6] or the
realisation of Bose condensation by velocity selective coherent population trapping (VSCPT)
[7].

To describe the reabsorption and multiple scattering of photons we here utilize a recently
developed approach to radiative interactions in dense atomic media [8]. In this approach a
nonlinear and nonlocal single-atom density matrix equation is derived which generalizes the
linear theory of radiation trapping [4] to the nonperturbative regime. As a model system a
3-level Λ configuration driven by a strong broad-band field is considered and the limits of
i) large inhomogeneous and ii) purely radiative broadening are studied.

Let us consider the Λ-type system shown in fig. 1. A strong driving field with (complex)
Rabi frequency Ω(t) couples the lower state |c〉 to the excited state |a〉, which spontaneously
decays into |c〉 and |b〉. Since |b〉 is not coupled by the driving field, this results in optical
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Fig. 1. – Optical pumping in a Λ system.

pumping from |c〉 to |b〉. We also take into account a possible finite lifetime of the target state
described by a population exchange between the lower states at rate γ0.

It was shown in [8] that the effect of the incoherent background radiation can be described
by additional (nonlinear and nonlocal) pump and relaxation rates and level shifts in the
single-atom density matrix equation. If we assume orthogonal dipole moments or sufficiently
different frequencies of the two optical transitions, the level shifts are negligible. Also if the
driving field is strong, the incoherent photons do not affect the pump transition a↔ c. Thus we
are left with a pump and decay rate Γ(t) on the a↔ b transition and the effective single-atom
equations of motion read in a rotating frame:

ρ̇aa = −(γ + γ′ + Γ)ρaa + Γρbb + i(Ω∗ρac − c.c.), (1)

ρ̇cc = γ′ρaa + γ0ρbb − γ0ρcc − i(Ω
∗ρac − c.c.), (2)

ρ̇ac = −(i∆ac + Γac)ρac + iΩ(ρaa − ρcc). (3)

∆ac is the detuning of the drive field from resonance and Γac is the respective coherence decay
rate. It should be noted that Γ is a function of the density matrix elements of all other atoms,
and hence eqs. (1)-(3) are nonlinear and nonlocal.

We are here interested in genuine optical pumping and therefore consider a broad-band
pump [9], i.e. Ω(t) is assumed to have a vanishing mean value and Gaussian δ-like correlations〈
Ω∗(t)Ω(t′)

〉
= Rδ(t − t′). Formally intergating eq. (3), substituting the result back into

eqs. (1) and (2), and averaging over the Gaussian distribution of the pump field leads to the
rate equations

ρ̇aa = −(γ + γ′ + Γ)ρaa + Γρbb −R(ρaa − ρcc), (4)

ρ̇cc = γ′ρaa + γ0ρbb − γ0ρcc +R(ρaa − ρcc). (5)

Collective decay rate. – We now have to determine the collective rate Γ. Γ is proportional
to the spectrum of the incoherent field at the position ~r0 and the resonance frequency ω of the
atom under consideration [8]:

Γ(ω, t) =
℘2

h̄2 D̃(~r0, ω; t) =
℘2

h̄2

∫ ∞
−∞

dτ 〈〈Ê−(~r0, t)Ê
+(~r0, t+ τ)〉〉 eiωτ . (6)

Here Ê± are the positive and negative frequency parts of the field operators, ℘ is the dipole
matrix element of the atomic transition, and 〈〈AB〉〉 ≡ 〈AB〉− 〈A〉〈B〉. D̃(ω) can be obtained
by summing the spontaneous emission contributions of all atoms propagated through the
medium [8]:

D(1, 1) =

∫∫
d3 d4Dret(1, 3)

(
Dret (1, 4)

)∗
Π s(3, 4). (7)

Here Dret(1, 2) is the retarded propagator of the electric field inside the medium, which obeys
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a Dyson-equation in self-consistent Hartree approximation:

Dret(1, 2) = Dret
0 (1, 2)−

∫∫
d3 d4Dret

0 (1, 3) Πret(3, 4)Dret(4, 2). (8)

In eqs. (7) and (8) the numbers 1, 2 . . . stand for {~r1, t1}, {~r2, t2} . . ., and the intergrations
extend over time from −∞ to +∞ and over the whole sample volume. Dret

0 is the free-space
retarded propagator of the electric field. For simplicity we here have disregarded polarisation.
We have also introduced the atomic source correlation

Π s(~r1, t1;~r2, t2) =
℘2

h̄2

∑
j

〈〈
σ†j (t1)σj(t2)

〉〉
δ(~r1 − ~rj) δ(~r2 − ~rj) (9)

and the atomic response function

Πret(~r1, t1;~r2, t2) =
℘2

h̄2 Θ(t1 − t2)
∑
j

〈[
σ†j (t1), σj(t2)

]〉
δ(~r1 − ~rj) δ(~r2 − ~rj) , (10)

where σj = |b〉jj〈a| is the spin-flip operator of the j-th atom and Θ is the Heaviside step

function. In terms of the σ’s the dipole operator of the j-th atom reads dj = ℘(σj + σ†j ). The
names reflect the physical meaning of the quantities (9), (10). The Fourier transform of Π s

is proportional to the spontaneous emission spectrum of the atoms and that of Πret gives the
susceptibility of the medium. Equations (7) and (8) represent a nonperturbative summation
of the spontaneous radiation contributions of all atoms propagated through the medium. It
assumes a Gaussian statistics, which is however a good approximation for the background
radiation.

The Dyson equation (8) was solved in [8] with some approximations in a macroscopic
(continuum) limit where Π(~r1, t1;~r2, t2) =

∫
d3~r P (~r, t1, t2) δ(~r1−~r) δ(~r2−~r). This yielded for

the collective decay rate

Γ(ω; t) =
℘2ω4

(6π)2ε20c
4

∫
V

d3~r
e2q′′0 (~r,ω;t)r

r2
P̃ s(~r, ω; t), (11)

where r = |~r0 − ~r| is the distance bewteeen the source and the probe atom. The probability
that a photon reaches the probe atom is determined by the absorption coefficient

q′′0 (~r, ω, t) =
h̄ω

3ε0c
Re
[
P̃ ret(~r, ω; t)

]
. (12)

One can easily calculate the atomic source and response functions for the Λ system of fig. 1,

P̃ ret(~rj , ω, t) =
℘2

h̄2N
ρjaa(t)− ρjbb(t)

Γab + i(ω − ωjab)
, (13)

P̃ s(~rj , ω, t) =
2℘2

h̄2 N
ρjaa(t)Γab

(Γab)2 + (ω − ωjab)
2
, (14)

where N is the density of atoms, ωjab is the resonance frequency of the j-th atom, Γab the
coherence decay rate of the corresponding transition and the overbar denotes averaging over
a possible inhomogeneous distribution of frequencies.

At this point we shall distinguish two limiting cases. We first consider the limit of large
Doppler broadening and secondly the case of purely radiative broadening.
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Fig. 2. – (a) Time evolution of population of level |b〉 for γ0 = 0, R/γ = 10 and γ′/γ = 1 for

different density parameters K = g Nλ2deff , g = γ/
√

2π∆D. (b) Corresponding effective rate of
optical pumping.

Inhomogeneously broadened system. – The approach of [8] is based on the Markov approxi-
mation of a spectrally broad incoherent radiation. This approximation is justified for example
in an inhomogeneously broadened system. We therefore discuss first the case of large Doppler
broadening. If we are interested in the population dynamics on a time scale slow compared to

velocity changing collissions, we may set ρjµµ(t) = ρjµµ(t) ≡ ρµµ(~rj , t) and thus have the same
population dynamics in all velocity classes. Since Γ depends on the populations of all atoms,
eqs. (4) and (5) are nonlocal. In the case of a constant density of atoms and a homogeneous
pump field, Γ and hence all density matrix elements will be approximately homogeneous. We
therefore make a simplifying approximation and disregard the space dependence. The volume
integral is then carried out by placing the probe atom in the center of the sample. This yields
for a Gaussian Doppler distribution of width ∆D � γ

Γ(ω, t)

γ
=

ρaa(t)

ρbb(t)− ρaa(t)

[
1− exp

[
−H(t)e−∆2/2∆2

D

]]
, (15)

where ∆ = ω−ω0
ab is the detuning from the atomic resonance at rest, and H(t) = K [ρbb(t)−

ρaa(t)]. K = g Nλ2deff with g = γ/
√

2π∆D characterizes the number of atoms within one
relevant velocity class in a volume given by the wavelength squared and the effective escape
distance deff . In deriving (15) we have used the relation between the free-space radiative decay
rate γ and the dipole moment ℘: ℘2 = 3πh̄ε0c

3γ/ω3 [10]. deff corresponds for a long cylindrical
slab to the cylinder radius; for a thin disk to its thickness and for a sphere to its radius.

Averaging over the inhomogeneous velocity distribution of the atoms eventually yields

Γ(t) = Γ(ω, t) =

∫ ∞
−∞

dω
1

√
2π∆D

e−∆2/2∆2
D Γ(ω, t)

= γ
ρaa(t)

ρbb(t)− ρaa(t)

1
√
π

∫ ∞
−∞

dy e−y
2
[
1− exp

(
−H(t)e−y

2
)]
. (16)

In fig. 2a we have shown the population in the target state |b〉 as function of time starting
from equal populations of levels |c〉 and |b〉 at t = 0. Here we have assumed that the target
state is stable, i.e. γ0 = 0. One recognizes that optical pumping is considerably slowed down
already for values of K on the order of 10, which usually corresponds to much less than one
atom per λ3. The slow-down of pumping is further illustrated in fig. 2b, where the effective
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Fig. 3. – Stationary population in level |b〉 for R/γ = 10, γ′/γ = 1 and different values of γ0 as a
function of density parameter K.

pump rate defined as

Γp ≡ −
d

dt
ln[ρaa + ρcc] (17)

is plotted normalized to the value in an optically thin medium (Γ0
p = γ/2). One can see that

the optical pump rate approaches a constant asymptotic value, which for K � 1 and large
pump rates R is given by

Γas
p =

γ

2K
(
π lnK

)1/2 � γ

2
. (18)

Since we have assumed in the plots of fig. 2 an infinitely long-lived target state (γ0 = 0), all
populations eventually end up in |b〉. However, if γ0 is nonzero and in particular if it becomes
comparable to the asymptotic rate Γas

p , the steady-state populations of all states equalize. In
this case optical pumping is less and less efficient and becomes eventually impossible. This is
illustrated in fig. 3, where the stationary population in state |b〉 is shown as a function of the
density parameter K for different values of γ0.

Radiatively broadened system. – We now discuss the case of a radiatively broadened system.
In analogy to the case of inhomogeneous broadening, we find for the spectral distribution

Γ(ω, t)

γ
=

ρaa(t)

ρbb(t)− ρaa(t)

[
1− exp

[
−H(t)

γabΓab
Γ2
ab + ∆2

]]
, (19)

where ∆ = ω−ωab, Γab = γab+Γ, and γab = (γ+γ′+R+γ0)/2, and H(t) = K̃ [ρbb(t)−ρaa(t)].

Here K̃ = g̃ Nλ2deff with g̃ = γ/2πγab. As opposed to the corresponding relation in the
inhomogeneous case, eq. (19) determines the collective decay rate only implicitly, and Γ needs
to be calculated self-consistently. For small atomic densities or ρaa ≈ ρbb the exponential
function in eq. (19) can be expanded into a power series. The first nonvanishing term found
from this has the same spectral shape than the single-atom response function. In such a case
the Markov approximation used in [8] is no longer valid and the approach is quantitatively
incorrect. We shall nevertheless use it and discuss the range of validity afterwards.

We find that in the case of radiative broadening the rate of optical pumping decreases
exponentially with the density parameter as opposed to [Nλ2deff ]−1 in the inhomogeneous
case. For sufficiently large pump rates R and stable target state (γ0 = 0) the asymptotic rate
of optical pumping is here
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Fig. 4. – Same as fig. 3 for radiatively broadened system; K0 = Nλ2deff/2π, R/γ = 10, γ′/γ = 1.

Γas
p =

γ

2
exp

[
−K̃

]
. (20)

Physically, this is due to the fact that here the incoherent photons are in resonance with all
atoms, which drastically increases the scattering probability. As a consequence, much smaller
decay rates γ0 out of the target state are sufficient to make optical pumping impossible. This is
illustrated in fig. 4, where we have plotted the stationary population in state |b〉 as a function
of the density parameter K0 = Nλ2deff/2π for different values of γ0.

In order to check the validity of the Markov approximation, we have shown in fig. 5 the
stationary normalized spectral distribution Γ(ω)/Γ for K0 = 1, 10 and 100 and γ0/γ = 10−4.
Also plotted is the atomic absorption spectrum for K0 = 1 (solid line). One recognizes that
the spectrum of the background radiation has only a slightly larger width than the atomic
response for K0 = 1. In this case the Markov approximation is not valid. The situation
however improves when the density is increased. Thus fig. 4 has only qualitative character for
lower densities.

Summary. – We have shown that resonant optical pumping in a dense atomic medium is
substantially different from optical puming in dilute systems. When the absorption length of
spontaneously emitted photons process becomes less than the minimum escape distance, these

Fig. 5. – Spectral distribution of incoherent background radiation for R/γ = 10, γ′ = γ, γ0/γ = 10−4,
and K0 = 1 (dotted), K0 = 10 (dashed) and K0 = 100 (dash-dotted). Also shown is the normalized
absorption spectrum for K0 = 1.
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photons are trapped inside the medium and cause repumping of population. This leads to a
considerable slow-down of the transfer rate and can make optical pumping impossible if the
target state of the pump process has a finite lifetime. The effect is much less pronounced in
inhomogeneously broadened systems due to the reduction of the spectral density of background
photons.

These results may have some important consequences. It is practically impossile to use
resonant optical pumping in media with Nλ3 ∼ 1. This sets strong limits to the possibility to
prepare pure states or coherent superpositions in systems with initial thermal occupation of
states, such as hyperfine ground levels of alkali at room temperature. Even though the above
analysis did not take into account quantum properties of the atoms and considers only resonant
pumping, the results indicate that it may be very difficult to achieve Bose condensation via
VSCPT in optical lattices [11]. Also the present results show that electromagnetically induced
transparency (EIT) [12] in dense media cannot be understood as the result of optical puming
into a dark state. Essential for EIT in dense media is an entirely coherent evolution [13] via
stimulated adiabatic Raman passage [14]. Some of these aspects will be discussed in more
detail elsewhere.

***

The author would like to thank C. M. Bowden and S. E. Harris for stimulating discus-
sions.

REFERENCES

[1] Kastler A., J. Phys., 11 (1950) 255.

[2] Cohen-Tannoudji C., Optical pumping with lasers, in Atomic Physics IV, edited by G. zu

Putlitz, E. W. Weber and A. Winnacker (Plenum, New York) 1975, p. 589.

[3] See, for example, the special issuses: Laser Cooling and Trapping of Atoms, J. Opt. Soc. Am.
B, 6 (1989) 2020; Optics and Interferometry with Atoms, Appl. Phys. B, 54 (1992) 319; Laser
Cooling and Trapping, Laser Phys., 4 (1994) 829.

[4] Holstein T., Phys. Rev., 72 (1947) 1212; 83 (1951) 1159.

[5] Scully M. O., Phys. Rev. Lett., 67 (1991) 1855; Fleischhauer M. et al., Phys. Rev. A, 46
(1992) 1468.

[6] Jain M., Xia H., Yin G. Y., Merriam A. J. and Harris S. E., Phys. Rev. Lett., 77 (1996)
4326.

[7] Olshanii M., Castin Y. and Dalibard J., in Proceedings of the XII Conference on Laser
Spectroscopy, edited by M. Inguscio, M. Allegrini and A. Sasso (World Scientific, New York)
1995; Castin Y., Cirac J. I. and Lewenstein M., Phys. Rev. Lett., 80 (1998) 5305.

[8] Fleischhauer M. and Yelin S. F., Radiative atom-atom interactions in optically dense media:
Quantum corrections to the Lorentz-Lorenz formula, to be published in Phys. Rev. A (preprint
quant-ph/9809087, 29 September 1998).

[9] A narrow-bandwidth coherent laser would cause Autler-Townes splitting and other interference
effects in the atomic response and spontaneous-emission spectrum. Furthermore, in dense media
the Lorentz-Lorenz corrections to the mean amplitude would have to be taken into account as
well.

[10] Lousiell W. H., Quantum Statistical Properties of Radiation (John Wiley & Sons, New York)
1973.

[11] Hamann S. E. et al., Phys. Rev. Lett., 80 (1998) 4149; Friebel S. et al., Phys. Rev. A, 57
(1998) R20.

[12] For a recent review on EIT see: Harris S. E., Phys. Today, 50, No. 7 (1997) 36.

[13] Harris S. E. and Luo Z.-F., Phys. Rev. A, 52 (1995) R928.

[14] For a review on STIRAP see: Bergmann K., Theuer H. and Shore B. W., Rev. Mod. Phys.,
70 (1998) 1003.


