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Abstract
The Born–Fock theorem is one of the most fundamental theorems of quantum mechanics and
forms the basis for reliable and efficient navigation in the Hilbert space of a quantum system
with a time-dependent Hamiltonian by adiabatic evolution. In the absence of level crossings,
i.e. without degeneracies, and under adiabatic time evolution all eigenstates of the Hamiltonian
keep their energetic order, labeled by a conserved integer quantum number. Thus, controlling
the eigenstates of the Hamiltonian and their energetic order in asymptotic limits allows one to
engineer a perfect adiabatic transfer between a large number of initial and target states. The
fidelity of the state transfer is only limited by adiabaticity and the selection of target states is
controlled by the integer invariant labeling the order of eigenstates. We show here, for the
example of a finite superlattice Wannier-Stark ladder, i.e. a one-dimensional lattice with
alternating hopping amplitudes and constant potential gradient, that such an adiabatic control of
eigenstates can be used to induce perfectly quantized single-particle transport across a
pre-determined number of lattice sites. We dedicate this paper to the memory of our late friend
and colleague Bruce Shore, who was an expert in adiabatic processes and taught us much about
this field.
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1. Introduction

Quantum adiabatic evolution is a powerful technique rooted in
almost century-old ideas. The Born–Fock theorem [1] states
that a quantum system remains in an eigenstate of a time-
dependent Hamiltonian if there are no level crossings, i.e no
degeneracies, and the change of the parameter of the Hamilto-
nian is sufficiently slow. Adiabatic evolution can be employed
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to transfer a quantum system from one eigenstate of a ‘bare’
Hamiltonian to another one by slowly switching on and off
additional coupling terms. Adiabaticity generally requires that
the characteristic rate of change of the Hamiltonian is smal-
ler than the interaction energy divided by ℏ. Staying in the
same adiabatic state of the full Hamiltonian may then lead
to transitions between the bare states, which is usually the
objective of the adiabatic approach: to design the Hamilto-
nian in such a manner that adiabatic evolution can produce
a desired transition. Many of the ideas in this field go back
to or are strongly influenced by our late friend and colleague
Bruce Shore [2]. The great advantage of the adiabatic evolu-
tion, and the main reason for its vast popularity, is its insens-
itivity to variations of the experimental parameters in broad
ranges, which sets it apart from the faster but much more
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fragile resonant techniques. In particular, once the adiabatic
condition is satisfied, the transition probability between two
quantum states is guaranteed to retain its value despite vari-
ations in the experimental conditions.

Over the last century, numerous adiabatic techniques have
been designed and demonstrated in a number of ground-
breaking experiments, with many contributions from Bruce.
Among them we mention adiabatic techniques in two-state
systems wherein a major role is played by the presence or
absence of an energy level crossing of bare states.

• In the presence of a bare-state level crossing the composi-
tion of the adiabatic states changes from being aligned with
one bare state in the beginning and the other bare state
in the end. Therefore, adiabatic evolution produces com-
plete population transfer between the two states. A famous
analytic model describing this process is the Landau–
Zener–Stückelberg–Majorana model [3–6]. Another beauti-
ful analytic model in this respect is the Allen–Eberly–Hioe
model [7, 8]. It is worth mentioning also the half-crossing
technique [9, 10], which produces partial, rather than com-
plete population transfer.

• In the absence of a bare-state level crossing each adiabatic
state is associated with the same bare state in the begin-
ning and the end. Therefore, adiabatic evolution produces
no population transfer between the two states. A beautiful
analytic model describing this process is the Rosen–Zener
model [11]. Despite the absence of population transfer in the
no-crossing case, it has valuable applications, e.g. in photon
counting in cavity-QED [12, 13].

Quantum systems with more than two states offer a vari-
ety of possibilities for navigation in Hilbert space. In partic-
ular, level crossing techniques allow to design various navig-
ation pathways. In one approach, the control is achieved by
applying the driving pulses at certain level crossings. Hence
the evolution is made adiabatic there, while other crossings
are left unperturbed and hence the evolution is diabatic in
their vicinity. By appropriately combining adiabatic and dia-
batic evolution one can connect any two states in Hilbert space
[14–16]. Such techniques have been used, e.g. for generation
of entangled states [17, 18] and molecular superrotors [16].
Alternatively, the frequency chirp of the driving field has been
used to transfer the population between the two end states of a
chainwise-connected system [19], or from one end of the chain
to any pre-selected state [20].

A vastly popular adiabatic technique in multistate sys-
tems is stimulated Raman adiabatic passage (STIRAP) [21–
23], in which the control of population flow is achieved
by using delayed but overlapped driving pulses. STIRAP
has been demonstrated and used in hundreds of experi-
ments in dozens of areas, as reviewed recently [24–26].
Although STIRAP has mainly been used for complete pop-
ulation transfer between the two ends of a three-state (ori-
ginal STIRAP) or multistate (extended STIRAP) chainwise-
connected systems, variations of this technique for creation
of coherent superpositions of states have been successfully
demonstrated [27, 28].

Figure 1. One-dimensional Wannier-Stark ladder in a
superpotential with variable and alternating hopping amplitudes α
and β and potential gradient∆. By engineering the asymptotic
eigenstates a controlled, quantized particle transport by an arbitrary
number of sites and negligible spreading can be achieved.

Finally, the success of adiabatic quantum control tech-
niques over the last decades has triggered the emergence of
an entirely new concept in quantum information: adiabatic
quantum computation and quantum simulation [29, 30].

An important feature of all adiabatic techniques is that the
absence of level crossings guarantees that the integer quantum
number characterizing the energetic position of an eigenstate
relative to all other states remains the same throughout the
adiabatic evolution, while the character of the eigenstate can
dramatically change. Thus being able to control the eigenstates
of the Hamiltonian only in certain limits (i.e. for the ‘bare’
Hamiltonians), one can induce a perfect state transfer between
an initial state and a large number of desired target states by
adiabatically changing the parameters of the full Hamiltonian
from initial to final values. The selection of target states is
entirely controlled by the integer invariant labeling the order of
eigenstates and the fidelity of the state transfer is only limited
by adiabaticity.

In this paper, we use this concept of adiabatic quantum
control to introduce a new technique for quantized adiabatic
particle transport. Specifically we consider a quantum particle
in a one-dimensional lattice with variable, alternating hopping
amplitudes α(t) and β(t) subject to a constant potential gradi-
ent in the tight-binding limit, see figure 1. Tight-binding lattice
Hamiltonians subject to a constant force parallel to the lattice
are called Wannier-Stark ladders [31] and their spectral prop-
erties and dynamics has extensively been studied in the past.
The Wannier-Stark ladder has recently been implemented in
arrays of evanescently coupled dielectric waveguides for sur-
face plasmon-polaritons [32].

In the absence of the potential gradient themodel of figure 1
is identical to the topological two-band Su–Shrieffer–Heeger
model [33]. Adding a time-dependent staggered potential
V(t) = 1

2

∑
k(−1)k∆(t) leads to the prototype model of a topo-

logical particle pump, the Rice-Mele model [34, 35], named
after his inventor Thouless pump [36], which was recently
implemented in ultra-cold fermions [37], and hard-core bosons
[38]. Periodic variation of the parameter of the Rice-Mele
Hamiltonian encircling the degeneracy pointα= β and∆= 0
leads to a shift of the center of theWannier functions by exactly
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one unit cell. This quantized transport is guaranteed by topo-
logy. While the motion of the Wannier center is topologically
protected, the wave function of a single particle prepared in
a certain lattice site will however quickly spread, such that a
Thouless pump is only of limited use in atomtronics for the
controlled transport of individual particles [39].

We will show that with the adiabatic pumping technique
presented here an arbitrary pre-selected site can be popu-
lated, with high selectivity and efficiency, by appropriately
tuning the coupling strength between the states. The control
concept is rooted in the fact that, as the coupling strength var-
ies, the quantum numbers of the eigenenergies of the respect-
ive Hamiltonian change. Hence, when choosing the coupling
value in a suitable interval one can navigate adiabatically to
the desired final state.

2. Model

We consider a one-dimensional superlattice withN lattice sites
in a constant potential gradient as sketched in figure 1. The
hopping amplitudes α(t) and β(t) are functions of time but
with a constant field gradient. In the following we assume an
even number N=M+ 1 for simplicity of the discussion (M
being an odd integer). The analysis can however easily be
extended to an odd number of sites with essentially similar
results, which is discussed in the appendix. In second quantiz-
ation the Hamiltonian reads

H=−
∑
j,even

α(t)ĉ†j+1ĉj−
∑
j,odd

β(t)ĉ†j+1ĉj+ h.a.

−
M/2∑

j=−M/2

j∆, (1)

where ĉj and ĉ
†
j are the particle annihilation and creation oper-

ators at lattice site k. In the following we restrict ourselves to
the case of a single particle. The Schrödinger equation (we set
ℏ= 1 throughout this paper) describing the time evolution of
the quantum state reads

i
∂

∂t
c(t) =HN (t)c(t), (2)

for a system of N Wannier states with probability amplitudes
c(t) = [c1(t), . . .,cN(t)]

T. The Hamiltonian matrix HN(t) has
a nondegenerate spectrum and we can order the eigenvalues
λµ(t) with decreasing value, i.e. λ1(t)> λ2(t)> .. . > λN(t).
The instantaneous eigenvectors of HN(t) (called adiabatic
states) are denoted by |λµ⟩, i.e. HN(t) |λµ⟩= λµ |λµ⟩. In the
following, we will assume that the initial state coincides with
one of the adiabatic eigenstates of HN(t=−∞).

3. Eight-site Wannier-Stark ladder

Before we consider the general case, let us begin with a sys-
tem with eight states described by the following Hamiltonian
matrix

Figure 2. Visualization of linkages and cells of the eight-site
Wannier-Stark ladder.

H8

=



7
2∆ α 0 0 0 0 0 0
α 5

2∆ β 0 0 0 0 0
0 β 3

2∆ α 0 0 0 0
0 0 α 1

2∆ β 0 0 0
0 0 0 β − 1

2∆ α 0 0
0 0 0 0 α − 3

2∆ β 0
0 0 0 0 0 β − 5

2∆ α

0 0 0 0 0 0 α − 7
2∆


.

(3)

∆> 0 will be used as our unit for frequency. Furthermore
we introduce the notation of cells, an object containing sites
j= 2k+ 1 and j= 2k+ 2. In the above model there are four
cells: in each unit cell vertices are coupled with each other via
hopping amplitude α, and cells are coupled by intercell hop-
ping amplitude β. We use the following numbering scheme
for cells (cf figure 2): the cell with site number j= 2k+ 1 and
j= 2k+ 2 is called kth cell where k= 0,1,2,3. In principle,
such a model can be implemented in many different phys-
ical systems e.g. for neutral cold atoms in a optical superlat-
tice potential [40] subject to an external magnetic field gradi-
ent, two-dimensional photonic crystals [41], the two-mode
Jaynes–Cummings model [42], or in waveguide structures
where time is replaced by the propagation coordinate z [43].

By assuming that the system starts its evolution at the left
edge of the chain (the cell with k= 0) and the hopping amp-
litudes are changed slowly (adiabatically) we show that at the
end of the (adiabatic) evolution the system ends up at some cell
with number kf . This cell can be pre-selected by an appropri-
ate choice of the asymptotic values of the hopping parameters
α and β. The parameter intervals (plateaus) for a fixed kf are
broad enough and are determined by the offset amplitude ∆,
such that the transport scheme is robust and does not require
fine tuning.

4. Spectral properties of the Hamiltonian

In this section we describe the change of the order of the ini-
tial adiabatic energy as function of the hopping amplitudes.
First we note that the Hamiltonian (3) is a tridiagonal matrix
and therefore all the eigenvalues are non degenerate (simple)
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Figure 3. Eigenvalues of the Hamiltonian H8 (in units ∆) at early and late times vs the scaled coupling strength γ/∆. Depending on the
value of this ratio the initial state |1⟩ can attain any energy-order quantum number in the upper half of the spectrum. Using a negative value
of ∆ any state in the lower part of the spectrum can be made accessible as well. Note that the degeneracies are accidental since some off
diagonals in the Hamiltonian are zero (α= 0 for initial time) and (β= 0, for final time).

if none of the off diagonal matrix elements vanish. The goal
of the present paper is to investigate the transport through
the cells using slowly changing coupling amplitudes α(t) and
β(t). We assume that initially (t→−∞) the system is in state
|1⟩, i.e. in the first cell. Due to the conservation of the order
of eigenstates in a time dependent Hamiltonian without true
level crossings knowing the spectrum of the Hamiltonian at
early and late times determines the transport through cells
completely.

To this end we assume that at early times (t→−∞) we
have α(−∞) = 0 and β(−∞) = γ > 0. Then the eigenvalues
of the Hamiltonian (3) read

λ1 =
7
2
∆, λ2 = 2∆+

1
2

√
∆2 + 4γ2,

λ3 = 2∆− 1
2

√
∆2 + 4γ2, λ4 =

1
2

√
∆2 + 4γ2,

λ5 =−1
2

√
∆2 + 4γ2, λ6 =−2∆+

1
2

√
∆2 + 4γ2,

λ7 =−2∆− 1
2

√
∆2 + 4γ2, λ8 =−7

2
∆. (4)

They are plotted in figure 3 (left) versus the scaled coupling
strength γ/∆. The corresponding eigenstates are

|λ1⟩= |1⟩,
|λ2⟩= cosθ|2⟩+ sinθ|3⟩, |λ3⟩=−sinθ|2⟩+ cosθ|3⟩,
|λ4⟩= cosθ|4⟩+ sinθ|5⟩, |λ5⟩=−sinθ|4⟩+ cosθ|5⟩,
|λ6⟩= cosθ|6⟩+ sinθ|7⟩, |λ7⟩=−sinθ|6⟩+ cosθ|7⟩,
|λ8⟩= |8⟩,

(5)
where

θ =
arctan(γ/∆)

2
. (6)

Because we assume that initially the system is in state |1⟩, this
means that in the adiabatic basis, the system begins its evolu-
tion in state |λ1⟩= |1⟩.

For small γ, λ1 is the maximal eigenvalue of H8, with
eigenvector |λ1⟩= |1⟩. However, for γ within

√
2∆< γ <

2
√
3∆, the eigenvalue λ1 becomes the second largest. Then,

as γ increases beyond 2
√
3∆, λ1 becomes the third largest

eigenvalue within the interval 2
√
3∆< γ <

√
30∆. Finally

when
√
30∆< γ, λ1 becomes the fourth largest eigenvalue.

Hence, we see that the ‘quantum number’ of the adiabatic state
|λ1⟩, i.e. the integer labeling the energetic order, can be var-
ied by changing the coupling value γ. In summary, depend-
ing on the choice of the value of γ/∆, the quantum num-
ber n of this adiabatic state |λ1⟩ takes the following integer
values:

n
( γ

∆

)
=



1 if 0< γ
∆ <

√
2 ;

2 if
√
2< γ

∆ < 2
√
3 ;

3 if 2
√
3< γ

∆ <
√
30 ;

4 if
√
30< γ

∆ .

(7)

It is remarkable that the sizes of all these intervals are almost
equal to 2∆. Thus one recognizes that choosing the value of
γ/∆ allows to preselect a large class of energetic quantum
numbers and no fine tuning is needed.

At late times (t→∞) we assume that α(∞) = γ and
β(∞) = 0. Then the eigenvalues of the Hamiltonian (3)
are

µ1 =
6∆+

√
∆2 + 4γ2

2
, µ2 =

6∆−
√

∆2 + 4γ2

2
,

µ3 =
2∆+

√
∆2 + 4γ2

2
, µ4 =

2∆−
√

∆2 + 4γ2

2
,

µ5 =
−2∆+

√
∆2 + 4γ2

2
, µ6 =

−2∆−
√

∆2 + 4γ2

2
,

µ7 =
−6∆+

√
∆2 + 4γ2

2
, µ8 =

−6∆−
√

∆2 + 4γ2

2
. (8)
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They are plotted in figure 3 (right) versus the scaled coup-
ling strength γ/∆. The eigenvalue µ1 is always the largest.
The corresponding eigenstates are:

|µ1⟩= cosθ|1⟩+ sinθ|2⟩, |µ2⟩=−sinθ|1⟩+ cosθ|2⟩,
|µ3⟩= cosθ|3⟩+ sinθ|4⟩, |µ4⟩=−sinθ|3⟩+ cosθ|4⟩,
|µ5⟩= cosθ|5⟩+ sinθ|6⟩, |µ6⟩=−sinθ|5⟩+ cosθ|6⟩,
|µ7⟩= cosθ|7⟩+ sinθ|8⟩, |µ8⟩=−sinθ|7⟩+ cosθ|8⟩, (9)

The Born–Fock adiabatic theorem [1] states that if the
Hamiltonian varies slowly in time and has well separated
eigenvalues at any instant of time then the quantum number
of the populated state does not change during evolution. In
other words, if the system starts in the eigenstate with the kth
largest eigenvalue of the Hamiltonian, it will remain in the
eigenstate with the kth largest eigenvalue at all times. We sup-
posed that at t→−∞ the initial state was |1⟩ ≡ |λ1⟩ due to the
assumption α(−∞) = 0 and β(−∞) = γ > 0. This adiabatic
state has a quantum number n(γ/∆) depending on the ratio
γ/∆ according to equation (7). If we adiabatically change the
parameters α and β to values α(+∞) = γ and β(+∞) = 0,
then the quantum systemwill remain in the adiabatic state with
quantum number n(γ/∆) for all times. Therefore, we can pre-
dict the final state by comparing the left and right frames of
figure 3. Because in the beginning of the evolution (left) the
system is in the eigenstate |λ1⟩ we have to just count what is
the quantum number of this state, i.e. where the eigenvalues

λ1 is placed. As the ratio γ/∆ increases the quantum number
n(γ/∆) changes from 1 to 4, see equation (7). Adiabatic evol-
ution will therefore transport the population from state |1⟩ to
[cf equations (7) and (9), and figure 3]

|1⟩ (= |λ1⟩)

−→


|µ1⟩= cosθ|1⟩+ sinθ|2⟩ if 0< γ

∆ <
√
2 ;

|µ3⟩= cosθ|3⟩+ sinθ|4⟩ if
√
2< γ

∆ < 2
√
3 ;

|µ5⟩= cosθ|5⟩+ sinθ|6⟩ if 2
√
3< γ

∆ <
√
30 ;

|µ7⟩= cosθ|7⟩+ sinθ|8⟩ if
√
30< γ

∆ .

(10)

Hence we see that in the adiabatic regime the particle trans-
port is quantized, with the control parameter being the scaled
coupling strength γ/∆. Moreover, in contrast to the Thou-
less pump, there is no spreading of the particle wave function
thereby leading to a perfect single-particle transport.

5. General case

The above results can be easily generalized for an arbitrary
odd integer M corresponding to an even number of sites. (We
note that the parity of M is however not essential for our
protocol and the case of an even M (odd number of sites) is
discussed in the appendix.) In this case the Hamiltonian takes
the form

HM+1(t) =



M
2 ∆ α(t) 0 0 · · · 0 0 0
α(t) (M2 − 1)∆ β(t) 0 · · · 0 0 0
0 β(t) (M2 − 2)∆ α(t) · · · 0 0 0

0 0 α(t) (M2 − 3)∆
. . . 0 0 0

...
...

...
. . .

. . .
...

...
...

0 0 0 0 · · · −(M2 − 2)∆ β(t) 0
0 0 0 0 · · · β(t) −

(
M
2 − 1

)
∆ α(t)

0 0 0 0 · · · 0 α(t) −M
2 ∆


. (11)

A simple calculation shows (see appendix) that the
quantum number n

(
γ
∆

)
does not depend on the dimension of

the system size. We have

n
( γ

∆

)
=



1 if 0< γ
∆

<
√
2 ;

2 if
√
2< γ

∆
< 2

√
3 ;

3 if 2
√
3< γ

∆
<

√
30 ;

4 if
√
30< γ

∆
<

√
56 ;

...

k if
√

(2k− 3)(2k− 2)< γ
∆

<
√

(2k− 1)2k

...

.

(12)

With the exception of the first interval, whose length is obvi-
ously

√
2, all other intervals have lengths very close to 2,√

(2k− 1)2k−
√

(2k− 3)(2k− 2) = 2+
1
4k2

+O(k−3). (13)

Thus controlling the quantum number of the energetic order
does not require fine tuning of the parameters. We note that the
same analysis can be done when M is an even number (see in
the appendix).

6. Numerical results

To illustrate our method we now present numerical results
from solving the Schrödinger equation with the Hamiltonian
of equation (11). The hopping amplitudes α(t) and β(t) are

5
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assumed to be slowly varying functions with the following
explicit form

α(t) =
γ√

1+ exp
(
− t

τ

) , β(t) =
γ√

1+ exp
(
t
τ

) . (14)

The particle is assumed to be in state |1⟩ at t→−∞, i.e. in
the cell with k= 0. In order to describe transport processes on
long time scales we calculate the quantity

P∞ =

M−1
2∑

k=0

k
[
p2k+1 (∞)+ p2(k+1) (∞)

]
, (15)

where k is the number of the cell. The quantity p2k+1 (∞)+
p2(k+1) (∞) is the probability for the particle to be in the kth
cell. In fact, P∞ is equal to the first momentum of the particle
distribution. According to the above discussions at the end of
the adiabatic evolution the particle will be transmitted through
the system in a deterministic quantized fashion. At first glance
this process appears much like the Thouless pump [36]. In
topological one-dimensional systems the transport is quant-
ized in the adiabatic limit and topologically protected. In the
adiabatic limit the displacement of a particle is quantized very
precisely in units of the lattice constant. However, as has been
shown in [39] in general, the adiabaticity condition give rise
also to a large spreading of the wave function in coordin-
ate space. This unavoidable spreading can lead to a smeared-
out distribution of particles extending over many unit cells,
and from an applicability point of view, this method is rather
limited.

We show that our method is capable of removing the
unwanted spreading of the particle distribution over cells.
Moreover, we show that the variance of the final cell coordin-
ate is bounded from above by a half of the distance between
the cells. The variance reaches its maximum at the transition
points where the quantum number changes by unity. At these
points, the neighbor cells are equally populated and therefore
the variance of P∞ at transition points is equal to

∆P2 (+∞) =
k2 +(k+ 1)2

2
−
(
k
2
+
k+ 1
2

)2

=
1
4
. (16)

In figure 4 we show the average cell coordinate P∞ as func-
tion of γ for M= 9,∆= 10. The vertical dashed lines show
the borders between different values of the quantum number
according to equation (7). The forms of the hopping amplitude
are given by equation (14). We see that there is a very good
agreement between the results from the numerical analysis and
the theoretical prediction of equation (7).

We note that the durations of hoppings α(t) and β(t) in
equation (14) are unbounded. In order to see the influence of
the durations of hopping amplitudes on the transport process
we solve the Schrödinger equation (2) with the truncated hop-
ping amplitudes α(t) and β(t)

α(t) =
γ√

1+ exp
(
− t

τ

)Ξ( t
T

)
, β (t) =

γ√
1+ exp

(
t
τ

)Ξ( t
T

)
(17)

Figure 4. Average final occupation of cells as function of γ for
M= 9, ∆= 10 in units of τ = 1. The vertical dashed lines show the
border between different values of the quantum number according
to equation (7). The form of the hopping amplitudes are given by
equation (14).

Figure 5. Average final occupation of cells as function of γ for
hopping amplitudes given by equation (17) for T= 7τ . The other
parameters are the same as in figure 4.

where Ξ(x) represents the unit box function, equal to 1 for
|x|⩽ 1

2 and 0 otherwise. As we can see from figure 5 the qual-
itative behavior of P∞ remains the same even if the duration
T is relative short (T= 7τ ).

7. Conclusion

We have proposed an efficient and robust way to navigate the
position of a particle adiabatically through a chain of quantum
states. The proposed method is similar to the Thouless pump-
ing process, in which the particle displacement, that is the first
moment of particle distribution, is quantized. However, in the
Thouless pump the second moment (dispersion) of the particle
distribution quickly becomes very large. This is because the
single particle spreading caused by the finite width of the rel-
evant energy band of the topological lattice model competes
with the required adiabaticity of the pump preferring long
cycle times. In contrast, we have shown that the state shift in
a dynamically modulated Wannier-Stark ladder is also strictly
quantized during one adiabatic cycle and at the same time, the
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dispersion of the distribution is bounded by one unit cell. The
protocol can be implemented, for example, in arrays of evanes-
cently coupled dielectric waveguides [32]. Finally, it should be
mentioned that similar ideas can be applied to many-particle
systems to study topological phenomena.
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Appendix

Derivation of equation (12)

In this appendix we elaborate on the derivation of
equation (12) of the main text. The Hamiltonian (11) takes
a simple block diagonal form in the case when α= 0

HM+1 =



M
2 ∆ 0 0 . . . 0 0 0
0 h1 0 . . . 0 0 0
0 0 h2 0 . . 0 0 0
. . . . . . . . .
. . . . . . . . .
0 0 0 . . . . hM−1

2
0

0 0 0 0 0 0 0 0 −M
2 ∆


,

where each 2× 2 matrix hk has the following form

hk =

[ (
M
2 − (2k− 1)

)
∆ γ

γ
(
M
2 − 2k

)
∆

]
,

k= 1,2, . . .,
M− 1
2

.

The spectrum of hk is

λ
(+)
k =

(M− 4k+ 1)∆+
√
∆2 + 4γ2

2
,

λ
(−)
k =

(M− 4k+ 1)∆−
√
∆2 + 4γ2

2
.

The order of the eigenvalue M
2 ∆ can be defined by the follow-

ing two side condition

λ
(+)
k−1 ⩾

M
2
∆⩾ λ

(+)
k .

By solving these inequalities with respect to γ
∆ , we get√

2(k− 1)(2k− 3)⩽ γ

∆
⩽
√
2k(2k− 1) (18)

i.e. we arrive at equation (12) of the main text.

Odd number N=M+ 1 of lattice sites

In the case of an odd number of lattice sites N=M+ 1 the
Hamiltonian takes the following block diagonal form

HM+1 =



M∆ 0 0 . . . 0 0 0
0 h1 0 . . . 0 0 0
0 0 h2 0 . . 0 0 0
. . . . . . . . .
. . . . . . . . .
0 0 0 . . . . hM−1 0
0 0 0 0 0 0 0 0 hM


,

(19)

where

hk =

[
(M− (2k− 1))∆ γ

γ (M− 2k)∆

]
, k= 1,2, . . .,M.

(20)

Repeating the analysis of the main text one obtains the same

jump intervals for the quantum numbers n
(

∆
γ

)
i.e. (18)

or (12). In the case of odd number of sites (M is even number)
the step by step quantized adiabatic transport ends however at
a ‘lonely’ site, rather than at a pair of sites.
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