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Abstract

Large language models (LLMs) have recently gained pop-
ularity. However, the impact of their general availability
through ChatGPT on sensitive areas of everyday life, such
as education, remains unclear. Nevertheless, the societal im-
pact on established educational methods is already being ex-
perienced by both students and educators. Our work focuses
on higher physics education and examines problem solving
strategies. In a study, students with a background in physics
were assigned to solve physics exercises, with one group hav-
ing access to an internet search engine (N=12) and the other
group being allowed to use ChatGPT (N=27). We evaluated
their performance, strategies, and interaction with the pro-
vided tools. Our results showed that nearly half of the solu-
tions provided with the support of ChatGPT were mistakenly
assumed to be correct by the students, indicating that they
overly trusted ChatGPT even in their field of expertise. Like-
wise, in 42% of cases, students used copy & paste to query
ChatGPT — an approach only used in 4% of search engine
queries — highlighting the stark differences in interaction be-
havior between the groups and indicating limited reflection
when using ChatGPT. In our work, we demonstrated a need
to (1) guide students on how to interact with LLMs and (2)
create awareness of potential shortcomings for users.

1 Introduction
LLMs have been omnipresent in media and the public
eye since November 2022 when ChatGPT was first pre-
sented (OpenAI 2022a). With one of the fastest growing user
bases ever measured for any application (Reuters 2023a,b),
it is difficult to estimate its future impact on every aspect of
our daily lives.

Especially in sensitive areas, such as education, easily ac-
cessible information — true or false — poses challenges
for educators and students alike. Recent discussions around
ChatGPT often involve its use in assignments, for home-
work and in the classroom. At present, it is unclear how
LLMs, such as ChatGPT, can meaningfully support students
in educational contexts. Designing methods that allow for
informed usage of these systems remains a challenge. Our
work investigates how students interact with ChatGPT when
given unrestricted access and highlights the need for moder-
ated access.

LLMs are predictive models that predict the most proba-
ble next token based on a series of previously seen tokens

they have already seen. As a result, they excel at tasks such
as writing (Yuan et al. 2022), translation (Wang et al. 2023),
and even programming (Kashefi and Mukerji 2023). Con-
trarily, disciplines that rely heavily on calculations and rea-
soning may prove more challenging for LLMs. This could
lead to unforeseen or even negative consequences for stu-
dents, like incorrect homework or learning an incorrect ex-
planation of a concept.

In our work, we examined the field of physics, specifically
how students with a strong background in physics interact
with ChatGPT to assist them in solving physics questions.
We conducted a study with a total of 39 participants with
backgrounds in science, technology, engineering and math
(STEM) fields from multiple universities. One group (N=27)
had unrestricted access to ChatGPT, while the other group
(N=12) had access to a search engine.

Our findings indicate that participants with the CHATGPT
condition overly trusted answers generated by ChatGPT. In
particular, students often failed to recognize wrong answers
given by ChatGPT and largely relied on a copy & paste strat-
egy to solve the posed physics questions. In contrast, par-
ticipants in the SEARCH ENGINE condition showed higher
rates of reflection, as indicated by their sparse use of copy &
paste, favoring more thought-through solving strategies.

Our work shows that even students with advanced domain
knowledge often struggled to differentiate between correct
and incorrect answers given by LLMs and could not use the
system effectively. There is a need for further research to
design LLM-based support tools in a way that (1) creates
awareness of their inherent uncertainty and (2) allows mod-
erated use that encourages critical thinking.

2 Related Work

The field of language models (LM) offers a variety of pos-
sible applications in education. For example, they have been
used for multiple-choice question generation (Raina and
Gales 2022) or answering (Zhang et al. 2022). However,
since we have to expect students to use LMs like ChatGPT
at home, there is a need to figure out how they utilize these
powerful new tools unaided. In this section, we briefly intro-
duce the current state of LMs, and chat-bots, how this relates
to education, and specifically physics education.
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2.1 Language Models
Recent advances in natural language processing, initiated
by the introduction of the transformer architecture (Vaswani
et al. 2017), have led to significant progress in the field
of language models. The different approaches taken by
GPT (Radford et al. 2018) and BERT (Devlin et al. 2018)
models proved to be exceptionally successful. Progress has
been steady, with a trend towards increasingly larger mod-
els, supported by their scaling laws (Kaplan et al. 2020),
which suggest that larger size generally leads to a better
model. ChatGPT (OpenAI 2022a) brought the technology
into the public eye, further accelerating the pace of publi-
cations and leading to the development of models such as
LLaMA (Touvron et al. 2023), GPT-4 (OpenAI 2023), and
PaLM-E (Driess et al. 2023). Some of which even support
multi-modal inputs (Driess et al. 2023). Language models
have shown their potential in many different areas (Yuan
et al. 2022; Wang et al. 2023; Kashefi and Mukerji 2023)
and are a topic that also influences education (Kasneci et al.
2023).

2.2 Education
LLMs offer great potential for advancing standard practices
and research in education (Kasneci et al. 2023). Several pos-
sible applications have been previously suggested, such as
personalized learning, lesson planning, assessment and eval-
uation, to familiarize students with challenges and opportu-
nities of LLMs (Kasneci et al. 2023). Furthermore, a number
of studies exist that investigate the use of chatbots based on
different technologies in education (Kuhail et al. 2023). The
use of chatbots in education offers several advantages, such
as serving as a pedagogical tool to help students with disabil-
ities and to help different social groups to close the educa-
tional gap that may exist between them (Pérez, Daradoumis,
and Puig 2020). However, none of the systems examined
in these works are based on a LLM despite several authors
seeing great potential for LLM-based chatbots in the educa-
tional domain (Rudolph, Tan, and Tan 2023). It should be
noted that LLMs show some weaknesses. Until now, they
lack higher-order thinking skills, and their outputs strongly
depend on the data they have been trained on, sometimes
leading to unreliable outputs (Bitzenbauer 2023).

2.3 Physics Education
In physics education, there are conflicting reports on the
ability of LLMs to solve physics tasks. On the one hand,
a few studies have observed inconsistent behavior in Chat-
GPT’s answers to physics questions (Gregorcic and Pen-
drill 2023; Santos 2023). These studies showed that Chat-
GPT often provides incorrect answers to physics questions
and concluded that it is unsuitable as a physics tutor or for
cheating on homework. This apparent weakness of Chat-
GPT in answering physics questions studies can be used
as a learning experience to foster critical thinking skills
of students. Bitzenbauer intended to foster critical thinking
skills using these weaknesses by asking students to gen-
erate ChatGPT answers to a question and to discuss them
critically, which led to an improved perceived usefulness

of ChatGPT (Bitzenbauer 2023). On the other hand, other
studies demonstrate the strength of ChatGPT 3.5 and 4.0 to
solve conceptual multiple-choice questions in physics (West
2023b,a). ChatGPT was able to solve 28 out of 30 items of
the force concept inventory correctly (West 2023a). Kieser
and colleagues even found that ChatGPT 4.0 is able to
mimic different students’ difficulties when answering con-
ceptual questions, which opens the opportunity for data aug-
mentation, personalized support for students that is sensi-
tive to different difficulties, and support for teachers during
task creation (Kieser et al. 2023). The latter opportunity was
studied by Küchemann and colleagues in a randomized con-
trolled trial who compared the characteristics and quality of
created physics tasks by prospective physics teachers either
using ChatGPT or a textbook. The authors found that stu-
dents in both groups had difficulties with the specificity of
tasks, i.e., all relevant information to solve the tasks are pro-
vided, and the students who used ChatGPT embedded the
tasks less frequently in a real-world context (Küchemann
et al. 2023). Moreover, the authors found that prospective
physics teachers used the tasks in 76% of the cases as pro-
vided by ChatGPT without modifying them (Küchemann
et al. 2023). These findings point towards the affordances of
using ChatGPT in education and the overreliance of students
when using it. While these articles provide interesting find-
ings and show that using ChatGPT for answering questions
present great demands on students, the results were either
not verified with real students (Santos 2023; Gregorcic and
Pendrill 2023) or the problem solving strategies when using
ChatGPT were not studied (Bitzenbauer 2023; Küchemann
et al. 2023). To the best of our knowledge, it has not yet been
investigated how students, depending on their prior knowl-
edge, solve physics problems using ChatGPT when they
have not received specific instructions or have been made
aware of its limitations. This is the focus of this work.

3 Methodology
The related work highlights the existing uncertainties re-
garding the use of LLMs in general and specifically in the
context of physics education. However, to date, little work
has been conducted that allows for moderated and informed
usage of such models. We argue that informed usage of gen-
erative models is of utmost importance, particularly in edu-
cational areas.

Our work contributes a first investigation into how stu-
dents interact with LLMs and whether they are aware of their
shortcomings. In a mixed-method evaluation conducted on-
line and at two universities (RPTU Kaiserslautern-Landau
and LMU Munich), we tasked students with solving given
physics problems. Using a between-subject study design,
we assessed students’ performance and interaction strategies
when having access to different support tools.

In a baseline condition, students had access to an internet
search engine (SEARCH ENGINE). In the CHATGPT condi-
tion, students were able to freely use ChatGPT. We recorded
the students’ physics knowledge with a pretest (no support
tools allowed) and their performance in the main test, as
well as inquired about their impressions when interacting
with ChatGPT through questionnaires and an exit interview



(see Figure 1). Our research was guided by two main re-
search questions:

RQ1: What is the performance of students when being
allowed to use ChatGPT in comparison to the students
who used a search engine? One main inquiry of our work
focused on whether ChatGPT allowed students to perform
better when solving the physics questions. We further an-
alyzed the students’ interaction protocols with both tools
(search engine, ChatGPT) to investigate how effectively they
used the tool.

RQ2: What are predominant strategies when interact-
ing with ChatGPT compared to search engines? On a
meta-level, we were interested in what solving strategies stu-
dents employed when using ChatGPT and how they differed
from the ones used with search engines. From the conducted
exit interviews, in combination with the students’ interaction
protocols, we distilled predominant strategies when interact-
ing with either tool.

3.1 Physics Question Acquisition
For our main test, we selected four physics questions. Since
all questions should be solvable with school knowledge, we
have chosen questions that require knowledge of kinematics,
friction, rotational movements, inelastic collisions, conser-
vation of energy and mathematical conversions. The tasks
should be too complex for the tool in each group to an-
swer them correctly directly or for the students to be able to
solve them immediately on their own (using the tool is nec-
essary). However, the solution should still be obtainable ei-
ther by asking ChatGPT clever questions or composing good
queries using the search engine and solving the problem step
by step. Therefore, we looked at tasks given in the Interna-
tional Physics Olympiad (Leibniz-Institut für die Pädagogik
der Naturwissenschaften und Mathematik 2023), an annual
physics competition for high school students. This guaran-
teed that the tasks were suitable, yet challenging, for uni-
versity students. Of these tasks, we selected four. The task
texts were adapted in such a way that no picture is neces-
sary for the solution and it was verified that ChatGPT cannot
solve the tasks directly and the search engine does not show
a page containing the solutions, but both can give hints for
obtaining the solution. We then designed a pretest containing
the selected topics. For this, we created our own questions
and took some items from the Energy and Momentum Con-
ceptual Survey (EMCS) v1 (Afif, Nugraha, and Samsudin
2017), one item from the appendix of a paper about concepts
of force and frictional force (Sharma and Sharma 2007), and
two items from the Rotational Kinematics Concept Inven-
tory (Mashood and Singh 2012). Additionally, we created a
question inspired by the sample question on the trade-off be-
tween equilibrium and the upper limit on the friction force
of the statics concept inventory paper (Steif and Dantzler
2005). All pretest questions can be found in the supplemen-
tary material.

3.2 Procedure
The study itself consisted of a survey split into multiple
parts, as shown in Figure 1. After providing informed con-

sent and an in-depth explanation of the study procedure, the
study started with a self-assessment where participants could
rate their physics and ChatGPT knowledge and how often
they use ChatGPT. Following that, participants had 15 min-
utes to solve the 17 multiple-choice pretest questions worth
1 point each (max points = 17). It covered the six physics
categories relevant to the main test (see Section 3.1). After
completing the pretest, participants were allowed to use a
modified user interface of ChatGPT or a search engine to
help them solve the four physics questions (max points =
12) given a time frame of 30 minutes. The written part of the
survey ended with a short questionnaire, including the affin-
ity for technology interaction scale (Lezhnina and Kismihók
2020), the UMUX-Lite (Lewis, Utesch, and Maher 2013)
scale to assess usability, custom questions on perceived ac-
curacy and quality of the tools’ answers as well as demo-
graphics. Throughout the course of the survey, the order of
all questions remained unchanged, ensuring the same expe-
rience for all participants. For participants attending in per-
son at the university of Kaiserslautern-Landau (N=20), we
additionally recorded a short (2-5min) exit interview. Af-
ter the study, participants were reimbursed with the equiv-
alent of $11 or course credit for a voluntary seminar (N=7).
Ethical approval for this study was obtained from the Ethics
Committee at the German Research Center for Artificial In-
telligence (DFKI).

3.3 Participants
For our baseline condition (SEARCH ENGINE), we acquired
13 participants with physics backgrounds from multiple uni-
versities, mostly by providing them the option to do the sur-
vey online. We further excluded participants who did not
fully follow our study instructions, leaving a final number
of 12 participants (Age x̄=23.6 y, s=2.6 y, 10m, 2n/a, 3 in
person, 9 online). Five studied physics, three electrical en-
gineering, two computer science, one mechanical engineer-
ing and one gave no answer. The students were on aver-
age in their eighth semester (x̄=7.4, s=4.3), scored eight
points in the pretest (x̄=8.2, s=3.9, max=12), had an above-
average self-assessed physics knowledge (x̄=62.8, s=25.1)
coupled with below average experience when using Chat-
GPT (x̄=40.5, s=33.4)1.

For the second condition of our study (CHATGPT), we
initially recruited 30 participants from two different univer-
sities (RPTU Kaiserslautern-Landau, LMU Munich) with
a background in physics. They were recruited using mail-
ing lists, posters, and by advertising the study in lectures.
However, we had to exclude three students as they did not
complete the study, leaving us with 27 participants (Age
x̄=22.6 y, s=4.0 y, 25m, 2f, 27 in person, 0 online). Par-
ticipants were, on average, in their sixth semester (x̄= 5.3,
s=3.3). Twelve of them were physics students, three physics
and mathematics education students, two techno-physicists,
two mathematics students, two electrical engineering stu-
dents, two electrical engineering and information science
students, and one student each from bio- and chemical engi-

1Self-assessed physics knowledge and experience using Chat-
GPT were input on a visual analog scale between 0 and 100.
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Figure 1: The study procedure timeline in detail. First a self-
assessment was conducted, followed by a short pretest and
finally the main test, where use of the support tool was al-
lowed. Afterwards followed a questionnaire and depending
on the condition an exit interview.

neering, computer science, environmental science, and in-
dustrial engineering. Participants scored on average nine
points in the pretest (x̄=9.2, s=3.2, max=15). We found
no significant difference for the pretest score between the
CHATGPT and SEARCH ENGINE conditions. Further, stu-
dents reported an above-average perceived physics knowl-
edge (x̄=58.7, s=18.6) and below average experience with
ChatGPT (x̄=42.2, s=24.5).

3.4 Apparatus
For the CHATGPT condition, we used ChatGPT 3.5 turbo
with some minor changes on the client side. To allow par-
ticipants to directly voice their opinions, we implemented
a rating scale (good, neutral, bad) to appear with each an-
swer provided by ChatGPT. Furthermore, we implemented
a download button to be able to save the conversation2. For
the SEARCH ENGINE condition, we set up a website through
which participants could use Google while we were able to
collect their search queries.

When students participated in person, we further recorded
the screen, keystrokes, and mouse movements during the
study duration, completing the aforementioned ChatGPT
conversation log and the participants’ ratings to form a com-
plete interaction protocol and conducted an exit interview.
Additionally, all participants were allowed to use a non-
programmable calculator, pen, and paper throughout the
study.

3.5 Measures
To allow for a holistic picture of how students interact with
CHATGPT, we measured student performance through dif-
ferent factors, conducted exit interviews, and analyzed the
full student interaction protocols as described in the follow-
ing section.

Student Performance To evaluate participant perfor-
mance, first, a grading schema was created by two physics
university educators. Using this schema, two other physi-
cists scored the given answers for the four main questions,
independently from each other, awarding between zero and
three points per question and participant. We evaluated the
inter-rater reliability by calculating the average Cohen’s

2At the time of the study, this feature was not yet available.

Kappa (κ=0.72) over all main questions, which indicates a
substantial reliability (Landis and Koch 1977). Zero points
represented a completely wrong answer with no correct
parts, while three points equated to a completely correct an-
swer. Ultimately, both raters reached an agreement in cases
where their initial rating differed through discussion. The re-
sulting final scores show student performance in answering
the main questions. Further, we determined how participants
reached their final answers, indicating their problem solving
strategy. If the final result of a question was present in the
interaction protocol with ChatGPT related to that question,
we assigned “extracted from ChatGPT” as strategy. Other-
wise, it was counted as “own answer”. Questions that were
not answered were counted as “none”. When it was not ev-
ident how the answer was obtained, we assigned “random
guess” as strategy.

Interaction with the support tools We analyzed the in-
teraction of the participants with their respective tool (Chat-
GPT or search engine). For the CHATGPT condition, this
includes all prompts from participants, respective answers
from ChatGPT and associated ratings from participants. Fur-
thermore, for the SEARCH ENGINE search queries were an-
alyzed.

Perceived Correctness of ChatGPT Answers Having
two physicists additionally rate all answers given by Chat-
GPT for correctness enabled us to compare how students
rate answers and their actual correctness. With this infor-
mation, we were able to estimate two important metrics
that demonstrate the students’ perception of ChatGPT an-
swers given their actual correctness. A false positive rate
(FPR), i.e., ChatGPT answers that students erroneously as-
sumed to be correct (voted positive), and a true positive rate
(TPR), i.e., ChatGPT answers that students correctly iden-
tified as correct. In our analysis, we focus on these metrics
as they highlight how often information from ChatGPT was
assumed to be correct. More metrics can be found in the sup-
plementary material.

Interaction Types Additionally, we created codes to rep-
resent the strategies with which participants created their
prompts by categorizing each individual prompt into a cod-
ing, comparing and merging them as needed until a consis-
tent representation emerged.

Custom questions As mentioned in Section 3.2, we ad-
ministered the ATI (Lezhnina and Kismihók 2020) and
UMUX-Lite (Lewis, Utesch, and Maher 2013) as well as
two custom questions to inquire about the participants’ im-
pression on ChatGPT correctness accuracy and quality.

Exit Interviews The exit interviews were conducted with
20 participants that used CHATGPT. In it, we asked the par-
ticipants five questions with regards to the study. The ques-
tions included but were not limited to asking what strategies
were used, how the tool was used and how confident partic-
ipants were in the correctness of their results.



4 Results
After explaining how we calculated our measures, we report
our results in this section.

4.1 Student Performance
On average, participants scored x̄=1.04 points (s=1.43) out
of the maximum achievable 12 points in the CHATGPT con-
dition. The highest score achieved by a single student was
six points. Three students got more than two points, while
twelve students did not score any points at all. Most points
(nearly 90%) were achieved in questions Q1 and Q3. We
found a large positive correlation between the final score and
the pretest score, using Kendall’s rank correlation (τ=.37,
p=.02). No further correlations with respect to the final
score were found, in particular for the self-assessed physics
knowledge, and study program related demographics.

Analyzing how final answers were obtained, we observed
that the most prominent strategy was “extracted from Chat-
GPT” being used in 62% of all cases. Following this, 28%
of participants arrived at their “own answer”, 9% of ques-
tions were not answered (“none”) and 1% made a “random
guess”.

For the SEARCH ENGINE, participants scored x̄=1.83
points (s=1.27) on average. Four points was the highest
amount achieved by two students. Three students achieved
more than two points, while one student did not score a sin-
gle point. Here too, most points (around 95%) were achieved
in questions Q1 and Q3. Using Kendall’s rank correlation,
we found a statistically significant medium positive corre-
lation (τ=.27, p=.03) between the main test score and self-
assessed physics knowledge, but none for the pretest score.

Further, we conducted a one-way ANOVA after rank-
aligning the data (Wobbrock et al. 2011) to investigate
whether there are significant differences between our two
conditions (SEARCH ENGINE, CHATGPT) with regard to
the students’ performances in the main test. We found that
students in the SEARCH ENGINE condition performed sig-
nificantly better (F (1, 37)=5.5, p=.02, η2=.13)3.

4.2 Interactions with ChatGPT
In total, participants working with ChatGPT created 272
prompts, 165 of which were rated (see Section 3.4). Overall,
participants rated 47% of ChatGPT answers to their prompts
as positive, indicating that they deemed them to be correct.
29% were rated neutral, and 24% negative, indicating that
participants were unsatisfied with them.

Contrarily, our expert physicists only rated approximately
22% as correct, highlighting a mismatch in expectations.
This effect is visible throughout all main questions, as de-
picted in Figure 2. To further analyze intersections in be-
lieves of students and experts, we looked at perceived cor-
rectness (see Section 3.5). We obtained a high false-positive
rate of 57%, i.e., over half of all the answers provided by
ChatGPT were believed to be correct by participants but
rated incorrect by experts. The true-positive rate of 91%,

3Effect sizes are given using η2 (Partial Eta Squared): small
(> .01), medium (> .06), large (> .14).

however, indicates that participants rated most correct an-
swers positive. A complete overview of all metrics can be
found in the supplementary material.
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Figure 2: The proportion of positively rated ChatGPT an-
swers to students’ prompts visualized for each of the main
questions and broken down for students and experts.

Interaction Types We identified four main interaction
types based on the reviewed ChatGPT interaction logs from
all participants: copy & paste, preprocessing, postprocess-
ing, and transformation. The individual interactions are de-
scribed in more detail below.

Copy & Paste is the most prominent interaction type,
where participants transferred the physics question directly
to ChatGPT without any changes.

Preprocessing is characterized by students trying to re-
duce the question complexity and using simple priming
strategies. They divide a question into multiple parts (P10),
ask for formulas (P4), or try to prime the model to improve
their results when asking physics questions (P14).

Postprocessing builds on already existing answers given
by ChatGPT. The participants try to obtain explanations for
parts of a question (P1) or correct mistakes they found in the
given answer (P12).

How do you get the mass of the car and the power of the
engine from the question? (P1)

Transformation is an interaction type where students
used ChatGPT to apply some kind of transformation on the
data, including translation into another language (P6) and
summarizing results (P3).

Interaction Strategies During the study, we noticed that
students built their individual strategies to solve the given
physics questions based on these interaction types. For ex-
ample, a participant might start with priming ChatGPT (pre-
processing), followed by copy & pasting the question and,
ultimately, asking for an explanation of some part of the an-
swer (post-processing).

Overall, copy & paste was the most used interaction strat-
egy, being used 84 times. Preprocessing, the next most
common strategy, was used 37 times, followed by post-
processing (36) and transformation (16). In Figure 3, the
distribution of used interaction strategies per question is vi-
sualized.
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Figure 3: Distribution of interaction types for each question
of the main test for the CHATGPT condition.

4.3 Interactions with the Search Engine
To be able to compare how participants of both groups in-
teracted with their respective tool, we describe interaction
types and strategies when using the search engine here.

Interaction Types We divided the interactions done with
the search engine into the same four types as the interac-
tions with ChatGPT (Section 4.2). This allows for easy com-
parison between the two conditions. There are some minor
updates to the interaction types, as some interactions seen
when using a search engine were not present when using
ChatGPT. Preprocessing for the SEARCH ENGINE condi-
tion mainly consists of asking for formulas and calculations,
while postprocessing only encompasses asking for explana-
tions. In the transformation interaction, the interaction types
“finding answers to related problems” and “trying to find the
initial question using keyword search” were added. There
were no changes to the copy & paste interaction.

Interaction Strategies The relations between how often
different strategies were used changed considerably from
the CHATGPT condition to the SEARCH ENGINE. Here, the
most used strategy was preprocessing with 64 uses, followed
by transformation with 17 uses, postprocessing (8) and copy
& paste (3). A corresponding figure of the distribution of in-
teraction types for each question can be found in the supple-
mentary material.

4.4 Custom Questions
We calculated the average ATI (Lezhnina and Kismihók
2020) score of all study participants (x̄=4.35, s=0.79), which
indicates above-average technical affinity. Additionally, we
used the UMUX-Lite (Lewis, Utesch, and Maher 2013)
questionnaire to calculate a parity score for SUS (Brooke
et al. 1996) for the CHATGPT (x̄=73.05, s=9.95) and the
SEARCH ENGINE condition (x̄=66.23, s=11.62). Both indi-
cate an above-average system usability. Further, participants
rated ChatGPT answers for correctness at x̄=58.0 (s=18.59)
and their quality at x̄=69.26 (s=16.21) on a visual analog
scale from 0 to 100. The search engine answer correctness
was rated x̄=59.6 (s=22.8) and its answer quality x̄=55.5

(s=28.7). We found no significant differences between the
two conditions for all custom questions.

4.5 Exit Interview
We recorded the audio of the CHATGPT exit interviews
(59:30 min) and transcribed them verbatim using Whis-
per (OpenAI 2022b), including manual corrections. To ana-
lyze the exit interviews, we used the approach by Blandford,
Furniss, and Makri (2016). Two researchers coded all inter-
views separately and merged a final coding tree. From a final
discussion, the following themes surfaced: STRATEGIES, IN-
TERACTION, and REFLECTION as presented in detail below.

Strategies While a diverse set of strategies was employed
by the participants, most of them mentioned copy & past-
ing a question in their exit interview. Different reasons for
this were given, such as wanting to see how ChatGPT would
deal with the question (P4) or that they did not know how to
address the physics question (P7). Other strategies included
using ChatGPT like a search engine, e.g., asking for formu-
las (P1) as it was more convenient.

Strategies that indicated a higher level of reflection in-
clude prior conceptualization of the physics problem asking
ChatGPT targeted questions.

(...) which variables do I know, what kind of information is
this, what can I find out with them at hand (...) (P10)

Similarly, ChatGPT was used to explore options for possi-
ble solutions and approaches. Here, students identified valu-
able pieces in ChatGPT answers and showed the ability to
detect mistakes and inconsistencies in its argumentation.

(...) there were gaps where it contradicted itself a bit. But
it was possible to see what the idea behind it was and
whether it made sense. (P4)

Though, participants also stated that they had to compro-
mise between time and correctness of their solutions due to
the time constraints. While motivated initially, they tried to
offload more work to ChatGPT if time was running out (P1).

Interaction When interacting with ChatGPT, participants
identified a need to use informed queries. Some tried to
achieve this by extracting the most relevant parts of a ques-
tion from it.

I have now mostly tried to get the essence out of the ques-
tions, so to speak, and then to ask the important ChatGPT,
so to speak, not to enter the complete question. (P3)

Others found that longer texts worked poorly, implying a
need for concrete queries to work around this issue (P20) or
requiring participants to dig deeper into an answer given by
ChatGPT (P12).

Interestingly, some participants described their interac-
tion/conversation with ChatGPT as human-like, that the an-
swers looked nice and were very well elaborated. However,
selected participants feared that this could delude unaware
users.

(...) It also felt very much like I was writing with a person.
Very Human (P5)
(...) that the answers are partly quite detailed and one is
partly also dazzled by the quantity (P20)



Reflection A number of participants were aware that it is
important to reflect on the answers given by ChatGPT, rigor-
ously reviewing them for correctness (P20) and identifying
mistakes made by ChatGPT.

But sometimes it has overlooked things or done things
wrong or assumed things that were not in the task at all
(P1)

Especially participants with background knowledge about
LLMs were aware of ChatGPT’s weaknesses with regard to
physics content and knew what to look out for.

(...) with these mathematical or physical things,(...) you re-
alize that it’s a language model and that it’s not somehow
designed for that. (P18)

Contrarily, for most physics questions, participants
showed no sign of actively engaging with the exercises, lim-
iting their reflection.

I copied everything, I typed it in and that was it. (P14)

5 Discussion
Our study provides concrete evidence that students heavily
relied on answers generated by ChatGPT in their own area of
expertise and were not always able to determine their valid-
ity. In the following section, we elaborate on these findings
and highlight open research questions for the responsible use
of LLMs in education.

Overreliance on ChatGPT answers leads to low scores
Scored student performance (RQ1) was worse than initially
expected (Section 4.1) given our curated selection of exer-
cises. Students using the CHATGPT condition performed
significantly worse compared to students in the SEARCH
ENGINE condition. Moreover, our study revealed that stu-
dents in the CHATGPT condition had difficulties detecting if
answers generated by ChatGPT were correct or not, as indi-
cated by their high false positive rate of 57%.The unreflected
acceptance of presented answers is worrying as it might lead
from singular misinformation to general misconception and
showcases that there is a definite need to research interac-
tive mechanisms to increase awareness of the uncertainty
of LLMs. Contrarily, most search engines are less likely to
suffer from this drawback, as presented results are not for-
mulated as answers, a design aspect that could potentially
inform the design of future interfaces for LLMs.

Copy & Paste Is The Most Prominent Strategy for Chat-
GPT Users This overreliance also manifested when ana-
lyzing the employed interaction strategies for the two differ-
ent tools (Sections 4.2 and 4.3). Nearly all search prompts
(96%) in the SEARCH ENGINE condition are systematic,
such as extracting keywords or dividing the question. We be-
lieve this behavior originates from the inherent nature of the
search engine interface. Since it is not structured as a con-
versation, users focus their prompts on thought-through key-
words. In the CHATGPT condition, 42% of search prompts
are based on copy & paste, highlighting the limited reflec-
tion during problem solving when having access to a differ-
ent interface. While we did observe participants testing out
multiple different strategies like priming, reducing the ques-
tion complexity, or correcting ChatGPT (see Section 4.2),

the majority of questions were answered using the easiest,
most convenient option available (RQ2).

Limitations Overall, we expected students to score better
given the careful curation of our exercises through physics
education researchers (see Section 3.1). In hindsight, our
questions might have been too difficult for a realistic assess-
ment of how students interact with ChatGPT. However, this
result also shows that proper training on how to use LLMs
such as ChatGPT might be necessary to achieve good re-
sults. Secondly, the number of total participants that took
part in our study was relatively small. To alleviate this, we
made the SEARCH ENGINE condition of the survey avail-
able online as well, allowing us to gather more participants.
However, due to the online environment, it is possible that
the answer quality was lower compared to in person partici-
pants. Though, if that were the case, we can assume that the
difference between the two conditions would have been even
more prominent.

A Need for Informed and Moderated Use of LLMs Our
analysis revealed a need to think about the design of edu-
cational systems that use LLMs. We need to moderate in-
teraction with language models such as ChatGPT in a way
that students can profit from the vast abilities of such tools
while simultaneously reducing the negative impact it can
have on the students’ learning progress. We argue that in-
formed use is straightforward to achieve, e.g., through mak-
ing users aware of the uncertainty of LLMs, especially in
the domain of physics. Yet, to really leverage the potential
of these models, we must achieve moderated use. In other
words, it is a usage that allows students to interact with Chat-
GPT as a guidance teacher or sparing partner to formulate
and explore ideas to solve a physics problem. Such a system
should carefully guide students towards the solution, intro-
ducing necessary concepts but allowing critical thinking and
reflection while still being enjoyable and effective to use. If
we can demonstrate the benefits of moderated LLMs com-
pared to unrestricted LLMs to students in terms of their abil-
ity to learn and progress, we can certainly change and evolve
the current ways of teaching.

6 Conclusion
In this work, we analyzed the impact of having LLMs, such
as ChatGPT, as available tools for solving physics exercises
on solution correctness and solving strategies. We found that
students who used ChatGPT scored significantly lower com-
pared to those using a search engine for the same task. Fur-
thermore, a stark difference in user interaction became visi-
ble, where ChatGPT users mainly relied on copy & pasting
questions and answers, while search engine users used more
refined strategies such as searching for formulas. This high-
lights missing reflection and limited critical thinking as two
of the main issues when using LLMs in education. To com-
bat this, we — first and foremost — suggest to inform stu-
dents more adequately of the shortcomings of these models.
Though ultimately, we want to converge towards moderated
LLMs, specifically designed to support students in a mean-
ingful way by encouraging critical thinking.
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