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effect [1]. These elements separate the atomic wave func-
tion into several components with different momenta [2–7]. 
A common approach for implementing such elements is to 
apply laser pulses with suitable temporal pulse areas (e.g., 
the so-called π or π/2 pulses). This technique, however, is 
not robust because it requires a carefully controlled dura-
tion and power of the pulse in order to assure the desired 
area. An important paper by Marte et al. [5] showed that an 
atomic beam deflection by the stimulated Raman adiabatic 
passage (STIRAP) technique [6] can be implemented via 
stimulated Raman transitions induced by counterpropagat-
ing laser beams. Later on, this idea was demonstrated inde-
pendently by Lawall et al. [7] and Goldner et al. [8]. Those 
publications stimulated the recognition of STIRAP, which 
was initially developed for efficient excitation of mole-
cules. Later, Theuer et al. [9] developed a laser-controlled 
variable beam splitter based on the tripod-STIRAP scheme 
[10–12], by varying the spatial overlap of lasers.

For more details concerning current theoretical, experi-
mental developments and applications of STIRAP, the 
interested readers are referred to the review articles [13–
17]. For completeness, however, we give a brief descrip-
tion of STIRAP. The underlying physical mechanism of 
STIRAP is the existence of an adiabatically decoupled, or 
dark state [18], which at early times coincides with the ini-
tial state and at late times is aligned with the target state. 
When the pump and Stokes frequencies together maintain 
two-photon resonance, then the only conditions to be ful-
filled for successful transfer are those of adiabaticity [13–
17, 19], i.e., large pulse area, and counterintuitive applica-
tion of the pulses, i.e., Stokes before pump.

The schemes suggested in Refs. [5] and [9] operate in 
the regime where Doppler shifts of atomic transition fre-
quencies due to the photon recoil and the recoil energy are 
small compared to the Rabi frequencies and the transit-time 

Abstract  The influence of photon momentum recoil on 
adiabatic population transfer in an atomic three-level 
lambda system is studied. It is shown that the Doppler fre-
quency shifts, due to atomic motion, can play an important 
role in adiabatic population transfer processes of atomic 
internal states by a pair of laser fields. For the limiting 
case of slow atoms (Doppler shift much smaller than the 
photon recoil energy), the atoms occupy the same target 
state regardless of the order of switching of laser fields, 
while for the case of fast atoms interacting with the intui-
tive sequence of pulses, the target state is the intermediate 
atomic state. Furthermore, it is shown that this novel tech-
nique for adiabatic population transfer is related to a level 
crossing in the bright–intermediate state basis (rather than 
in the original atomic basis). It is shown that these pro-
cesses are robust with respect to parameter fluctuations, 
such as the laser pulse area and the relative spatial offset 
(delay) of the laser beams. The obtained results can be used 
for the control of temporal evolution of atomic populations 
in cold atomic beams by externally adjustable Doppler 
shifts.

1  Introduction

The transitions between atomic internal states induced by 
resonant laser field are always accompanied by momen-
tum transfer from photons to atoms. Many elements of 
atom optics, e.g., deflectors and splitters, are based on this 
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broadening. In this limit, the combined system of atom plus 
fields is equivalent to a lambda or tripod atomic system in 
which internal states can be labeled by different photon 
recoil momenta. The idea of the beam splitters is then very 
clear: A population transfer between these internal states 
via STIRAP [6] or via tripod-STIRAP [10–12] necessar-
ily means photon momentum transfer to the particles in the 
atomic beam. Thus in this regime, because of the darkness 
of the state, the photon recoil momentum does not play a 
role in the evolution of internal atomic states. It should be 
noted that standing wave laser beams (see, e.g., [20–22] and 
references therein) offer more efficient deflection of atoms 
than those with traveling wave beams as in Refs. [5–9]. Our 
goal, however, will not be to find an efficient way to deflect 
atoms; rather, we ask a different question, namely whether 
is it possible to control the dynamics of atomic internal 
states in a robust  way via the velocity-induced Doppler 
shift of the atomic transition frequency. The problem, as 
far as the author knows, with such formulation within the 
context of robustness has never been discussed before (see 
the recent review preprint [23]). The novelty of the present 
study is focused on the fact that due to Doppler shifts, the 
Landau–Zener transition [24–26] may occur between the 
bright and intermediate atomic states (rather than in the 
bar atomic basis). In the original atomic basis, for the case 
when laser beams are ordered intuitively, i.e., the bright 
state is populated, this transition corresponds to a robust 
population transfer from the initial to intermediate atomic 
state, while for the counterintuitive sequence, STIRAP 
remains valid for both cases of slow and fast atoms as long 
as the effective Rabi frequency is sufficiently large.

2 � Model

Let us consider a monoenergetic atomic beam, crossing 
two laser beams but not necessarily at a right angle. In 
particular, we consider an atomic � system with three lev-
els coupled by two counterpropagating optical fields with 
the same frequency ω and wave vectors k whose parallel 
propagation axes are spatially shifted. The geometry of the 
interaction between atoms and lasers and the atomic level 
scheme are shown in Fig. 1.

The sequence of interaction of atoms with laser beams 
is controlled by the spatial displacement of their axes. The 
initial atom velocity in the direction of the laser beams can 
be varied by changing the intersection angle α between 
atomic velocity v and laser beams k. The motion of atoms 
causes a Doppler shift ∼ v · k. The Doppler shift is large 
for small crossing angles α ≈ 0, and for large crossing 
angles α close to π/2 it tends to zero. As we will see later 
on, the possibility of controlling the Doppler shift could 

provide a new way for controlling adiabatic evolution pro-
cesses of internal states of atoms.

The laser fields are detuned from the atomic transition 
by the single-photon detuning � = ω21 − ω = ω23 − ω. In 
what follows, we will consider only the case of exact one-
photon resonance, � = 0. The generalization to nonzero 
detuning is straightforward and requires one only to replace 
the recoil energy

with Er +�. We assume that the atom–laser interaction 
time is much shorter than the spontaneous lifetime of state 
|2�. This condition can be fulfilled, for example, for fast 
atomic beams.

The atoms are described by atomic flip operators 
σnm = |n��m|, n,m = 1, 2, 3. The Hamiltonian for the atom-
field coupling along the z axis (z is directed along the prop-
agation direction of the one of the lasers) in rotating wave 
approximation has the following form [5]

where M is the mass of the atom. ΩP(t) and ΩS(t) are 
space-independent, time-delayed Rabi frequencies of the 
pump and Stocks fields, respectively. We have omitted the 
transverse part of the kinetic energy since it is a conserved 
quantity. Using the gauge transformation

(1)Er =
�
2k2

2M

(2)
H = −

�
2

2M

∂2

∂z2

+
�ΩP(t)

2
e−ikzσ12 +

�ΩS(t)

2
e+ikzσ32 + H.c.,

(3)
G = exp [ikz(σ11 − σ33)]

= σ22 + σ11 exp (ikz)+ σ33 exp (−ikz)

(a) (b)

(c)

Fig. 1   a Sketch of the geometry of the interaction between atoms 
with two counterpropagating laser fields. b Three-level system with 
initial population in state |1�. c Pulses in the intuitive sequence, the 
pump pulse precedes the Stokes pulse
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the Hamiltonian (2) can be transformed to a more conveni-
ent form

Here the terms containing the constants of motion have 
been omitted. Note that the atomic momentum commutes 
with the transformed Hamiltonian. The momentum opera-
tor then is no longer a dynamical variable in this frame, and 
it has been replaced by a real parameter p. We see that the 
states |1� and |3� are shifted from the two-photon resonance 
condition by the Doppler detunings �kp

M
. The energy of the 

state |2� is shifted by the recoil energy �
2k2

2M
.

The state vector |Ψ � transforms under the gauge transfor-
mation (3) into G|Ψ �. Throughout the paper, we assume that 
the initial state of the system is |Ψ � = exp

(

− i
�
p0 · z

)

|1�, 
where p0 is the atom’s momentum projection onto the direc-
tion of the laser beams. We are interested in the evolution of 
the system with the Hamiltonian (4) when the Rabi frequen-
cies ΩP(t) and ΩS(t) are varied adiabatically in time.

2.1 � Adiabatic evolution

To analyze adiabatic evolution of the system, it is conveni-
ent to introduce dark, bright and atomic states by the fol-
lowing orthogonal transformation

The mixing angle θ(t) is defined by

In the adiabatic limit of slowly changing mixing angle,

the corresponding Hamiltonian transforms into (for sake of 
simplicity, we omit below the argument t).

where

(4)H → G · H · G−1 →

=
�k

M
· p(σ11 − σ33)−

�
2k2

2M
σ22

+
�ΩP(t)

2
σ12 +

�ΩS(t)

2
σ31 + H.c

(5)U(t) =





cos θ(t) 0 − sin θ(t)

0 1 0

sin θ(t) 0 cos θ(t)



.

(6)tan θ(t) =
ΩP(t)

ΩS(t)
.

(7)
dθ(t)

dt
<< Ωeff.(t),

(8)Ωeff.(t) =
√

Ω2
P(t)+Ω2

S(t),

(9)H = HDD + HDD + HDD + HDD,

(10)HDD =
�kp

M
|D��D| cos 2θ ,

and the new orthogonal basis vectors are the dark |D� and 
bright |B� states defined in the following way

and

The structure of the Hamiltonian (9) tells us that the terms 
HDD and HDD induce transitions from the dark state to its 
complement subspace (bright and atomic states) and vice 
versa. A sufficient condition to neglect them is to ignore the 
term �kp

M
sin 2θ compared to

i.e.,

where µ1,2 are the eigenvalues of HDD. One can verify that 
for relatively large Rabi frequencies

(along with the assumptions kp > 0 and 
min [µ1,µ2] <

�kp
M

cos 2θ < max [µ1,µ2]) condition (16) 
is fulfilled and the dark state decouples from the dynamics. 
By combining this condition with the condition of the adi-
abaticity (7), we arrive at the sufficient condition

where T is a time characterizing the pulse duration. This 
condition ensures that the system remains either in the ini-
tial dark state or in its complement subspace. In particu-
lar, if a counterintuitive pulse sequence is applied, i.e., if 
ΩS is switched on and off before ΩP, i.e., the mixing angle 
starts at zero and then increases to π/2, thus the system is 
initially in the dark state |D� and will remain in this state, 
while according to Eq. (13) the initial state |1� will trans-
form, up to an irrelevant phase (proportional to the Dop-
pler shift), into |3�. This dynamics has been described in 
reviews [13–17]. The inverse gauge transformation (3) 
will yield atomic beam deflection due to the momentum 
exchange 2�k between the atoms and laser photons. As 

(11)HDD = H
†

DD
=

�kp

M
|D��B| sin 2θ ,

(12)

HDD = −Erσ22 −
�kp

M
|B��B| cos 2θ

+
�Ωeff.

2
|B��2| + H.c

(13)|D� = |1� cos θ − |3� sin θ ,

(14)|B� = |1� sin θ + |3� cos θ .

(15)δ = min

[∣

∣

∣

∣

�kp

M
cos 2θ − µ1

∣

∣

∣

∣

,

∣

∣

∣

∣

�kp

M
cos 2θ − µ2

∣

∣

∣

∣

]

(16)
�kp

M

sin 2θ

δ
<< 1,

(17)Ωeff. >>
�kp

M
sin 2θ ,

(18)Ωeff. >> max

[

1/T ,
�kp

M
sin 2θ

]

,
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was mentioned in the introduction, in this case, the Doppler 
shift does not play a role in dynamics of the system.

3 � Population dynamics

3.1 � Slow atomic beams

In this subsection, we consider the case of the initial 
momentum of the atoms p0 in the direction of the laser 
beam being much smaller than the recoil momentum �k . 
This corresponds to the case when the atomic beam is 
almost perpendicular to the laser beams.

Figure 2 shows the final atomic population of the state 
|3� as a function of the delay between the coupling pulses. 
This figure was obtained by numerically integrating the 
Schrödinger equation with the full Hamiltonian (9).

The pulses have Gaussian shape

with equal pulse durations ErTP = ErTS = 10� (in units of 
the inverse recoil frequency), and equal areas �Ω0 = 5Er . 
The initial momentum of the atoms is p0 = 0.1�k. The 
atoms are prepared initially in the state |1�. Positive values 
of the delay correspond to STIRAP, and negative delays 
to an intuitive pulse sequence; i.e., the pulse ΩP precedes 
ΩS. For both positive and negative delays, we observe an 
efficient population transfer from the initial state |1� to 

(19)

ΩP(t) = Ω0 exp

[

−
(

t − τ

T

)2
]

,

ΩS(t) = Ω0 exp

[

−
(

t + τ

T

)2
]

the state |3 �. The transfer efficiency approaches unity for 
a relative broad range of delays. The case of STIRAP was 
discussed in [5]. In addition to that, Fig. 3 shows that for 
negative delays in contrast to ordinary STIRAP, the state |2� 
is substantially populated during the time evolution of the 
system. This indicates that the transfer does not occur via 
adiabatic rotation of the dark state from |1� to |3�.

The state vector for the initial problem can be found by 
the inverse gauge transformation (3) which leads to the 
change of the atomic momentum from p0 to p0 + 2�k. 
Hence, if the timescale of the interaction is smaller than the 
radiative lifetime of state |2�, and the initial momentum of 
the atoms p0 is much smaller than the recoil momentum, an 
intuitive pulse sequence also transfers completely the popu-
lation of the initial state |1� to the state |3�. Hence, an atomic 
beam deflection can be implemented by spatially shifted 
laser beams with large pulse areas.

The mechanism of the population transfer for the nega-
tive delays (intuitive sequence of pulses) can be understood 
qualitatively as follows: If an intuitive pulse sequence is 
applied, the system starts its evolution from the bright 
state |B�, see Eq. (14). Due to the large recoil energy 
(�k >> p cos 2θ), which plays the role of a detuning, the 
bright state undergoes an adiabatic return process under the 
condition

Because of the chosen intuitive pulse order, the bright state 
transforms to the bare atomic state |3�. This mechanism is 
similar to the so-called b-STIRAP process [6, 27, 28]. The 
condition (20), however, might be questionable for atomic 
beams, because of the constraint on the radiative lifetime. 
Indeed, it is important to recall that the duration of the 
interaction of atoms with lasers should be shorter than the 
upper state lifetime. Therefore, the condition Erτsp >> � 

(20)ErT >> �.

Fig. 2   Population of the state 3 as a function of the time delay 
between pulses. The pulses are as in Eq. (19) with equal pulse dura-
tions ErTP = ErTS = 10� (time is measured in units of the inverse 
recoil frequency), and equal areas �Ω0 = 5Er. Positive values of the 
delay correspond to STIRAP. The initial state of the atom is |1� and 
p0 = 0.1�k

Fig. 3   Maximum population of state |2� during the evolution as a 
function of the time delay between the pulses. Other parameters and 
units are the same as in Fig. 2



Robust population transfer in atomic beams induced by Doppler shifts

1 3

Page 5 of 7   264 

should be satisfied, where τsp is the lifetime of state |2�. In 
fact, the opposite situation occurs in many experiments, 
e.g., with noble atoms [32].

3.2 � Fast atomic beams

Consider now the case where the initial momentum of the 
atom is larger than the photon momentum. Figure 4 shows 
the results of numerical simulation for the final populations 
of states |2� and |3� for fast atoms (p0 = 4�k) depending on 
the time delay of pulses. For positive large delays, the system 
ends its evolution in state |3�, i.e., the process is STIRAP-like. 
The atom thus receives a momentum kick of 2ℏk. On the 
other hand, for negative delays (around −0.8T) the popula-
tion transfer from |1� to |2� occurs and, therefore, the momen-
tum of the atom in the direction of laser beams changes by 
ℏk. The transfer probability from |1� to |2� is robust for a wide 
range negative delays. Figure 5 shows the dependence of the 
final population in state |2� for τ = −0.75T and τ = −0.5T  
as a function of the pulse area Ω0T. We thus see that the adi-
abatic transfer to state |2� is more efficient for the case of 
largely delayed pulses. Figure  5 also shows that there is a 
pronounced threshold area starting at Ω0T � 30 for an effi-
cient population transfer into state |2�. These observations are 
in full agreement with condition (17).

In the following, we examine the dynamics of atomic 
populations in the case of substantially delayed laser pulses 
corresponding to small values of sin 2θ. In this case, con-
dition (17) is easy to satisfy for small Rabi frequencies. 
Hence, the coupling between the dark and bright compo-
nents is negligible.

For a counterintuitive pulse sequence, the system is 
initially in a dark state and the dynamics of the system is 
STIRAP-like. We, therefore, discuss only the case when 
the Stokes and pump pulses are ordered intuitively, i.e., the 
system starts its evolution from the bright state (14). By 
neglecting the term (11) in Hamiltonian (9), we arrive at 
the finite Landau–Zener Hamiltonian [24–26]

Here �(θ) = Er − �kp
M

cos 2θ is the effective detuning 
between |B� and |2� states, whose asymptotics is given by 
Er + �kp

M
 early times and by Er − �kp

M
 at late times. Depend-

ing on the ratio Er/
�kp
M

 level crossings (resonance) between 
the bright and atomic states may or may not occur. It is easy 
to verify that the condition p > �k

2
 is essential for the occur-

rence of a Landau–Zener-like transition at the crossing point 
cos 2θ(t0) = �k

2p
. For Gaussian pulses shapes (19), the slope of 

the effective detuning d�(θ)

dt
 at the crossing point is given by

(21)H = �(θ)|B��B| +
�Ωeff

2
(|B��2| + |2��B|).

(22)
β =

d�(θ)

dt

∣

∣

∣

∣

t=t0

= 4Er
p

�k

(

1−
�k

2p

)

τ

T2
.

The condition p > �k
2

 with the adiabatic condition 
Ωeff.T >> 1 guarantee a robust population transfer from 
the bright to the atomic state. In this scheme, the atoms 
receive a momentum kick only from the pump photons. 
The role of the Stokes laser is to assist the Landau–Zener 
transition between the bright |B� and |2� states.

It is of interest to estimate a scaling relationship for the 
sensitivity of the Landau–Zener transition to the Doppler 
shift. For an atom initially in the bright state, the model 
(21) suggests the following expression [24–26]

for the population of the middle state. Here β is the slope 
of the effective detuning Eq. (22). It is easily seen from this 
expression that the condition,

(23)P2 = 1− exp

(

−
πΩ2

eff.

2β

)

Fig. 4   Final populations of states |2� (red) and |3� (blue) as a function 
of the time delay between pulses. The initial momentum of atoms is 
p0 = 4�k. Other parameters are ErT = �, �Ω0 = 50Er

Fig. 5   Final population of state |2� under conditions of Fig.  4 as a 
function of Ω0T , for different delay times of pulses
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is required in order to achieve transfer efficiency above 
the level P0. Analogously, expressions for the efficiency 
of STIRAP and b-STIRAP processes with the two-photon 
detuning have been derived in previous studies [29, 30] 
(see also references in the review preprint [23]).

Hence, as Eq. (24) shows in order to have a higher trans-
fer efficiency to the middle state the speed of atoms must 
be within certain interval. In real atomic beam experiments, 
the atomic beam is never perfectly monoenergetic nor do all 
the atoms move with the same speed. The spread in speed 
results in different Doppler shifts. Hence, for some fraction 
of slow atoms the condition (24) can be violated and some 
population will go to the state 3. Therefore, one has to per-
form an averaging over the velocity distribution of the tran-
sition probability. We expect that the transfer efficiency to 
the middle state would be high even for atom beams with 
a poor quality as long as the spread of velocities distribu-
tion is much smaller than �k. Indeed, the simulation results 
(see Fig. 6) confirm this prediction. Figure 6 shows how the 
transfer efficiency eventually decreases as the width �p of 

the Maxwell distribution 1√
2π�p

exp
(

− (p−p)2

2�p2

)

 increases. 

The transfer efficiency is seen to be essentially independent 
of �p if �p < �k. However, the beam parameters �p > 2�k 
can have an appreciable effect on the transfer efficiency.

Before concluding this subsection, we briefly discuss 
V and cascade atomic schemes. We note that, in limiting 
cases (slow atoms and absence of the spontaneous decay) 
the distinction between lambda, V and ladder linkage pat-
terns is not essential. For an atomic ensemble and a ladder 
linkage, the two-photon resonance condition is independ-
ent of velocity. Therefore, regardless of the ratio p/�k and 
order of switching of laser fields, the ladder-atoms will end 

(24)ℏk � |p| �
π

8
ℏk

(Ωeff.T)
2

Erτ
�

ln 1
1−P0 up in the same target state due to STIRAP or b-STIRAP 

processes. In the absence of decoherence, all possible adi-
abatic processes for � and V schemes are the same.

3.3 � Decoherence processes

In an atomic beam experiment, collisions have no influence, 
but the possibility of spontaneous emission is always pre-
sent. Only this mechanism can produce changes not predicted 
within the coherent dynamics of the Schrödinger equation. 
As described here, the successful population transfer to the 
atomic state 2 takes place by means of adiabatic time evolu-
tion. We expect that when pulses are shorter than the spon-
taneous emission lifetime, meaning γT << 1, then descrip-
tion of the dynamics can be provided by the time-dependent 
Schrödinger equation. But as the pulses become longer, a 
situation requires treatment using a density matrix. To verify 
the validity of our approximation, we have carried out sim-
ulations using more elaborate density matrix equations of 
motion. We took these to be of Lindblad form [31]

where L1 = σ12 and L2 = σ32 are the Lindblad operators 
modeling the longitudinal relaxation of the upper state to 
lower states 1 and 3, with equal rates γ. We have neglected 
here the irreversible decay of the upper state 2. It can be 
satisfactorily treated by simply including a loss (imaginary 
energy) from the upper state. Figure 7 shows the transfer pro-
cess to the state 2 versus the time delay for different values of 
the pulse duration relative to the lifetime of the middle state. 
As can be seen, considerable population is lost from the state 
2 when one has pulses as long as γT > 0.25. From the results 

(25)
dρ

dt
=

1

i�
[H, ρ]+

γ

2

2
∑

n=1

([

Lnρ, L
†
n

]

+
[

Ln, ρL
†
n

])

,

Fig. 6   Average final population of state |2� over the momentum under 
conditions of Fig. 4 as a function of average momentum p, for differ-
ent values of �p

Fig. 7   Final population of the state |2� versus the time delay for dif-
ferent values (γT = 0, 0.1 and 0.25) of the pulse duration relative to 
the lifetime of the middle state. Other parameters and units are the 
same as in Fig. 4
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shown in Fig. 7, it is clear that the results predicted here by 
the Schrödinger equation are generally valid for γT < 0.1.

4 �  Conclusion and discussion

It is shown that the Doppler shift can play an important 
role in the population transfer in three-level atoms driven 
by two counterpropagating spatially shifted laser fields. In 
particular, when the atoms interact with intuitively ordered 
laser pulses, depending on the ratio of the initial atomic 
and photonic momenta, the final atomic states are different. 
Namely, for p0 << �k and large recoil energies ErT >> 1 
the atoms occupy state |3� and receive 2�k momentum 
regardless of the order of switching the laser fields, while 
for the case of fast atoms and an intuitive sequence of 
pulses, the target state is the intermediate state |2� and the 
corresponding momentum kick is �k. We showed that in the 
case of slow atoms and intuitive sequence of laser pulses, 
the bright state, which is a linear combination of the ini-
tial |1� and target |3� states, undergoes an adiabatic return 
process (due to the large recoil energy). In the bare atomic 
basis, this process corresponds to the |1� → |3� transition, 
whereas in the second case (fast atoms), the Landau–Zener 
transition occurs between the bright and atomic state |2� and 
the system transforms from the initial state |1� into state |2�.

For an experimental observation of these effects, the 
interaction time between atoms and laser fields should be 
short enough T << τsp.. To fulfill this condition, a fast atom 
beam is required. For implementing such a situation, a met-
astable cold helium beam with 3S1 and 3P1 transitions could 
be a possible candidate. Simple calculations show that to 
avoid the spontaneous emission from the excited state 
3P1 , the helium atoms must enter the interaction region 
with velocity in the range of 10–100 m s−1. This is achiev-
able for metastable cold helium beams as was reported by 
Oberst et al. [33]. Another possible system which would be 
immune to the effects of the spontaneous decay can be an 
ensemble of atoms with two lower stable levels both cou-
pled to a Rydberg state by laser fields [34]. Atoms in highly 
excited Rydberg states are remarkably stable against spon-
taneous emission. The interaction between Rydberg atoms, 
however, could play an important role in the evolution of 
atomic populations [35]. An interesting extension of this 
work will be to study the influence of atom–atom interac-
tions on the effects considered above.
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stimulating discussions.

Acknowledgments  I am grateful to M. Fleischhauer, K. Bergmann, 
B.W Shore, N.V. Vitanov and D. Petrosyan for many fruitful and 
stimulating discussions.

References

	 1.	 P.R. Berman (ed.), Atom Interferometry (Academic Press, San 
Diego, CA, 1997)

	 2.	 S. Glasgow, P. Meystre, M. Wilkens, E.M. Wright, Phys. Rev. A 
43, 2455 (1991)

	 3.	 T. Pfau, C. Kurtsiefer, C.S. Adams, M. Sigel, J. Mlynek, Phys. 
Rev. Lett. 71, 3427 (1993)

	 4.	 M. Kasevich, D.S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu, 
E.M. Wright, Phys. Rev. Lett. 66, 2297 (1991)

	 5.	 P. Marte, P. Zoller, J.L. Hall, Phys. Rev. A 44, R4118 (1991)
	 6.	 U. Gaubatz, P. Rudecki, S. Schiemann, K. Bergmann, J. Chem. 

Phys. 92, 5363 (1990)
	 7.	 J. Lawall, M. Prentiss, Phys. Rev. Lett. 72, 953 (1994)
	 8.	 L. Goldner, C. Gerz, R.J.C. Spreeuw, S.L. Rolston, C.I. West-

brook, W.D. Phillips, P. Marte, P. Zoller, Phys. Rev. Lett. 72, 997 
(1994)

	 9.	 H. Theuer, R.G. Unanyan, C. Habscheid, K. Klein, K. Berg-
mann, Opt. Express 4, 77 (1999)

	10.	 R.G. Unanyan, M. Fleischhauer, B.W. Shore, K. Bergmann, Opt. 
Commun. 155, 144 (1998)

	11.	 R.G. Unanyan, B.W. Shore, K. Bergmann, Phys. Rev. A 59, 2910 
(1999)

	12.	 R.G. Unanyan, M.E. Pietrzyk, B.W. Shore, K. Bergmann, Phys. 
Rev. A 70, 053404 (2004)

	13.	 K. Bergmann, H. Theuer, B. Shore, Rev. Mod. Phys. 70, 1003 
(1998)

	14.	 N.V. Vitanov, B.W.S.T. Halfmann, K. Bergmann, Annu. Rev. 
Phys. Chem. 52, 763 (2001)

	15.	 N.V. Vitanov, M. Fleischhauer, B.W. Shore, K. Bergmann, Adv. 
At. Mol. Opt. Phys. 46, 55 (2001)

	16.	 B.W. Shore, Acta Phys. Slovaca 63, 361 (2013)
	17.	 K. Bergmann, N.V. Vitanov, B.W. Shore, J. Chem. Phys. 142, 

170901 (2015)
	18.	 E. Arimondo, Prog. Opt. 35, 259 (1996)
	19.	 B.W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 

New York, 1990)
	20.	 A.F. Bernhardt, B.W. Shore, Phys. Rev. A 23, 1290 (1981)
	21.	 C.S. Adams, M. Sigel, J. Mlynek, Phys. Rep. 240, 143 (1994)
	22.	 A.Zh. Muradyan, H.L. Haroutyunyan, Phys. Rev. A 62, 013401 

(2000)
	23.	 N. V. Vitanov, A. A. Rangelov, B. W. Shore, K. Bergmann, 

Stimulated Raman adiabatic passage in physics, chemistry and 
beyond, preprint arXiv:1605.00224

	24.	 L.D. Landau, Phys. Z. Sowjetunion 2, 46 (1932)
	25.	 C. Zener, Proc. R. Soc. Lond. A 137, 696 (1932)
	26.	 N.V. Vitanov, B.M. Garraway, Phys. Rev. A 53, 4288 (1996)
	27.	 N.V. Vitanov, S. Stenholm, Phys. Rev. A 55, 648 (1997)
	28.	 J. Klein, F. Beil, T. Halfmann, Phys. Rev. A 78, 033416 (2008)
	29.	 M.V. Danileiko, V.I. Romanenko, L.P. Yatsenko, Opt. Comm. 

109, 462 (1994)
	30.	 I.I. Boradjiev, N.V. Vitanov, Phys. Rev. A 81, 053415 (2010)
	31.	 M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 

77, 633 (2005)
	32.	 W. Vassen, C. Cohen-Tannoudji, M. Leduc, A. Truscott, K. Bald-

win, G. Birkl, P. Cancio, M. Trippenbach, Rev. Mod. Phys. 84, 
175 (2012)

	33.	 H. Oberst, D. Kouznetsov, K. Shimizu, J. Fujita, F. Shimizu, 
Phys. Rev. Lett. 94, 013203 (2005)

	34.	 T.M. Weber, M. Hoening, T. Niederpruem, T. Manthey, O. 
Thomas, V. Guarrera, M. Fleischhauer, G. Barontini, H. Ott, Nat. 
Phys. 11, 157 (2015)

	35.	 M. Saffman, T.G. Walker, K. Mølmer, Rev. Mod. Phys. 82, 2313 
(2010)

http://arxiv.org/abs/1605.00224

	Robust population transfer in atomic beams induced by Doppler shifts 
	Abstract 
	1 Introduction
	2 Model
	2.1 Adiabatic evolution

	3 Population dynamics
	3.1 Slow atomic beams
	3.2 Fast atomic beams
	3.3 Decoherence processes

	4  Conclusion and discussion
	Acknowledgments 
	References




