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1 Introduction

Recent developments in quantum communication and computing [1–3] stim-
ulated an intensive search for physical systems that can be used for coherent
processing of quantum information. It is generally believed that quantum en-
tanglement of distinguishable quantum bits (qubits) is at the heart of quan-
tum information processing. Significant efforts have been directed towards
the design of elementary logic gates, which perform certain unitary processes
on pairs of qubits. These gates must be capable of generating specific, in
general entangled, superpositions of the two qubits and thus require a strong
qubit-qubit interaction. Using a sequence of single and two-bit operations,
an arbitrary quantum computation can be performed [2].

Over the past few years many systems have been identified for potential
implementations of logic gates and several interesting experiments have been
performed. Proposals for strong qubit-qubit interaction involve e.g. the vi-
brational coupling of cooled trapped ions [4], near dipole-dipole or spin-spin
interactions such as in nuclear magnetic resonance [5], collisional interac-
tions of confined cooled atoms [6] or radiative interactions between atoms in
cavity QED [7]. The possibility of simple preparation and measurement of
qubit states as well as their relative insensitivity to a thermal environment
makes the latter schemes particularly interesting for quantum information
processing.

Most theoretical proposals on cavity-QED systems focus on fundamental
systems involving a small number of atoms and few photons. These sys-
tems are sufficiently simple to allow for a first-principle description. Their
experimental implementation is however quite challenging. For example, ex-
tremely high-Q micro-cavities are needed to preserve coherence during all
atom-photon interactions. Furthermore, single atoms have to be confined in-
side the cavities for a sufficiently long time. This requires developments of
novel cooling and trapping techniques, which is in itself a fascinating direction
of current research. Despite these technical obstacles, a remarkable progress
has been made in this area: quantum processors consisting of several coupled
qubits now appear to be feasible.
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On the other hand, some of the above difficulties are related to the mi-
croscopic nature of the system and may be avoided if mesoscopic systems
are used. Proposals based on mesoscopic systems are also very attractive for
possible large-scale implementation in the (presumably distant) future. Here
collective (i.e. many-particle) excitations can be used as qubits, but it is in
general difficult to control the coupling between them.

Motivated by this we here consider an approach that combines elements
of cavity QED with mesoscopic systems. Specifically, we consider an N -atom
system coupled to a few-photon cavity field. We investigate the conditions
under which quantum entanglement can be created and manipulated in this
mesoscopic system. Although entanglement manipulation involves collective
rather than single-particle excitations, the system is still sufficiently simple
to allow for a first principle description.

The central feature of our approach is the ability to manipulate collective
excitations of light and matter by coherent control of the atom-field interac-
tion using atomic dark resonances [8]. The present work demonstrates that
the essential elements of QED-based quantum information processing can be
implemented and that some of them can be considerably improved in a meso-
scopic system. We show in particular that (i) quantum information contained
in polarization states of single photons can be stored in collective atomic ex-
citations; (ii) simple two-bit operations can be performed; (iii) entanglement
can easily be transfered and distributed among collective excitations of dis-
tant atomic ensembles.

2 Collective Excitations as Qubits

A convenient way of encoding quantum information in optics is via the anal-
ogy between spin-1/2 systems and polarization states of light waves. We
therefore begin by associating qubits with polarization states of single pho-
tons, and show that the states of these qubits can be mapped onto collective
excitations of ensembles of atoms. We are here interested in single-photon
excitations of cavity modes described by a superposition of right (|1+〉) and
left (|1−〉) circularly polarized components

|Ψi〉 = αi|1i,+〉+ βi|1i,−〉, (1)

with |αi|2+|βi|2 = 1. In the following we focus on the case that involves a pair
of such single-photons states, i.e. i = 1, 2. For simplicity let us assume that
the two photons occupy different frequency bands and hence are associated
with different cavity modes.

In order to manipulate quantum information stored in such qubits we
consider optical cavities filled with N identical multilevel atoms. The fre-
quency of a particular pair of transitions is assumed to be close to resonance
frequencies of the cavity. The corresponding coupling strengths of the atoms
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to the two cavity modes â1+ and â1− are assumed to be equal and are de-
noted by g (see Fig.1a). In addition some time-dependent classical fields with
Rabi-frequencies Ω1±(t) couple the lower (meta-stable) states |c±1〉 of these
atoms to the excited states |a±1〉 as shown. The excited states decay with
(equal) decay rate γ and all atoms are initially prepared in a certain hyperfine
sub-level, i.e. in a pure state.
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Fig. 1. (a) Schematic of the system for storing photon qubits in collective atomic
excitations. (b) Quantum communication system based on photon trapping and
release

The basic Hamiltonian of the cavity + atom system can be written in
terms of collective operators Σ̂aj ,b =

∑N
i=1 σ̂

i
aj ,b

and Σ̂aj ,cj =
∑N

i=1 σ̂
i
aj ,cj

as

V̂ =
∑
j

�gâjΣ̂aj ,b + �Ωj(t)Σ̂aj ,cj
+ h.c., (2)

where j = 1±, and σ̂iµν = |µ〉ii〈ν| is the flip operator of the ith atom between
states |µ〉 and |ν〉. Here and below we work in a frame rotating with the
optical frequencies.

Of special interest are certain superposition states of light and collec-
tive states of matter that do not interact with the optical fields. These so-
called dark-states [8] correspond to elementary excitations of bosonic quasi-
particles, so-called dark-state polaritons [9]. They are defined by the following
canonical transformation

d̂j = cos θj âj − sin θj 1√
N
σ̂bcj , tan θj(t) = g

√
N/Ωj(t) (3)

In the limit of small excitation the operators d̂j and d̂ †
j fulfill Bose commu-

tation relations. The d̂ †
j ’s create a family of dark states which do not have

an excited-state component and are decoupled from both optical fields:

|Dji.., nj , ki...〉 = 1√
n!k!...

(
d̂ †
j

)n(
d̂ †
i

)k
...|0〉|b〉1...|b〉N , (4)

V̂ |Dji.., nj , ki...〉 = 0. These states are composed of cavity field states and
symmetric Dicke-like atomic states |cnj cki ..〉 containing n atoms in level |cj〉,
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k atoms in level |ci〉 etc, and all others in the ground state |b〉:

|b〉 ≡ |b〉1...|b〉N , |cj〉 ≡
N∑
l=1

−1√
N
|b〉1...|cj〉l...|b〉N , (5)

|c2j 〉 ≡
N∑

l 	=m=1

1√
2N(N − 1) |b〉1...|cj〉l...|cj〉m....|b〉N , etc. (6)

We here assumed that the number of atoms is much larger than the number
of photons in the light field.

The essence of the present approach is that a quantum bit stored in
photo states can be transfered to collective atomic excitations (and vice versa)
by adiabatic passage in dark-polariton states. Specifically single-mode dark
states (4) have the following asymptotic behavior in the two limiting cases:

|Dj , nj〉 → |nj〉 |b〉, when Ω � g
√
N, (7)

|Dj , nj〉 → |0〉 |cnj 〉, when Ω 
 g
√
N. (8)

It is most important that by varying the strength of the driving field Ω(t),
the state of the combined atom+cavity system can be changed from cavity-
like (in which excitation is mostly of photon nature) to atom-like (in which
excitations are shared among the atoms). In the latter case the lifetime of
excitations will not be sensitive to cavity decay; it will be limited solely by the
decay of the meta-stable atomic states. In this process qubit states encoded in
the photon field are mapped onto symmetric collective excitations of atomic
ensembles. Since all dark states are orthogonal to each other, copying of all
states can proceed in parallel.

It is known that adiabatic following takes place in the stimulated Raman
process considered here, if the characteristic time scale T exceeds the ratio
of the optical decay rate γ to the square of the characteristic Rabi-frequency.
For the present system this condition translates into g2N/γT � 1. One rec-
ognizes that using a mesoscopic system with N � 1 considerably improves
the adiabaticity condition as compared to the single-atom case. This is a
result of the well-known enhancement of the single-atom coupling by a fac-
tor

√
N due to the collective nature of the interaction [10,11]. It should be

noted that as long as the atom density is much lower than 1/λ3 there is no
corresponding (superradiant) enhancement of the radiative decay rate γ.

3 Quantum Entanglement of Collective Excitations

A pair of qubits stored in collective excitations can be entangled using a
number of different processes. Here we consider the resonantly enhanced Kerr
effect [12] in combination with a cavity-QED setup to construct an elementary
logic gate. The resonantly enhanced Kerr interaction in a 4-level configuration
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is the basis for the so-called “photon blockade” in a cavity configuration [13]
and results in extremely strong photon-photon interactions of pulses [14].

To implement a two-bit gate we consider a pair of photons resonant with
different transitions of the same multi-state atom. We use a level configuration
and optical fields as indicated in Fig.2.
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Fig. 2. Schematic of the system for an entanglement operation in atomic Rb. Only
the coupling to the relevant transitions is shown

In order to entangle qubit states the following sequence of operations can
be used. In the first step [15], the photon state |11〉 = α1|11+〉 + β1|11−〉 is
transfered to collective atomic states composed of |c1±〉 with the adiabatic
technique described above. This operation corresponds to:(

α1|11+〉+ β1|11−〉
)
|b〉 → |01〉

(
α1|c1+〉+ β1|c1−〉

)
. (9)

In the next step, the state of the second photon |12〉 is mapped onto the
different atomic sub-levels |c2±〉:(

α2|12+〉+ β2|12−〉
)(

α1|c1+〉+ β1|c1−〉
)
−→ |02〉 × (10)(

α1α2|c1+c2+〉+ α1β2|c1+c2−〉+ β1α2|c1−c2+〉+ β1β2|c1−c2−〉
)
.

We now want to generate a conditional phase shift on only one of the
collective states, say |c1−c2+〉. For this we first apply a weak magnetic field
in such a way that the transition |c1−〉 → |b〉 becomes close to the frequency
of some cavity mode (different from the one used for trapping of the photon
|11〉). Note that this mode also couples off-resonantly (with detuning ∆) the
transition |c2+〉 → |e2,MF = 0〉, where |e〉 denotes the excited state. The
shift of the atomic energy levels will also result in undesired different phase
shifts for the components of the collective atomic states. These phase shifts
can be compensated however (e.g. by reversing the direction of the field for
an appropriate time) and shall not be considered here.
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By applying a classical field of appropriate frequency we can transfer one
component of the collective state |c1−〉 back into the photonic mode:

|0〉 |c1−c2+〉 → |11−〉 |c2+〉, |0〉 |c1−c2−〉 → |11−〉 |c2−〉. (11)

At this point the energies of the states |11−〉 |c2+〉 and |11−〉 |c2−〉 differ in
a nontrivial way. Namely the state |11−〉 |c2+〉 exhibits an AC-Stark shift
δ = g2/∆, since it is coupled by the off-resonant cavity mode containing one
photon. In order to avoid decoherence associated with two-photon absorption,
∆ should exceed the optical decay rate γ. By simply letting the system evolve
for a time τ a conditional phase Φ = δ τ is accumulated. By transferring the
photonic components |11−〉 back to the atoms and reversing the magnetic field
for a time appropriate to eliminate the single-bit phase shifts, the following
state is obtained:

α1α2|c1+c2+〉+ α1β2|c1+c2−〉+ eiΦβ1α2|c1−c2+〉+ β1β2|c1−c2−〉. (12)

In the language of quantum information, this operation corresponds to a
universal logic gate (a so-called phase gate) [1]. It is clear that by selecting a
proper value of the conditional phase Φ and by performing independent single
bit rotations, arbitrary entangled states of two qubits can be generated. This
can be achieved however only if the system preserves coherence during the
characteristic time required to accumulate a large phase shift. Hence, in the
present approach g2τ/∆ ∼ 1 is required to achieve arbitrary entanglement of
collective states. Thus while transfer operations as discussed in the previous
section do not require a strong-coupling regime, two-bit operations still do.

4 Effects of Decoherence

In this section we discuss the effect of decoherence on the manipulation of
collective atomic excitations. In general, decoherence mechanisms depend on
the particular implementation. In order to be specific we consider an ensemble
of laser-cooled Rb atoms in a magneto-optic trap (MOT). The main sources
of decoherence and dissipation are then (i) spontaneous emission from the
excited states (with the rate γ), (ii) the finite lifetimes of hyperfine and
Zeeman coherences within the ground state (corresponding decay rate is γg)
and, (iii) the photon decay of the optical cavity with rate γc.

For the present problem dephasing of the collective states is of interest.
One finds that the states corresponding to single collective excitations are
dephased at the same rate as the average coherences corresponding to indi-
vidual atoms. For instance

d
dt
〈b|ρ|ai〉 = d

dt
1√
N

N∑
µ=1

〈b|ρ|aµi 〉 = −γ〈b|ρ|ai〉. (13)

By the same argument, coherences between hyperfine and Zeeman sub-levels
decay at a rate γg. The states containing a single photon in a cavity mode



Cavity QED with Mesoscopic Systems 199

will decay with an additional rate γc. In the following we assume that γg is
small on the time scales of interest and can be neglected.

Both processes considered in the previous sections are affected by decoher-
ence, but in a different way. In the case of quantum state transfer, decoherence
due to spontaneous emission can be avoided if the transfer time T is suffi-
ciently long such that the adiabatic following condition is fulfilled. However,
in order to avoid decoherence due to cavity decay the transfer time T should
be short compared to γc. Hence, ideal quantum state transfer between cavity
mode and collective excitations is only possible if

g2N � γcγ. (14)

In the case of two-bit operations, spontaneous emission causes two-photon
absorption at a rate ∼ g2/∆2γ. Here, two-photon absorption can be avoided
when the detuning ∆ (see Fig.2) is sufficiently large ∆ � γ. At the same
time, the entanglement generation should be fast compared to the cavity
decay τγc 
 1. Hence, in order to accumulate a large conditional phase
without dissipation it is necessary that

g2 � γc∆� γcγ. (15)

The main conclusion of this section is that in principle increasing the number
of atoms does not make it harder to create quantum entanglement. Other op-
erations such as the reliable quantum state transfer between light and matter
become much easier. The reason for this behavior is that the basic decoher-
ence mechanisms are not enhanced as the number of atoms is increased. At
the same time the coupling of the cavity mode to the ground state is enhanced
by a factor

√
N .

We note that in practice decoherence mechanisms exist that do scale with
the number of atoms. For instance, off-resonant scattering of the external
coherent fields on the transition from the ground |b〉 to the excited states
|ei〉 will result in dephasing of the collective states which is clearly enhanced:
γ̃ = NγΩ2/∆̃2. Here ∆̃ is the (large) detuning of the coupling field from the
|b〉 → |ei〉 transition frequency. Therefore, in experiments extra care should
be taken to avoid these decoherence mechanisms.

5 Entanglement Distribution

One of the most intriguing aspects of quantum information is the use of
entanglement as information resource for purposes such as super-dense infor-
mation transfer [16], quantum teleportation [17] and secure communication
[18]. In this section we show that the quantum state of collective atomic ex-
citations including possible entanglements can be transferred form a given
cavity system to other systems under much improved conditions as com-
pared to single-atom QED systems. The technique is based on the possibility
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to map quantum correlations from traveling-wave light fields to collective
atomic states and vice versa with nearly 100% efficiency [19,20].

The basic mechanism is again the adiabatic procedure discussed in section
2 with the additional ingredient of a coupling to a continuum of free-space
modes. We will outline the basic features for a single traveling-wave quantum
field. In a suitable system, this operation can proceed in parallel for several
field components and the corresponding generalization is straightforward.

We consider a cavity with N identical multi-level atoms as before. In ad-
dition we include the coupling of the cavity mode to a 1-D continuum of
free-space modes with creation operators b†k described by the effective Hamil-
tonian V̂ = �

∑
k κâ

†b̂k + h.c.; κ being the coupling constant. We assume
that initially all atoms are in the ground state |b〉 and that there is no pho-
ton in the cavity. Thus the combined cavity-atom system is initially in the
dark-state |D, 0〉 (see (4)). The initial state of the free field is taken to be
|Ψin〉 =

∑
k ξ

1
k|1k〉 +

∑
k,m ξ2k,m|1k1m〉 + ... . It is convenient to work with

correlation amplitudes, i.e. Fourier transforms of ξjk...l:

Φj(t1...tj) = 〈0|Ê(t1)...Ê(tj)|Ψ〉, (16)

where Ê(t) = L/(2πc)
∫
dωk exp(iωkt)b̂k, and L is the quantization length.

E.g. Φ1 describes the envelope of a single-photon wave packet, Φ2 is the
coincidence amplitude etc. We now consider a broad class of pulsed fields
that are characterized by a single common envelope function h(t) such that

Φj(t1, t2, ...tj) = αj
√
j!h(t1)h(t2)...h(tj). (17)

Any pure state or mixture of such pulses can be described by a single-mode
density matrix ρnm = α∗

nαm. The corresponding mode function is a super-
position of plane waves proportional to h(z/c) =

∫
dωk ξk eiωkz/c.

Due to the interaction of the cavity mode with the environment, the dark
states of the cavity + atoms system are coupled to the continuum states.
When only single-photon pulses are involved the evolution equations of the
corresponding state amplitudes are [19]:

Ḋ1(t) = iκ cos θ(t)
∑
k

ξk(t), (18)

ξ̇k(t) = −i∆k ξk(t) + iκ cos θ(t)D(t). (19)

D1(t) denotes here the amplitude of the dark-state |D, 1〉 and θ(t) ≡ θ1(t)
is defined in (3). We proceed by formally integrating (19), substituting the
result into (18) and invoking a Markov approximation. Assuming that no
photons arrive to the cavity before t0 we find for the dark state amplitude
D1(t) = −iα1D(t) with

D(t) =
√
γc

c

L

∫ t

t0

dτ cos θ(τ)h(τ)× exp
{
−γc
2

∫ t

τ

dτ ′ cos2 θ(τ ′)
}
. (20)
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Here we have introduced the empty-cavity decay rate γc = κ2L/c. Substitut-
ing this result back into (19) one finds that the outgoing field is described by
the common envelope function hout(t) = h(t)−√γcL/cD(t).

In order to trap photons we require that the envelope of the outgoing
field and its first derivative vanish identically. I.e. hout(t) = ḣout(t) = 0.
Differentiating the above relation for hout(t) yields

− d
dt
ln cos θ(t) +

d
dt
lnh(t) =

γc
2
cos2 θ(t). (21)

If Ω(t) is chosen such that θ(t) obeys this equation with the asymptotic
condition cos θ → 0 the output field remains zero and the incoming light
pulse is completely transferred to the atomic system.

The above condition corresponds to a quantum or dynamical impedance
matching [19]. The term on the r.h.s. of (21) is the effective cavity decay rate
reduced due to intracavity electromagnetically induced transparency (EIT)
[21]. The first term on the l.h.s. describes internal “losses” due to coherent
Raman adiabatic passage and the second term is due to the time-dependence
of the input field. As in the case of classical impedance matching [22], (21)
reflects the condition for complete destructive interference resulting in a van-
ishing outgoing wave. Solving (21) yields

cos2 θ(t) =
h2(t)

γc
∫ t

−∞dτh
2(τ)

, (22)

which corresponds to D(t → +∞) → 1. Hence, by suitable variation of the
classical driving field any single-photon pulse can be trapped ideally, if its
pulse length is longer than the bare-cavity decay time.

Generalizations of the above considerations to multi-photon states can
proceed along the same lines, but involve more tedious algebra. In particular,
for the two-photon states one finds D2(t) = −α2D(t)2, and in general

Dk(t) = (−i)kαk d(t)k (23)

can be proved. Under conditions of quantum impedance matching Dk(t →
∞) → (−i)kαk for arbitrary k. Hence pulsed fields in a generalized single
mode with arbitrary quantum state can be mapped onto the atomic ensemble.

Releasing the stored quantum state into a pulse of desired shape can be
accomplished in a straightforward way. A simple reversal of the time depen-
dence of the control field at a later time td leads to a perfect mirror-image of
the initial pulse. This can be verified directly from (20).

Before concluding we note that the quantum transfer protocol described
here is based solely on the adiabatic rotation of the dark state described in
Section 2. Hence, this operation can be nearly ideal whenever inequality (14)
is fulfilled [19]. Therefore, perfect quantum communication can be achieved
in the present system without invoking the strong coupling regime of cavity
QED.
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6 Conclusions

In conclusion, we have shown that quantum information stored in collective
excitations of an N -atom system can be coherently processed using cavity
QED techniques. The use of a many-atom system will simplify practical im-
plementations of cavity-QED systems as it eliminates the problem of trapping
exactly one atom inside the resonator. We showed that certain network oper-
ations such as the transfer of excitation between atomic and photonic degrees
of freedom and entanglement distribution can be performed without invoking
the strong coupling condition of cavity QED. This will allow much faster net-
work operations as in single-atom based schemes. However other operations,
such as two-bit rotations resulting in quantum entanglement still require a
strong coupling. Studies of possible ways to alleviate these requirements, and
to avoid the strong coupling regime altogether are currently under way. This
includes, for instance, resonant nonlinearities in a traveling wave geometry,
so-called photon-exchange interactions or cold collisions.
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13. A. Imamoğlu et al.: Phys. Rev. Lett. 79, 1467 (1997); P. Grangier, D.F. Walls,

K. Gheri: Phys. Rev. Lett. 81, 2833 (1998)
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