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We discuss the ground-state phase diagram of the one-dimensional Bose-Fermi-Hubbard model (BFHM) in the
limit of fast fermions based on an effective boson model. We give a detailed derivation of the effective model
with long-range RKKY-type interactions, discuss its range of validity and provide a deeper insight into its
implications. In particular we show that integrating out the fast fermion degrees of freedom in a naive way
results in an ill-behaved effective Hamiltonian and a proper renormalization is required. Based on the effective
Hamiltonian, the phase diagram in the thermodynamic limit is constructed by analytic means and is compared
to numerical results obtained by density matrix renormalization group (DMRG) techniques for the full BFHM.
The most prominent feature of the phase diagram, the existence of a phase separation between Mott insulator
(MI) and charge density wave (CDW) is discussed in depth including boundary effects.
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1 Introduction The advancement of quantum-optical
tools during the last decades has made ultracold atoms
in optical lattices an important and versatile experimental
testing ground for quantum many-body phenomena of con-
densed matter physics. Recently systems with long-range
interactions have gained substantial interest as the compe-
tition between local- and long-range interactions as well as
the free motion of the particles can give rise to interest-
ing many-body states including peculiar forms of quantum
matter such as a supersolid, predicted 50 years ago [1–3],
where superfluidity coexists with a non-vanishing structure
factor. As shown in different theoretical works, supersolids
can form in bosonic systems in the presence of non-local
interactions [6–10]. The latter can be either intrinsic or they
are mediated through the interaction with a second species.
The latter is the case for a mixture of bosons with spin
polarized fermions, described by the Bose-Fermi-Hubbard
(BFHM) model, in the limit of fast fermions. For mixtures
of bosons and fermions, Hébert et al. showed by numerical
means, that a supersolid of the bosons is present for half
filling of fermions and if the bosons are doped away from
half filling [11]. Beside a supersolid, a multitude of other
phases in mixed systems such as phase separation [7,8,12–

16] or incompressible charge-density wave (CDW) phases
[12,15–19] have been predicted. .

Here we extend our previous work of [19] and provide
an analytic theory to understand the physics of the bosonic
subsystem in the BFHM for fast fermions at half filling.
The limit of fast fermions is of natural interest, since in
most experimental realizations the fermionic atoms have a
smaller effective mass, respectively a larger tunneling am-
plitude than the bosonic ones [20,21]. Following ideas in
[22] and adiabatically eliminating the fermions similar to
the approach in [23] we derive an effective bosonic Hamil-
tonian for JF → ∞, resulting in RKKY-type long-range
couplings between bosons. After explaining the nature of
this mediated interaction, we discuss the bosonic phase di-
agram and discuss effects from spatial boundaries. All re-
sults are accompanied by numerical studies using DMRG
for the full model.

The framework of our approach is set by the BFHM,
describing a mixture of ultracold bosons and fermions in
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an optical lattice [24]:

Ĥ = −JB
∑
j

(
b̂†j b̂j+1 + b̂†j+1b̂j

)
+
U

2

∑
j

n̂j (n̂j − 1)

−JF
∑
j

(
ĉ†j ĉj+1 + ĉ†j+1ĉj

)
+ V

∑
j

n̂jm̂j , (1)

Here, b̂†, b̂ (ĉ†, ĉ) are bosonic (fermionic) creation and an-
nihilation operators and n̂ (m̂) the corresponding number
operators. The bosonic (fermionic) hopping amplitude is
given by JB (JF ), and U (V ) accounts for the intra- (inter-
) species interaction energy. In the following we restrict
ourselves to the limit of large fermionic hopping, i.e. we
assume JF � U, |V |, JB and the energy scale is set by
U = 1.

2 Mean-field approximation of fermions
2.1 infinite system A first, intuitive ansatz to under-

stand the physics in the regime of ultrafast fermions is
to assume of a full decoupling of the fermions from the
bosons. This assumption leads to a homogeneous fermion
distribution 〈m̂j〉 = ρF and the effective potential arising
from the the interaction part

V
∑
j

n̂jm̂j → V ρF
∑
j

n̂j (2)

simply gives a shift of the bosonic chemical potential as
µB 7→ µB − V ρF . In this limit the bosonic sub-system
maps to the Bose-Hubbard model (BHM) with a modified
chemical potential.

bosonic hopping J
B
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Figure 1 Bulk phase diagram of the BFHM for ρF = 1
2

. Beside
the expected Mott insulating lobes (yellow), an incompressible
CDW for half filling is found (gray). Most prominent feature is
the overlap region between the CDW phase and each of the MI
(green), indicating a thermodynamic instable region as discussed
in the text. The numerical data (points) were obtained for V =
1.25 and JF = 10, using DMRG and ED for small lattices with
system sizes as indicated in the legend. The dashed lines are to
guide the eye.

2.2 limitations of mean-field approximation To
assess the validity of the fermionic mean-field approxi-
mation we calculate the phase diagram for the lowest two
lobes by numerical means using DMRG and exact diago-
nalization (ED) shown in Figure 1. Different from a simple
BHM the Mott lobes do not touch each other, opening a
gap between them. Within this gap another incompressible
phase arises, where the bosonic filling is also one half.
This phase can be identified as a charge density wave at
double half filling. The CDW phase extends even beyond
the gap between the Mott lobes, partially overlapping with
the MI. This overlap region indicates the existence of a
thermodynamic unstable phase with coexistence of Mott
insulator and CDW. Both, the existence and the extent of
the CDW and coexistence phases can be fully understood
by an effective bosonic theory which we will develop in
the following sections.

3 Effective boson model
3.1 Adiabatic elimination of the fermions In order

to understand the phase diagram of Fig.1 we derive an ef-
fective bosonic model. To this end we split the full Hamil-
tonian (1) into a bosonic part ĤB, a fermionic part ĤF and
an interaction part ĤI, i.e., Ĥ = ĤB + ĤF + ĤI, with

ĤB = −JB
∑
j

(
b̂†j b̂j+1 + b̂†j+1b̂j

)
+
U

2

∑
j

n̂j (n̂j − 1)

(3)

ĤF = −JF
∑
j

(
ĉ†j ĉj+1 + ĉ†j+1ĉj

)
+ V

∑
j

ñjm̂j (4)

ĤI = V
∑
j

(n̂j − ñj)m̂j . (5)

At this step, we introduced a bosonic mean-field potential
ñj in ĤI. This term will be important later on in the renor-
malization procedure discussed in section 4 to describe the
backaction of a bosonic CDW onto the fermionic system.
For the moment, this term is kept without specifying ñj .
The effective bosonic Hamiltonian is obtained by an adia-
batic elimination, which is performed in the framework of
the scattering matrix

Ŝ = T exp

{
− i
~

∫ ∞
−∞

dτĤI(τ)

}
(6)

of the full system in the interaction picture, i.e., ĤI(τ) =

e−
i
~ (ĤB+ĤF)τ ĤI e

i
~ (ĤB+ĤF)τ and T being the time or-

dering operator. Tracing out the fermionic degrees of free-
dom yields the bosonic scattering matrix via ŜB

eff = TrF Ŝ.
Neglecting cumulants of the fermionic density higher than
second order in the cumulant expansion 〈exp{sX}〉X =

exp
{∑∞

m=1
sm

m! 〈〈X
m〉〉
}

and applying a Markov approx-
imation [25,26], which amounts to replacing the two-time
fermion denisty-density correlator with a delta-function in

Copyright line will be provided by the publisher



pss header will be provided by the publisher 3

time, we arrive at an effective bosonic interaction Hamilto-
nian

Ĥeff
I = −JB

∑
j

(
b̂†j b̂j+1 + h.a.

)
+
U

2

∑
j

n̂j (n̂j − 1)

+V
∑
j

(
n̂j − ñj

)
〈m̂j〉F (7)

+
∑
j

∞∑
d=−∞

gd(ρF )
(
n̂j − ñj

)(
n̂j+d − ñj+d

)
.

Two different effect of the fermions on the bosonic subsys-
tem become apparent: the fermions induce (i) a mean-field
potential (1st order) and (ii) density-density interactions
(2nd order). Physically, the second process can be under-
stood as an interaction between bosons mediated by ele-
mentary excitations of the fermionic ground state, which
induces a long-range interaction. The corresponding cou-
pling constants at distance d read

gd(ρF ) = −iV
2

2~

∫ ∞
−∞

dτ 〈〈T m̂j(τ)m̂j+d(0)〉〉F. (8)

Assuming free fermions, i.e. setting V = 0 in ĤF, the two-
time density-density correlation of the fermions can be cal-
culated analytically, which yields

gd(ρF ) = − V 2

2π2JF

∫ ρFπ

0

dξ

∫ π

ρFπ

dξ′
cos(dξ) cos(dξ′)

cos(ξ)− cos(ξ′)
.

(9)
Before discussing the phase diagram, several important

properties of the coupling constants should be mentioned.
The first thing to observe is the existence of a particle-hole
symmetry for fermions gd(ρF ) = gd(1−ρF ) which can be
seen by substituting ξ → π − ξ and ξ′ → π − ξ′ and inter-
changing ξ ↔ ξ′ afterwards. This is a natural consequence
of the underlying fermionic system.

Secondly, for any density ρF 6= 0, 1, the local interac-
tion is reduced, i.e.,

g0(ρF )
∣∣∣
ρF 6=0,1

= − V 2

8JF
< 0. (10)

This negative shift is in full agreement with the results from
[22,23,27], predicting the enhancement of the superfluid
phase because of a reduction of the on-site interaction U
of the bosons. Beyond this simple local renormalization,
(7) incorporates further interaction effects modifying the
phase diagram.

Figure 2 shows the dependence of the couplings on
the distance d for selected densities ρF . One can see a
periodic modulation with wavelength 1/ρF (for ρF <
1
2 , otherwise the wavelength is given by 1/(1 − ρF )).
This behavior of is typical for induced couplings of the
RKKY-type (Rudermann-Kittel-Kasuya-Yosida) [28–30].
The most interesting case can be found for ρF = 1/2. In
this case, the wavelength of 2 leads to a strict alternation

in the sign of the couplings from site to site. As a result,
the effective Hamiltonian (7) displays repulsive nearest-
neighbor, attractive next-nearest-neighbor, repulsive next-
next-nearest-neighbor interaction and so on. See [31] for a
similar, numerical study in this case for two dimensions.
Thus the induced long-range coupling provides a simple
explanation for the existence of a CDW phase at double
half filling ρF = ρB = 1

2 [18,15].

Figure 2 Dependence of the coupling strength gd(ρF ) for se-
lected densities ρF = 0, 1/20, 1/8, 1/4, 1/2 on the distance d.
The periods of the oscillations are 1/ρF =∞, 20, 8, 4, 2. For all
cases, the signs in the minima are negative and the maxima pos-
itive with a strict alternation from site to site for the case of half
filling.

A detailed inspection of the coupling constants gd of
the effective model, eq. (7), reveals some problems, how-
ever. In particular one finds that the envellope of the cou-
pling constants scales inversely with distance d,

gd(ρF ) ∼ 1

d
. (11)

Clearly for very large values of d the effective coupling
will be suppressed below this value due to retardation ef-
fects ignored when applying the Markov approximation.
But even for moderate values of d, where retardation can
safely be disregarded this scaling leads to problems. As
mentioned above the existence of a CDW phase results
from the oscillatory long-range interactions, which can be
seen most easily for the case of vanishing bosonic hopping
JB . Adding bosons to the system starting from zero filling
up to ρB = 1

2 , the first boson occupies an arbitrary site j.
A second boson minimizes the energy at site j ± 2, since
here the density-density interaction is negative. All addi-
tional particles will continue to occupy even sites, ending
up in the CDW phase at half filling ρB = 1/2. However,
since the couplings decay as 1

d , the total interaction energy
in the thermodynamic limit diverges. The latter argument
also holds for JB > 0 and thus the ground state would
always be a CDW with full amplitude ηB = 1 for any hop-
ping JB . This result is in strong contrast to the numerical
results displayed in Figure 1 and more precisely in Figure
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3. The latter one shows the amplitude of the bosonic CDW
from Figure 1 as a function of the bosonic hopping JB in
comparision to the prediction from eq.(9). The Figure also
gives a hint to a solution of this problem: Also shown is
the amplitude of a fermionic CDW, i.e., the CDW phase is
indeed a double CDW. The appearance of fermionic den-
sity modulations shows that the initial assumption of free
fermions is invalid and the back-action of the bosons needs
to be included. This will be done now in an approximate
way by incorporating an oscillatory mean-field ñj into the
equations of motion of the fermions. The same arguments
also hold in the case of a commensurate fermionic density
but ρF 6= 1

2 , leading to a ground state which has a boson at
every 1

ρF
-th site.

DMRG η
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Figure 3 Amplitude of the bosonic CDW as a function of the
bosonic hopping JB for V = 1.25 and JF = 10. Since the ef-
fective theory predicts a CDW for any hopping JB (dashed lines),
the necessity of a renormalization scheme is evident. Additionally
the non-zero amplitude of the fermionic CDW is in strong con-
trast to the underlying ansatz and another indication of a more
involved physics. The numerical data are obtained from DMRG
for lattice of 512 sites and NF = NB = 256.

4 Renormalization of the fermionic system and
effective boson Hamiltonian

4.1 Backaction of slow bosons to fast fermions
The fermion mediated interaction drives the bosons into
a CDW state. This bosonic density wave, in turn, acts
as an external potential to the fermionic subsystem, and
this backaction leads to a renormalization of the induced
boson-boson interaction and thus needs to be taken into
account. In the following we restrict ourselves to the most
interesting case ρF = 1/2, a generalization to other sit-
uations with ρF = 1/m with m ∈ N is possible but will
not be provided here. As will be shown the back-action can
be modeled to a high accuracy within a simple mean-field

description for the bosons ñj in equation (4). 1.

ñj = ρB
[
1 + ηB(−1)j

]
(12)

= ρB(1− ηB) + 2ρBηB δ
(
sin(

πj

2
)
)
, (13)

Here we introduced the amplitude of the bosonic CDW ηB
as a free parameter. With this mean-field back-action, the
fermionic correlators have to be calculated with respect to
fermions in an alternating potential, given by

ĤF = −JF
∑
j

(
ĉ†j ĉj+1 + ĉ†j+1ĉj

)
+ V 2ρBηB

∑
j

δ(sinπ
j

2
)m̂j . (14)

In this Hamiltonian, an overall energy shift V ρB(1 −
ηB)ρF is left out. Resembling free fermions in an oscil-
latory super-potential a solution can be found straightfor-
wardly, e.g. by means of a canonical transformation [32,
33]. The resulting expressions are however rather involved
and the quantities needed hard to express. For that reason
we employ a Green’s function approach, which allows to
extract all required quantities for the bosonic Hamiltonian
at double half filling in a compact form.

4.2 Free fermions in an alternating lattice poten-
tial The second order cumulant 〈〈m̂j(τ)m̂j+d(0)〉〉F fac-
torizes by use of Wick’s theorem into a product of ad-
vanced and retarded Green’s functions (τ ≥ 0)

〈〈m̂j(τ)m̂j+d(0)〉〉F = G(+)
j,j+d(t+ τ, t) G(−)

j,j+d(t+ τ, t)

=
〈
ĉ†j(t+ τ)ĉj+d(t)

〉〈
ĉj(t+ τ)ĉ†j+d(t)

〉
. (15)

The free Green’s functions, i.e. in the absence of the boson-
induced backaction, can be obtained by a straightforward
calculation, which gives

G(0±)
k,k′ (ω) = ±δk,k′

i√
2π

1

εk ∓ ω ⊕ iδ
(16)

in the frequency-momentum domain. Here we introduced
the dispersion relation εk = −2JF cos(2π kL ) of the free
particles. The last term in the denominator is introduced to
assure convergence and will be properly removed later on.
It is ⊕ = + for k ∈ KF and ⊕ = − for k 6∈ KF dis-
tinguishing between momentum modes within the Fermi
sphere KF and outside.

The full Greens function taking into account the boson-
induced potential can be obtained from a simple Dyson
equation

G(+)
k,k′(ω) = G(0+)

k,k′ (ω) (17)

+
i

~
√

2πV ηBρB G(0+)
k,k (ω)

∑
α=±1

G(+)

k+ L
2 α,k

′(ω)

1 A similar ansatz is used in [?] to study the influence of the
wavelength of the bosonic CDW on the fermionic system.
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and similarly for G(−) and can be solved analytically. Go-
ing back to real space and taking the thermodynamic limit
gives

G(±)
jj+d(t+ τ, t) =

=
1

2π

∫ π

0

dξ cos(dξ) e−iε̃(ξ)τ
(

1± ε(ξ)

ε̃(ξ)

)
−(−1)j

a

2π

∫ π

0

dξ cos(dξ)
e−iε̃(ξ)τ

ε̃(ξ)
. (18)

Here we introduced the normalized fermion energies

ε(ξ) = cos(ξ), ε̃(ξ) =
√

cos2(ξ) + a2 (19)

and the modulation factor

a =
V ηBρB
2~JF

. (20)

Note that the integration cannot be carried out explicitly
for arbitrary distance d.

The full Green’s functions does not only allow to calcu-
late the density-density correlator in equation (8) but also
gives a prediction of the behavior of the fermionic sys-
tem, as long as the bosonic CDW amplitude ηB is known.
We first verify the analytic expression of the Green’s func-
tion in the fermionic problem itself, i.e., all numerical data
shown are calculated for the Hamiltonian (14).

Local density: The expression for the Green’s func-
tions gives an (analytic) prediction of the fermionic den-
sity in the alternating potential. Using 〈m̂j〉F = G(+)

j,j+0(t+

0, t), the fermionic density evaluates analytically as

〈m̂j〉F =
1

2
− (−1)j

a

π
√

1 + a2
K

[
1

1 + a2

]
. (21)

The first important result from the renormalization proce-
dure therefore is

〈m̂j〉F =
1

2

[
1− ηaF (−1)j

]
, (22)

where ηaF = 2a
π
√

1+a2
K
[

1
1+a2

]
and K[x] is the com-

plete elliptic integral of the first kind [34]. This means,
the renormalization procedure results in the prediction of
a fermionic CDW with some amplitude ηaF which is en-
tirely determined by the amplitude of the corresponding
bosonic CDW ηB through the parameter a. The fixed rela-
tion between bosonic and fermionic CDW is in full agree-
ment with the numerical results from Figure 3.

Another feature of (22) which will be important for the
later discussion of the full BFHM is the minus sign in front
of the site dependent part. This is a direct consequence of
the alternating boson potential ansatz. Since the interac-
tion V is chosen positive, i.e., repulsion between bosons
and fermions, it is expected that the phase of the bosonic
and fermionic density wave is shifted by π compared to

each other. For the case of attractive interaction, both den-
sity waves are in phase. This is in full agreement with the
numerical results. In the limit a→ 0, corresponding to the
free fermion case the result for the density reduces to the
result for free fermions at half filling, i.e., 〈m̂j〉F = 1

2 .

bosonic amplitude η
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Figure 4 Amplitude ηaF of the fermionic CDW versus the bosonic
amplitude ηB for different numerical data. Shown are the numer-
ical results (data points) presented in Figure 3 and for V = 2.4
and JF = 10 obtained from the full BFHM. The solid lines are
the analytic results for ηaF .
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Figure 5 Distance dependence of the first-order correlations <
ĉ†j ĉj+d > for three different interactions V ηB calculated from
the fermion model (14). Solid lines are the theoretical results from
a numerical integration of (18).

First-order correlations: Figure 5 shows numeri-
cal results for the first-order correlations

〈
ĉ†j ĉj+d

〉
=

G(+)
j,j+d(t + 0, t) compared to the analytic results. Unfor-

tunately, the integral expression for the Green’s function
cannot be evaluated analytically for arbitrary distance d,
making a numerical integration necessary. The perfect
agreement proves the validity of the solution (18).

Density-density correlations: Finally we calculate the
density-density correlations used in the expression for the
coupling constants (8) with the renormalized fermionic
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model. Having a closer look at the result for the Green’s
function (18) it can be seen that they are of the general
form G(±)

j,j+d(t+τ, t) = A±−aB. Since the density cumu-
lant split up into products of advanced and retarded Green’s
function they can thus be written as

〈〈m̂j(τ)m̂j+d(0)〉〉F = A+A− − a(A+ +A−) + a2B2.
(23)

From the definition of the coupling constants (8) we can
see, that they are proportional to V 2. This means, that in
order V 2, only the first term in (23) is relevant.

Following these argument, the renormalized form of
the density-density cumulant reads

〈〈m̂j(t+ τ)m̂j+d(t)〉〉 =
1

4π2

∫ π

0

∫ π

0

dξdξ′

× cos(dξ) cos(dξ′)e−i
(
ε̃(ξ)+ε̃(ξ′)

)
τ (24)

×
(

1 +
ε(ξ)

ε̃(ξ)

)(
1− ε(ξ′)

ε̃(ξ′)

)
.

This is the main result from the renormalization procedure.
Comparing this result to that of free fermions (at ρF = 1

2 )
one can see, that the corresponding limit a → 0 gives the
same result. Note, that the last line in (24) serves as a cutoff
function which constrains the integration limits to the free
fermion values in the limit a→ 0.

4.3 Renormalized Hamiltonian Applying the time
integration from (8) the renormalized couplings gd(a) at
half fermionic filling ρF = 1/2 can be found to be

gd(a) = − V
2

4π2

∫ π

0

∫ π

0

dξdξ′
cos(dξ) cos(dξ′)

ε̃(ξ) + ε̃(ξ′)

×
(

1 +
ε(ξ)

ε̃(ξ)

)(
1− ε(ξ′)

ε̃(ξ′)

)
. (25)

Since we restricted ourselves to the case of half filling for
the fermions, the additional argument ρF is dropped here
but the dependence of the renormalized couplings on the
amplitude factor a is explicitly written. Figure 6 shows a
comparison of the couplings from the free free fermion
case to the case a ∼ ηB > 0. Obviously the decay is much
faster than 1/d thus resolving the divergence.

The knowledge of the renormalized couplings finally
allows to write down the effective bosonic Hamiltonian
for half fermionic filling ρF = 1/2. Starting from (7) to-
gether with the renormalized fermionic density (22), the
couplings (25) and the ansatz for the bosonic CDW (12),
the full effective bosonic Hamiltonian is given by

Ĥeff
B = −JB

∑
j

(
b̂†j b̂j+1 + b̂†j+1b̂j

)
+
U

2

∑
j

n̂j (n̂j − 1)

− µ̄
∑
j

n̂j −∆
∑
j

n̂j(−1)j +
∑
j

∑
d

gd(a) n̂j n̂j+d.

(26)
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Figure 6 Comparison of the couplings for the free fermion case
(a = 0) and the renormalized couplings for a = 0.1. The free
fermion couplings decay as 1

d
, whereas the renormalized cou-

plings decay much faster, preventing the divergence of the energy
for the ground state.

Beside the usual hopping and interaction terms, two promi-
nent features arise. On the one hand, the already dis-
cussed long-range density-density interaction with cou-
plings gd(a) lead to the emergence of CDW phases. These
are further stabilized by the induced alternating potential
with amplitude

∆ = 2ρBηB g̃π(a) + V ηaF /2, (27)

being a direct consequence of the fermionic density wave

〈m̂j〉F =
1

2

[
1− ηaF (−1)j

]
. (28)

Although derived only for the case of double-half filling,
the emergence of the induced chemical potential

µ̄ = 2ρB g̃0(a)− V/2 (29)

in combination with the general ansatz also allows for an
extension of the effective Hamiltonian to other fillings ρB .
The amplitude factor a = V ηBρB

2~JF i.e. the amplitude ηB of
the induced bosonic CDW is still a free parameter. For the
Fourier transform, the identities∑

d

gd(a) = g̃0(a),
∑
d

(−1)d gd(a) = g̃π(a),

(30)
hold. For the two momenta k = 0 ad k = ±π analytic
expressions for the Fourier-transformed couplings can be
found.

g̃±π(a) = − V 2

8πJF

1√
1 + a2

(
2K
[ 1

1 + a2

]
− E

[ 1

1 + a2

])
(31)

g̃0(a) = − V 2

8πJF

1√
1 + a2

E
[ 1

1 + a2

]
, (32)
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with E[x] being the complete elliptic integral of second
kind [34].

Before we exploit the resulting Hamiltonian in the de-
termination of the phase diagram, possible approaches in a
self-consistent determination of the bosonic CDW ampli-
tude are discussed in the next section.

4.4 Self-consistent determination of ηB The in-
troduction of the bosonic CDW amplitude ηB , or respec-
tively the amplitude factor a as a free parameter demands a
proper procedure to fix its value. Although the knowledge
of ηB as a function of the bosonic hopping JB is not nec-
essary in the discussion of the phase diagram as done in
our approach, a possible reproduction of Figure 3 would
further support the validity of our approach. To this end we
will discuss different variational ansatz functions for the
ground state and determine the CDW amplitude by mini-
mizing the energy.

Coherent state: The simplest choice for the ground
state of Hamiltonian (26) is given by local coherent states
|α〉 with alternating amplitude:

|Ψ〉coh
=

∞∏
j=−∞

|α+〉2j |α−〉2j+1 . (33)

With this the local densities read

coh 〈Ψ | n̂j |Ψ〉coh
=

1

2

[
1 + ηB(−1)j

]
(34)

and α± =
√

1
2 ±

1
2ηB . The variatioal energy E [ηB ] =

coh 〈Ψ | Ĥeff
B |Ψ〉

coh now becomes a function of ηB and
upon neglecting unphysical contributions from the inter-
action 2, the energy is given by

E [ηB ] = −JB
√

1− η2
B +

1

2
g0(a) (35)

− 1

4
V ηaF ηB −

1

4
g̃a(π)η2

B −
1

4
g̃a(0).

We stress that the amplitude factor a = V ηB
4~JF as well as the

fermionic amplitude ηaF also depend on ηB . Minimization
of this function with respect to ηB at the end gives a pre-
diction of the bosonic CDW amplitude. This is shown in
Figure 7, where the self-consistent prediction is compared
to the numerical data from Figure 3 and to data for V = 2.4
and JF = 10. One can see that the coherent approach gives
a qualitatively good agreement for small JB , but the quan-
titative agreement is rather poor in particular for larger JB
because of the strongly simplified ansatz used here.

Matrix product state: Better results for the CDW am-
plitude may be found from a minimal matrix product like
ansatz.

|Ψ〉MPS
=

∞∏
j=−∞

1∑
i1,i2=0

Ai1i2 |i1〉2j |i2〉2j+1 , (36)

2 Although the coherent state incorporates all Fock states n, for
the treated CDW only states with n ≤ 1 are of importance.

which also eliminates problems arising from the higher
number states. With the prefactors Ai1i2 which are cho-
sen to be real, we introduce four free parameters which
have to be minimized in general. This set of parameters
can be reduced by constraints from the normalization of
the ground state as well as the expected local densities (12).
Altogether, these constraint reduce to A00 = A11 ≡ 0 and
the energy functional only depends on ηB as

E[ηB ] = −JB
√

1− η2
B −

V

2
ηaF ηB −

1

2
g̃a(π)η2

B −
1

2
g̃a(0)

+ (1− η2
B)
[1
2
g0(a)− 1

2
g1(a)

]
.

(37)

The corresponding numerical results for the minimization
can be found in Figure 7. The quantitative agreement is
slightly better compared to the coherent state approach for
smaller interaction V but still the strong simplification of
the ansatz pays its tribute. For larger V , the matrix prod-
uct ansatz seems to fail. Nevertheless, the two procedures
to self-consistently determine the amplitude ηB show that
this free parameter can in principle be calculated with more
sophisticated ansatzes.

5 Phase diagram of the effective boson model
We now use the effective bosonic Hamiltonian

Ĥeff
B = −JB

∑
j

(
b̂†j b̂j+1 + b̂†j+1b̂j

)
+
U

2

∑
j

n̂j (n̂j − 1)

− µ̄
∑
j

n̂j −∆
∑
j

n̂j(−1)j +
∑
j

∑
d

gd(a) n̂j n̂j+d

(38)

to calculate the full phase diagram and compare it to the
numerical results from Figure 1. As a reminder, the poten-
tials µ̄ and ∆ are given by

µ̄ = 2ρB g̃0(a)− V/2, ∆ = 2ρBηB g̃π(a) + V ηaF /2.
(39)

The calculation of the phase boundaries of the different
incompressible regions (MI, CDW) is performed by de-
termining the particle-hole gap for fixed particle number.
For an incompressible phase with filling ρB , the chemical
potentials of the upper and lower boundaries are obtained
from

µ±ρB = ±
[
E(ρBL± 1)− E(ρBL)

]
. (40)

First we restrict ourselves to the zero-hopping limit JB =
0. Later on we employ degenerate perturbation theory in
JB . It should be mentioned, that both, in the zero hopping
limit as well as in the small hopping region to a very good
approximation ηB = 1.

5.1 Zero-hopping phase diagram The calculation
of the chemical potentials for JB = 0 is straightforward.
In this case, the energy is given by a replacement of the
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Figure 7 (left) Self-consistent determination of the amplitude of the bosonic CDW from the minimization of the energy for the effective
Hamiltonian with respect to a coherent state ansatz. Shown are the same numerical results as in Figure 3 (left plot, L = 512) as well
as results for V = 2.4 and JF = 10 (right, L = 256). One can see the rather poor quantitative agreement with a general qualitative
agreement. (right) Self-consistent determination of the amplitude of the bosonic CDW from the minimization of the energy for the
effective Hamiltonian with respect to a matrix product state ansatz. Shown are the same numerical results as for Figure ?? (left plot,
L = 512) and results for V = 2.4 and JF = 10 (right, L = 256). One can see the better quantitative agreement compared to the result
for the coherent state in Figure ?? for small amplitude factor a, i.e., for small interaction V .

number operators n̂j in (38) by real numbers according
to the ground state in the system. Additionally, the den-
sity ρB and a possible CDW amplitude ηB needs to be
fixed. This is done for the Mott insulator with unity fill-
ing (ρB ; ηB ; 〈n̂j〉) = (1; 0; 1), the empty Mott insulator
(0; 0; 0) as well as the CDW ( 1

2 ; 1; 1
2 [1 + (−1)j ]) and the

corresponding particle or hole states. This gives

µ−1 =
V

2
− g0(0), (41)

µ±1
2

=
V

2
± V

2
ηaF ± g0(a), (42)

µ+
0 =

V

2
+ g0(0), (43)

which together with the results for the couplings gd(a) (25)
and the fermionic CDW amplitude ηaF from (22) allow to
construct the phase diagram at vanishing bosonic hopping.
This is shown in Figure 8, where the chemical potentials
are displayed as a function of the interaction V for a fixed
fermionic hopping JF , where the mean-field shift V2 is sub-
tracted.

One recognizes from Figure 8 a very good agreement
between the numerical results of the full BFHM and the an-
alytic results obtained from the effective bosonic Hamilto-
nian. Increasing deviations for larger V could be addressed
both to the breakdown of the Markov approximation as
well as the negligence of higher order contributions in (24).
Most prominent feature is the overlap between the MI and
CDW phases, i.e., µ+

0 > µ−1
2

and µ−1 < µ+
1
2

. This behavior,
already seen in Figure 1, indicates a negative compressibil-
ity

κ =
∂〈N̂〉
∂µB

< 0 (44)

within the coexistence phase. Coexisting phases are not
new (see e.g. [7,15,35,31]), but the coexistence of a Mott
insulator and a CDW phase has to our knowledge not been
reported before. A physical explanation of this effect can
easily be given. In the grand-canonical ensemble, the phase
does not exist since in this situation, the number of particles
is chosen such that the energy is minimized: which drives
the system always into a CDW phase within this region.
From a canonical point of view, adding further particles to
the CDW phase results in configurations, where the repul-
sive contribution to the energy remains constant whereas
the attractive one is increased; the energy per particle is
thus reduced.

5.2 2nd order strong-coupling expansion Going
beyond the zero-hopping limit, we perform a perturba-
tion expansion in the hopping amplitude JB . This allows
to generate the full phase diagram in the (µB , JB) plane.
Since the methodology of the perturbation theory is quite
involved, we only present the basic ideas. Different formu-
lations of degenerate perturbation theory exist (e.g., as [36]
used in for the pure and disordered Bose Hubbard model),
where we use Kato’s expansion [37–39], which relies on
the calculation of an effective Hamiltonian (in arbitrary or-
der) within the degenerate subspace. Up to second order,
Kato’s expansion is given by

Ĥeff = E0 + PĤ1P + PĤ1Q
1

E0 − Ĥ0

QĤ1P, (45)

where P is the projector onto the degenerate subspace,
Q = 1−P the orthogonal projector and E0 is the zero or-
der energy of the manifold. Here, the Hamiltonian is writ-
ten in the form Ĥ = Ĥ0 + Ĥ1, where Ĥ1 is the pertur-
bation, i.e., the hopping in our case. For the calculation of
the effective Hamiltonian, only the action of (45) on any
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input state |Ψ 〉l from the degenerate subspace needs to be
studied. In our case, the result is of the form

Ĥeff |Ψ 〉l = E0(|Ψ 〉l) + J1

[
|Ψ 〉l−1 + |Ψ 〉l+1

]
(46)

+ J2

[
|Ψ 〉l−2 + |Ψ 〉l+2

]
+W |Ψ 〉l

since our perturbation only consists of a nearest-neighbor
hopping. A generalization to arbitrary long-range hopping
can be done. This (maximally) tridiagonal matrix repre-
sentation of the effective Hamiltonian can be solved by a
Fourier transform, which gives the energy

E = E0 + 2J1 cos(2π
k

L
) + 2J2 cos(4π

k

L
) +W, (47)

where the k mode has to be chosen such that the energy is
minimal. In this system this is typically the case for k = 0

since both J1 ∼ JB and J2 ∼ J2
B

E0−〈Ĥ0〉
are negative. A

crucial point in the calculation comes from the nature of the
effective bosonic Hamiltonian in (38). Since the density-
density interaction is long ranged, the energy denomina-
tor depends on the distance of the particle performing the
first hopping process from the reference site where the ad-
ditional particle (hole) is situated. This needs to be taken
into account for the calculation of the chemical potentials.

A major difficulty is the dependence of the results on
coupling strengths gd(a) up to a large distance d. For the
analytic results used in Figure 8 it turns out, that d ≈ 100
is sufficient to gain convergence. Here we only give the
numerical values for the chemical potential. Directly plug-

ging in numbers, these are given by

µ+
0 = 0.605469− 2JB , (48)

µ−1
2

= 0.583612 + 33.076J2
B , (49)

µ+
1
2

= 0.666388− 45.4392J2
B , (50)

µ−1 = 0.644531 + 2JB − 4.12927J2
B (51)

Figure 8 shows the previously used numerical data from
Figure 1 together with the analytic predictions. The overall
agreement to a second order treatment is quite reasonable.
Altogether, our analytic approach allows to completely de-
rive the bosonic phase diagram analytically and provides
an intuitive physical understanding.

5.3 effects of open boundaries In the above dis-
cussion we have considered infinite systems or systems
with periodic boundary conditions. The situation becomes
more interesting if effects of confinement are taken into
account, which will be discussed in the following.

In the presence of a confinement, most prominently for
open boundary conditions, already the mean-field ground
state of the fermions is changed in a very important way.
Here, the fermionic density displays Friedel oscillations
[40], given by

〈m̂j〉 =
N + 1

2

L+ 1
− 1

2(L+ 1)

sin
(

2πj
N+ 1

2

L+1

)
sin
(

πj
L+1

) . (52)

Thus, instead of a resulting homogeneous chemical po-
tential µB for the bosons, the bosons experience a site-
dependent potential

∑
j µj n̂j , with µj = µB − V 〈m̂j〉.

This introduces a qualitatively new feature to the system
which is equivalent to the disordered Bose-Hubbard model
(dBHM), or respectively a superpotential BHM. Due to
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the superpotenial the phase diagram in the limit JB = 0
is modified, as can be seen in Figure 9. In particular the
MI regions do not touch each other anymore in contrast
to the BHM with shifted chemical potential. Considering
particle-hole excitations [36], we find for the upper and
lower critical chemical potentials for the n−th Mott insu-
lator

µ+
n = V nρF + V min

j
〈m̂j〉 , (53)

µ−n = V nρF + V max
j
〈m̂j〉 . (54)

The phase diagram of the bosonic subsystem is shown
in Figure 10 for L = 128 and open boundaries . The long-
range character of the fermion mediated interactions leads
to a substantial modification of the dynamics even for rela-
tively large systems. This can directly be seen for the case
of the CDW phase, where we first discuss the zero hopping
case. Adding a further particle to the CDW phase, this par-
ticle has to choose an odd side. Due to the open bound-
aries the translational symmetry is broken. Thus it matters
whether the particle is added close to the boundary or at
the center. Because of the long-range interaction, the pos-
sible choices differ in energy. The additional energy close
to the boundary is given by

∑L/2
d=0 g2d+1, in contrast to the

energy at the center
∑L/4
d=−L/4 g2d+1. The energy is min-

imal for a position close to the boundary. Adding further
particles, the same arguments apply and increasing the fill-
ing, a Mott insulating region is growing from the boundary.
Switching to small, but finite hopping does not change the
situations. As long as the hopping is small compared to the

energy difference between the state with a particle pinned
close to the border and the state with the additional particle
at the center, the reduction of the interaction energy due to
pinning to the boundary dominates the increase of the ki-
netic energy. When removing a particle from the system,
i.e., going below half filling, the same arguments apply.

This behavior supports our observation of a phase sep-
aration between a Mott insulator and a CDW in the infinite
system with negative compressibility. However, the (open)
boundary leads to a different dependence of the compress-
ibility, now being strict positive κ > 0. This can be seen
from Figure 10, where the DMRG results for a system ex-
posed to open boundaries are shown. In contrast to Figure
1, the Mott lobes and the CDW phase bend apart from each
other, not overlapping anymore. This is due to the positive
compressibility due to boundaries. The positive compress-
ibility could also be seen in Figure 10, where the bosonic
filling is shown for three different cuts at fixed JB along
the µB-axis. The filling is in each situation a monotonous
function of µB , i.e. κ > 0. The incompressible CDW and
MI phases are clearly observable. Interestingly our system
dose not display a so-called Devil’s staircase as described
in [9,41] for the case of a dipolar Bose gas with density-
density interactions decaying as gd ∼ 1

d3 . Most likely, this
is because of the alternating sign in our coupling constants
together with the alternating potential, where a detailed
discussion of this fact might be an interesting supplement
to the present work.

6 Conclusion and outlook Deriving an effective
bosonic Hamiltonian we provided a comprehensive under-
standing of the bosonic phase diagram of the Bose-Fermi-
Hubbard model in the limit of ultrafast fermions. For
double half filling, the physics is dominated by fermion-
induced long-range density-density interactions alternating
in sign, leading to the emergence of a bosonic charge-
density wave phase. A naive calculation of induced cou-
pling assuming free fermions leads to divergencies which
are overcome by a renormalization scheme that includes
the back-action of the bosonic CDW on the fermions. The
effective theory allows for a calculation of the CDW am-
plitude in very good agreement with numerical DMRG
simulations of the full BFHM. Beyond half filling, the
induced interactions lead to thermodynamically unstable
regions in the (µB , JB)-phase diagram, i.e. a phase sep-
aration between CDW and Mott insulator. Application of
the effective theory to Bose-Bose of Fermi-Fermi mixtures
is straightforward.
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