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1Department of Physics and Research Center OPTIMAS,
RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany

2Faculty of Physics, Chair of Physics Education,
Ludwig-Maximilians-Universität München (LMU Munich), 80539 Munich, Germany

3Department of Computer Science, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
4Embedded Intelligence, German Research Centre for Artificial Intelligence, 67663 Kaiserslautern, Germany

(Dated: May 15, 2023)

In the field of quantum information science and technology, the representation and visualization
of quantum states and processes are essential for both research and education. In this context, a fo-
cus especially lies on ensembles of few qubits. While powerful representations exist for single-qubit
illustrations, such as the infamous Bloch sphere, similar visualizations to intuitively understand
quantum correlations or few-body entanglement are scarce. Here, we present the dimensional circle
notation as a representation of such ensembles, adapting the so-called circle notation of qubits. The
n-particle system is represented in an n-dimensional space, and the mathematical conditions for
separability lead to symmetry conditions of the quantum state visualized. This notation promises
significant potential for conveying nontrivial quantum properties and processes such as entangle-
ment, measurements and unitary operations in few-qubit systems to a broader audience, and it could
enhance understanding of these concepts beyond education as a bridge between intuitive quantum
insight and formal mathematical descriptions.

I. INTRODUCTION

Genuine quantum properties are hard to visualize and
hence to intuitively understand. Powerful visualizations
of simple two-level, single-particle systems such as the
Bloch vector representation of the density matrix have
been developed to represent properties and dynamics
in various situations beyond the mathematical descrip-
tion. Due to the extraordinary mathematical complexity
of multi-qubit systems, representing many-body correla-
tions for even two- or few-qubit systems comes along with
many challenges.

Geometric representations of pure multi-qubit states
and entanglement was previously addressed from the per-
spective of the mathematical field of topology [1, 2].
Other representations include the Majorana representa-
tion depicting multi-qubit states on a Bloch sphere [3]
or, alternatively, the use of separate Bloch spheres for
the non-entangled part of the system and the entangled
part [4, 5]. Also, generalized Wigner functions can be
used to represent systems of few qubits [6]. Lastly, a
haptic model of entanglement based on knot theory has
been proposed [7].

In all of these works, entanglement is geometrically
represented. However, they are difficult to generalize
to more than two- or three-qubit systems. In addi-
tion, the profound mathematical background in, e.g.,
topology or advanced geometry often needed to under-
stand these models adds multiple layers of complexity.
These are, however, often unnecessary in the context
of quantum computing algorithms. To solve the latter
challenge, various two-qubit visualizations are used for
educational purposes [8, 9] and also in the context of

quantum games [10–12].

For more general applications, one needs to go beyond
two- or three-qubit systems. Here, graphical languages
like the ZX, ZW or ZH calculi, that can be seen as ab-
stractions of circuit diagrams, are commonly used to vi-
sualize quantum states and algorithms [13–16]. Their ab-
stractness can be an advantage, e.g., for efficiently show-
ing gate identities and the different possible entanglement
properties of multi-qubit system [14]. At the same time,
they require an already existing understanding of the of-
ten complex underlying concepts and processes. To ac-
quire this understanding, explicit visualizations are nec-
essary.

As such an explicit visualization, the so-called circle
notation [17] has been introduced. The aim of this vi-
sualization is to minimize the reluctance of learners to-
wards quantum notations and linear algebra formalities,
and instead highlight the basic ideas and mechanisms of
quantum algorithms explicitly. In this notation, complex
numbers are represented graphically by visualizing their
magnitude as a filled area in a circle, and their phase
as gauge in the circle. A drawback of this visualization
is that the action of gate operations on the multi-qubit
registers is not intuitive but rather has to be memorized.
Furthermore, entanglement remains hidden.

In this work, we present an extension of the circle no-
tation associating every qubit with a separate dimension
in space. This new representation visualizes entangle-
ment and provides natural access to quantum operations
on multi-qubit registers which enables the explicit visu-
alization of quantum algorithms of up to at least five
qubits. We call this extension dimensional circle nota-
tion (DCN). The approach of assigning qubits to different
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dimensions in space is also utilized in [18] for educative
purposes, however, considering only real coefficients, thus
restricting use cases and prohibiting a general depiction
of entanglement that DCN enables. In addition, we show
extensions to four- and five-qubit systems.

DCN considers the well known theory of learning and
problem solving with multiple external representations
(MERs) [19, 20] which aims to support learners’ under-
standing by focusing not only on symbolic-mathematical
or text-based representations (e.g., formulas or writ-
ten text), but also on visual-graphical representations
(e.g., pictures and diagrams). In addition, it provides
a new perspective on separability of pure multi-qubit
states that could be more suitable for learners than the
often-used definitions using the density matrix formal-
ism [21–27]. Therefore, we see its relevance as a bridge
between single-particle visualization and mathematical
many-body descriptions to build intuition for few-body
quantum correlations. This can be used, for instance, in
courses within the field of quantum information science
and technology (QIST) as a facilitator for the construc-
tion of conceptual understanding of entanglement and
gate operations in multi-qubit systems and, also, beyond
education.

This paper is structured as follows: In Sec. II, the un-
derlying theory of MERs and its relevance for the discus-
sion of DCN is described. In Sec. III the circle notation
is introduced. It is followed by the introduction of the
dimensional circle notation in Sec. IV. Examples in three-
qubit systems using DCN are presented in Sec. V. After
concluding in Sec. VI, we present an outlook in Sec. VII,
where we introduce an interactive DCN web tool and il-
lustrate further extensions of DCN, like visualization of
quantum algorithms in four-and five-qubit systems.

II. SUPPORTING CONCEPTUAL
UNDERSTANDING IN QIST BY USING

MULTIPLE EXTERNAL REPRESENTATIONS

It is well known that learning and problem solving in
different contexts of science, technology, engineering, and
mathematics (STEM) can be supported by using not only
one but multiple external representations (MERs) [20].
In particular, this finding can be utilized in supporting
learners’ understanding by focusing not only on text-
based and symbolic-mathematical representations (e.g.,
written text and formulas), but also on graphical repre-
sentations (e.g., pictures and diagrams). From the the-
oretical perspective, the benefit of using a text accom-
panied by a graphical representation in learning can be
explained by taking advantage of dual coding in the ver-
bal and visual channel of the working memory in contrast
to the processing of verbal information only [28, 29]. In
this way, information processing is distributed among the
two channels, so the load on a channel is lower in compar-
ison when all the information is processed only by single
channel.

However, each representation additional to a text im-
plies a new effort for learners, because they need to know
how a representation depicts information, i.e., learn-
ers need to possess representational competence [30].
Ref. [31] points out that learning with more than two rep-
resentations, such as a text, an equation and a diagram,
is only more efficient than learning with two representa-
tions if the learner possesses visual understanding (i.e.,
representational competence) of each representation. In
this line, a representation that encodes complex informa-
tion in a relatively intuitive way for learners, so that it
is easy to acquire representational competence, may be
a valuable asset for learning. As mentioned above, up to
now, there are only a few representations of multi-qubit
systems in QIST and they are rather limited in their
capacities, so that it is not easily possible to visualize
entanglement and the actions of gate operations. There-
fore, DCN enables instructors to encode information in
an easily accessible third representation additionally to
a descriptive text and mathematical equations to exploit
the benefits of MERs for these complex concepts.

Based on Ainsworth’s theoretical framework [19], there
are three key functions MERs can fulfill to support learn-
ing. They can complement each other either by con-
taining different information or supporting different pro-
cesses. Furthermore, they can constrain each other, e.g.
by familiarity or inherent properties. Third, using MERs
can construct deeper understanding by confronting learn-
ers with the abstraction of underlying knowledge struc-
tures, the extension of knowledge to an unknown rep-
resentation or enhancing understanding of the relations
between different representations.

By providing a graphical representation of qubit char-
acteristics and gate operations, we supply learners with
additional access to QIST basics complementary to the
mathematical notation. In this way, we especially aim to
facilitate the understanding of the corresponding mathe-
matical concepts by providing the opportunity to extend
existing knowledge structures based on DCN to mathe-
matical formulations. More particularly in the context
of entanglement, by using DCN, learners get access to
new deciding factors for whether qubit systems or even
subsystems are separable or entangled.

However, it is important to note that, in order to bene-
fit from MERs, learners have to cope with understanding
of not only how the scientific knowledge is presented in
one representation but also how to translate between dif-
ferent representations. Hence, the learning effectiveness
of MERs does not only rely on the learning material but
also on learner characteristics [19, 32].

In this work, we extend the mathematical formalism
of multi-qubit systems and related processes with DCN.
Based on current psychological and educational research,
we expect that the use of DCN can utilize the known ad-
vantages of learning with MERs in QIST by constructing
deeper understanding of entanglement and quantum gate
operations.
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III. CIRCLE NOTATION

We start by briefly introducing the circle notation. In
an n-qubit system, there are 2n different possible ba-
sis states represented by 2n circles. We will work solely
in the computational basis as it is commonly used in
quantum computing. Here, the basis is given by {|i〉},
i ∈ {0, 1}n, |inin−1 . . . i1〉, which defines the n-qubit reg-
ister. Any pure n-qubit state |ψ〉 can be written as a
superposition of these basis states:

|ψ〉 = α0 |0 . . . 0〉+ α1 |0 . . . 01〉
+ α2 |0 . . . 010〉+ . . .+ α2n−1 |1 . . . 1〉

(1)

with αi ∈ C,
∑2n−1

i=0 |αi|2 = 1. As per the convention
used here, the rightmost entry in the ket state corre-
sponds to the first qubit and the leftmost entry to the
n’th qubit. This means that the least significant qubit
in the binary system corresponds to the rightmost entry.
As shown in Fig. 1, the circle notation graphically repre-
sents the magnitudes of the amplitudes αi as filled inner
circles with radius |αi| and their phase ϕ of αi = eiϕ|αi|
as the angle between the radial line and a vertical line.
Some important single qubit operations (in a single qubit
system) are shown in Fig. 13 in Appendix A.

FIG. 1. A qubit in the state |ψ〉 =
√

2/3 |0〉+1/
√

3eiπ/2 |1〉 in
circle notation. The outer circles represent the basis states |0〉
and |1〉. The radii of the inner circles represent the absolute
value of the corresponding coefficients. The radius of the blue
circle is

√
2/3 and the radius of the green circle 1/

√
3. The

blue area is double the size of the green area, showing that
measuring would, on average, yield the result 0 twice as often
as 1. The angles of the lines in respect to a vertical line
represent the phases of the corresponding coefficients. Here,
the angle of the line of the coefficient 1/

√
3eiπ/2 of the basis

state |1〉 is horizontal and facing left, representing the phase
π/2.

For two qubits, the possible states are lined up as
shown in Fig. 2. In standard circle notation, one can not
immediately determine whether the represented state is
separable or entangled. We refer to [17] for a precise and
comprehensive introduction to the circle notation, in par-
ticular, unitary operations and measurements in multi-
qubit systems. For calculating their effect, if not memo-
rized, operations require the additional effort of checking
each basis state in Dirac ket notation which could re-
duce the advantage of this representation in respect to

the mathematical representation. We tackle these diffi-
culties with DCN where it is enough to understand these
operations in single-qubit systems to understand them in
any multi-qubit system.

FIG. 2. The two-qubit state |ψ〉 = 1/2 |00〉 +

1/
√

2e−iπ/4 |01〉−1/
√

12 |10〉+1/
√

6e3iπ/4 |11〉 in circle nota-
tion. The states are ordered in ascending order in the binary
system, where e.g. the first qubit represents the rightmost
number i1 in a state |i2i1〉.

IV. DIMENSIONAL CIRCLE NOTATION OF
TWO-QUBIT SYSTEMS

Based on circle notation, we introduce DCN as a
graphical representation of multi-qubit systems. Instead
of arranging states in a row, we assign every qubit to
an axis in a new direction in space, see Fig. 3. As shown
there, building product states in DCN is an intuitive pro-
cedure following the standard Kronecker product. New
qubits are simply attached to the original system in a
new dimension in space.

a. Separability and Entanglement Entangled states
are multi-qubit states that are not separable. In the
classical circle notation, see Fig. 2, it is cumbersome
to distinguish a separable state from an entangled. In
this section, we will show how DCN allows spotting
separable states in the two-qubit case. A state |ψ〉 =
α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉 is separable into
|ψ〉 = (α1 |0〉+ β1 |1〉)⊗ (α2 |0〉+ β2 |1〉), where ⊗ is the
Kronecker product, if and only if

α00α11 = α01α10 (2)

as stated in, e.g., Ref. [2, p. 396]. We can represent this
condition in terms of coefficient ratios α00/α01 = α10/α11

in the case of α01, α11 6= 0 or α10/α00 = α11/α01 in the
case of α10, α11 6= 0. In the case of more than two co-
efficients being 0, the system is trivial. This means we
can visually not only identify entangled states, but also
get a sense for the degree of entanglement by comparing
the ratios of the coefficients α00/α01 = r1e

iϕ1 , α10/α11 =
r2e

iϕ2 in terms of the ratio of their amplitudes r1/r2 and
the difference of their phases ϕ1 − ϕ2. For example, the
concurrence C is a common way to measure entanglement
[33]. It is defined as C = 2|α11α00 − α10α01| = 2r1|1 −
r2/r1e

iϕ1−ϕ2 | for pure two-qubit states (under the as-
sumption of r1 > 0). It can be seen that the concurrence
is large for large differences in phases (|ϕ2 − ϕ1| ≈ π)
and large or small ratios of magnitudes (r2/r1 � 1 or
r2/r1 � 1). We compare these ratios for every pair of
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FIG. 3. Visual representation of the product state |ψ〉 = (
√

3/2 |0〉 − 1/2 |1〉) ⊗ (1/
√

3 |0〉 +
√

2/
√

3e−iπ/4 |1〉) = 1/2 |00〉 +

1/
√

2e−iπ/4 |01〉 − 1/
√

12 |10〉+ 1/
√

6e3iπ/4 |11〉 in DCN. Qubit #1 is attached to each of the basis states of qubit #2 to form
a two dimensional array of basis states. The amplitudes of the combined state follow the standard Kronecker product.

states along the axis of one qubit, where both of the
corresponding coefficients are non-zero. Then, we can
determine whether the system is symmetrical along that
axis, apart from a (complex) ratio. If we find symmetry,
we know that the system is separable. This is shown in
Fig. 4.

It is important to note that this representation of sepa-
rability into single-particle states only holds if the chosen
basis states are themselves separable. We consider exclu-
sively the computational basis here, but in principle any
separable basis can be used.

b. Measurements Measuring a single qubit, the
state collapses into a classical bit of 0 or 1. Similarly,
in a terminal measurement of n-qubits the system col-
lapses into the classical bit string i = inin−1 . . . i1, where
i ∈ {0, 1}n. The measurement of a subset of qubits is,
however, more peculiar. In conventional circle notation,
see Fig. 2, one needs to precisely identify the subset of
qubits measured, by evaluation of the corresponding reg-
ister state, see [17] for more details. In DCN, we expect
this procedure to be more intuitive to understand. A par-
tial measurement (see Fig. 5) in this new dimensional
arrangement means that all circles along the measured
qubit differing from the measured value turn empty. Af-
terwards, the state simply has to be renormalized. Fur-
thermore, the probabilities of measuring 0 or 1 are given
by the sum of the areas of the inner circles of the basis
states corresponding to that value.

c. Unitary Operations Examples of unitary opera-
tions in single qubit systems are shown in Fig. 13 in Ap-
pendix A. Having understood them and in order to gen-
eralize from single-qubit systems to multi-qubit systems
in circle notation, one still needs to memorize not only
the effects of single qubit operations but instead all pos-
sible actions of single qubit gates on all possible qubits.
We show here how the dimensional arrangement in DCN
eliminates this drawback. Single-qubit gates need only
to be applied alongside the axis of the qubit considered.
Thus, the visualization of single-qubit operations within

two-qubit systems is transferable from the one-qubit case
which importantly still holds for larger qubit systems
as we show in the following sections. A comparison of
DCN with the standard circle notation is shown in Fig. 6
for the Pauli-X1- and X2-gates. Note that local unitary
operations leave the ratio characterization of separable
states intact, i.e., we can not entangle a non-entangled
system locally and vice-versa, in agreement with the no-
communication theorem [34].

Two-qubit operations also work geometrically in DCN
and – again – avoid the necessity of memorizing multiple
operations of, e.g., controlled gates where the targeted
and controlled qubits are swapped. We show this for two
gates that are fundamental to quantum algorithms – the
CNOT-gate and the SWAP-gate.

The CNOT-gate applies a NOT (X)-gate to the target
qubit if the control qubit has value 1. In DCN, this has a
geometrical explanation: the CNOT-gate swaps all states
where the control qubit is 1 along the axis of the target
qubit as shown in Fig. 7.

The SWAP-gate exchanges two qubits in the system,
which is equivalent to swapping the two qubit axes. This
gate can be decomposed into three CNOT gates which is
relevant in practice because existing quantum computer
hardware can often only make use of CNOT gates for
qubit interactions. Fig. 8 shows how DCN visualizes this
decomposition geometrically.

In Appendix D we provide additional DCN examples
for CNOT12 = (H2 ⊗ H1)CNOT21(H2 ⊗ H1) as an ex-
ample of a phase kickback swapping the role of tar-
get and control qubit, see Fig. 14. We also show the
Deutsch algorithm which is often considered as an exam-
ple of quantum parallelism and a (albeit non-practical)
use-case of phase kickback, see Fig. 15. The representa-
tion of Deutsch algorithm in DCN shows that although
a CNOT-gate is present, no entanglement has been cre-
ated, and therefore the algorithm could, in principle, be
realised classically which has been shown in classical op-
tical systems [35].
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FIG. 4. a) The same two-qubit state as in Fig. 2 and 3, |ψ〉 = 1/2 |00〉+ 1/
√

2e−iπ/4 |01〉 − 1/
√

12 |10〉+ 1/
√

6e3iπ/4 |11〉 and a
symmetry axis (green) that shows that this state is separable. The radii of the inner circles are compared in blue gray and the

phases are compared in red. The coefficient ratio along this axis is α01/α00 = α11/α10 =
√

2e−iπ/4. Along the other symmetry

axis, α10/α00 = α11/α01 = 1/3eiπ = −1/3. b) The state |ψ〉 = 1/2 |00〉+ 1/
√

2e−iπ/4 |01〉 − 1/
√

6 |10〉+ 1/
√

12e3iπ/4 |11〉. It is

entangled, because α11/α10 = 1/
√

2e−iπ/4 6=
√

2e−iπ/4 = α01/α00. c) The state |ψ〉 = 1/2 |00〉+1/
√

2e−iπ/4 |01〉−1/
√

12 |10〉+
1/
√

6e−3iπ/4 |11〉. It is (phase-)entangled, because α11/α10 =
√

2eiπ/4 6=
√

2e−iπ/4 = α01/α00

FIG. 5. Measurement of qubit #2 in a two-qubit system in DCN. a) The initial state |ψ〉 = 1/2 |00〉 + 1/
√

2e−iπ/4 |01〉 +

1/
√

6 |10〉 + 1/
√

12e3iπ/4 |11〉 of the system. Comparing the areas of the inner circles, one can see that measuring 0 is more
likely than measuring 1. In fact, p(0) = (1/2)2 + (1/

√
2)2 = 3/4 and p(1) = 1/4. b) The state of the system after measuring 0.

All circles where qubit #2 is 1 are cleared and the system is renormalized. c) The state of the system after measuring 1.

V. DIMENSIONAL CIRCLE NOTATION IN
THREE-QUBIT SYSTEMS

We now shift from two-qubit systems to three-qubit
systems and explore the advances of DCN in respect to

standard circle notation. Similarly to the transfer from
one-qubit systems to two-qubit systems, DCN operations
in three-qubit systems are transferable from the one- or
two-qubit cases. Still, the additional qubit leads to a
few key differences that we will explain in the following.
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FIG. 6. a) X1- and X2-gate acting on the two-qubit state |ψ〉 = 1/2 |00〉+ 1/
√

2e−iπ/4 |01〉−1/
√

12 |10〉+ 1/
√

6e3iπ/4 |11〉. The
X1-gate acts on all states along the axis of qubit #1, swapping the coefficients of |00〉 and |01〉 as well as the coefficients of

|10〉 and |11〉. The outcome of the X1 operation is the state |ψ〉 = 1/
√

2e−iπ/4 |00〉 + 1/2 |01〉 + 1/
√

6e3iπ/4 |10〉 − 1/
√

12 |11〉.
Similarly, the X2 gate acts on all states along the axis of qubit #2, swapping the coefficients of |00〉 and |10〉 as well as |01〉
and |11〉. The outcome of the X2 operation is the state |ψ〉 = −1/

√
12 |00〉+ 1/

√
6e3iπ/4 |01〉+ 1/2 |10〉+ 1/

√
2e−iπ/4 |11〉.

b) The same operations in standard circle notation for comparison.

In addition, we show that DCN is a natural represen-
tation for quantum teleportation, which is an algorithm
combining many fundamental concepts of QIST like en-
tanglement, unitary operations, and measurement in one
protocol.

a. (Partial) Separability and Entanglement To dis-
tinguish separable states from entangled ones, we apply
a similar procedure taken from the two-qubit case to de-
termine whether a three-qubit system is separable. The
two key differences are:

1. In order to compare the ratios of coefficients, we

look for symmetry planes instead of axes. This
way, we compare the ratios of the top coefficients
with the bottom coefficients, left with right or front
with back. This is shown in Fig. 9.

2. We have to (and can) differentiate between partial
and full separability and compare along two planes.
If the ratios are the same along only one plane,
we have an entangled two-qubit system that the
third qubit, represented by the axis perpendicular
to this symmetry plane, is independent of (Fig. 9
is an example of such a state). If and only if the
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FIG. 7. The two-qubit state |ψ〉 = 1/2 |00〉 + 1/
√

2e−iπ/4 |01〉 − 1/
√

12 |10〉 + 1/
√

6e3iπ/4 |11〉 in DCN and the CNOT12-gate.
The CNOT12-gate acts on all states where the control qubit #1 is 1 along the axis of target qubit #2. The outcome of this
operation is the state |ψ〉 = 1/2 |00〉+ 1/

√
6e3iπ/4 |01〉− 1/

√
12 |10〉+ 1/

√
2e−iπ/4 |11〉 represented on the right-hand side. Note

that the final state is entangled, as can be seen by comparing the ratio of coefficients along one axis.

FIG. 8. The SWAP-gate implemented as three CNOT-gates on the two-qubit state |ψ〉 = 1/2 |00〉 + 1/
√

2e−iπ/4 |01〉 −
1/
√

12 |10〉 + 1/
√

6e3iπ/4 |11〉. The corresponding Quantum Circuits are displayed at the top. The relation
CNOT12CNOT21CNOT12 =SWAP can be geometrically explained by swapping the states along the two axes step by step.
The final state |ψ〉 = 1/2 |00〉+ 1/

√
2e−iπ/4 |01〉+ 1/

√
6e3iπ/4 |10〉 − 1/

√
12 |11〉 is shown on the right hand side.

ratios are the same along two planes, they are also
the same along the third plane and we have a fully
separable system. This is also stated in more detail
in Appendix B and C for the general case of n-qubit
systems formulated for the purpose of visualization
in DCN [36, 37].

b. Quantum Teleportation Quantum Teleportation
has been at the heart of quantum technologies for many
years, allowing the transfer of quantum information be-
tween two parties over arbitrary distances when an EPR
pair is shared between them. It has multiple applications
in quantum communication [38] and quantum computa-
tion [39, 40] and is therefore an essential part of quan-
tum information processing [41]. Because it incorporates

many fundamental concepts of QIST, quantum telepor-
tation is a suitable example of how DCN could enhance
understanding of quantum algorithms in general.

Quantum teleportation works as follows: A pair of
entangled qubits #2 and #3 in the state |φ+〉32 =

1/
√

2(|00〉 + |11〉) is prepared. Qubit #3 is sent to Bob
and qubit #2 to Alice. Alice also has qubit #1 in the
state |ψ1〉 which she does not necessarily need to know
and that she wants to teleport to Bob. |φ+〉32 , |ψ〉1 and
the product state |ψ〉 = |φ+〉32 ⊗ |ψ〉1 are shown in Fig.
10 in DCN.

During quantum teleportation, the information of
qubit #1 is transferred to qubit #3. Fig. 11 shows that,
in DCN, this has geometric meaning: Because of the
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FIG. 9. The partially separable state |ψ〉 = 1/
√

2 |000〉 +

1/
√

6e−iπ/4 |001〉 − 1/2 |110〉 + 1/
√

12e3iπ/4 |111〉 =

(
√

2/
√

3 |00〉 − 1/
√

3 |11〉) ⊗ (
√

3/2 |0〉 + 1/2e−iπ/4 |1〉).
The green symmetry plane shows that qubit #1 can be
separated from the system. However, the system is not
fully separable because there is no symmetry along the axis
of qubit #2, i.e. the red plane is not a symmetry plane.
Similarly, there is no symmetry along the axis of qubit #3.

equivalence of an axis with a qubit, transferring informa-
tion from one qubit to another is the same as transferring
information from one axis to another. This can be done
using the unitary operations CNOT12 and H1. These op-
erations only act on qubit #1 and #2, i.e. along the axis
of qubit #1 and #2. In practice, this means that Alice
does not need physical access to qubit #3. This transfer
of information is only possible due to the entanglement
of qubit #2 and qubit #3. To achieve her goal, Alice
first applies a CNOT-gate with qubit #1 as control and
qubit #2 as target. She then applies a Hadamard-gate
to qubit #1. This is shown in Fig. 11.

When Alice now measures qubit #1 and qubit #2, the
four possible measurement outcomes 00, 01, 10 and 11 lie
on the 2D plane spanned by qubit #1 and qubit #2. The
resulting state of qubit #3 depends on the measurement
result. Alice sends the result to Bob who applies an X
and/or a Z-gate if needed so that his qubit #3 is in the
state that qubit #1 previously was in. This is shown in
Fig. 12.

VI. CONCLUSIONS

The standard circle notation is already a useful tool for
introductory quantum computing courses, as the visual-
ization lowers the barrier to entry into a mathematically
challenging field. This is especially needed due to it’s
interdisciplinarity and the various different academical
backgrounds of learners [42]. In this paper, we showed
that DCN has several advantages over standard circle
notation on a conceptual level. This is because DCN vi-

sualizes separability due to the ratio characterization and
could make the effect of measurements and unitary op-
erations in two- and three-qubit systems more intuitive
due to a geometric depiction of single qubits as parts of
these systems.

It is important to consider the conceptual limitations
of DCN. First of all, larger than six- to seven-qubit sys-
tems will be difficult to visualize due to the exponential
scaling of the number of basis states, although one could
say that this will be a drawback of any explicit visualiza-
tion. An important limitation of DCN is that it can not
completely replace mathematics for two reasons. Firstly,
exact numerical amplitudes and phases are not visible,
which, for example, means that many separable states
can only approximately be identified as such. Secondly,
DCN can not display variables and is restricted to specific
examples. However, specific examples are often enough
and even needed to understand the general case by ab-
straction.

Lastly, the theory-based educational foundation of
DCN lies in Ainsworth’s framework of multiple external
representations and, more specifically, in the relation and
extension of currently used representations to construct
a deeper understanding of QIST basics as discussed in
Sec. II while complementing the mathematical notation.
These theoretical functions of DCN will have to be proven
in future systematic empirical education research.

We conclude that DCN can find immediate educational
use in introductory quantum computing and quantum
technology courses as well as in contexts beyond educa-
tion to visualize the entanglement properties of and gate
operations in multi-qubit systems complementary to the
mathematical formalism. It provides a new perspective
on entanglement and the geometry of unitary operations
in multi-qubit systems and by doing so, it could enhance
understanding of quantum algorithms in general.
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FIG. 10. The initial state in quantum teleportation represented as separate systems and as a three-qubit system. Alice and Bob
share the bell pair |φ+〉32 = 1/

√
2(|00〉+|11〉) and Alice wants to teleport the state of qubit #1, |ψ〉1 =

√
2/3 |0〉+1/

√
3e−iπ/4 |1〉

to qubit #3. The product state |ψ〉 = |φ+〉32⊗ |ψ〉1 = 1/
√

3 |000〉+ 1/
√

6e−iπ/4 |001〉+ 1/
√

3 |110〉+ 1/
√

6e−iπ/4 |111〉 is shown
on the right hand side.

FIG. 11. The central part of the quantum teleportation algorithm. Qubit #1 starts in the arbitrary state |ψ〉1 =
√

2/3 |0〉 +

1/
√

3e−iπ/4 |1〉. Qubits #2 and #3 start in the bell state |ψ+〉32 = 1/
√

2(|00〉 + |11〉). The product state is constructed as
shown in Fig. 10. The information that is initially stored in qubit #1 (green) which is independent of the other two qubits is
transferred to qubit #3 using only unitary operations on qubit #1 and #2, i.e. operations only along the axes of qubits #1
and #2 in two steps. Step 1: Swap states on the right hand side (where qubit #1 is 1) along the axis of qubit #2 using a
CNOT-gate with control qubit #1 and target qubit #2. Step 2: Split states along axis of qubit #1 using a Hadamard-gate on
qubit #1. The corresponding quantum circuit is displayed in the top left.
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FIG. 12. The last steps of the quantum teleportation process: Alice measures and sends the information to Bob who then
applies single-qubit gates according to the measurement result. The corresponding quantum circuit is displayed in the top left.
The system starts in the fully entangled state 2 |ψ〉 = (

√
2/3 |0〉 + 1/

√
3e−iπ/4 |1〉) |00〉 + (

√
2/3 |0〉 + 1/

√
3e3iπ/4 |1〉) |01〉 +

(1/
√

3e−iπ/4 |0〉+
√

2/3 |1〉) |10〉+ (1/
√

3e3iπ/4 |0〉+
√

2/3 |1〉) |11〉 depicted in Fig. 11. Alice measures qubit #1 and #2 which
is shown in DCN. a) The measurement of qubit #1; b) The measurement of qubit #2. c) The combined measurement of qubit
#1 and #2. Because the sum of the areas of the inner circles is the same for all of the four possibilities, the chance of measuring
any of the four values is 25%. d) The four possible states of qubit #3 depending on the measurement outcome. Bob has to
apply an X and/or a Z-gate such that qubit #3 is in the previous state of qubit #1.
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VII. OUTLOOK

Following the discussed limitations, we are working
on developing an interactive web tool which makes it
possible for everyone to visualize quantum operations in
DCN. The repositories for this project can be found here:
https://github.com/QuanTUK/, see also Appendix E,
and the website can be accessed via https://dcn.
physik.rptu.de/.

Furthermore, we show in Appendix F that we can visu-
alize quantum algorithms of up to at least five qubits as
is shown there for a four-qubit error detection and a five-
qubit error correction algorithm. For this, we ”modular-
ize” DCN, arranging qubit systems in a variety of differ-
ent ways to lay focus on specific entanglement properties
and/or the geometry of unitary operations. By doing so,
we aim to enhance understanding of complex multi-qubit
algorithms.

We can also represent density matrices and partial
traces of density matrices in DCN as shown in Appendix
G. Here, the ratio characterization of separability applies
similarly. This visualization could serve the purpose of
making the transition from Dirac ket notation and DCN
to the density matrix formalism more intuitive.

Another possible extension is the visualization of
qudit-systems (qudits can be in d possible states instead
of only two). Gates and algorithms in qudit systems are
described in [43]. Although qudits are not in the general
focus of quantum computing at the moment, it is pos-
sible that they could be relevant at some point as there
are some recent advancements [44, 45]. In this context,
theorem 3 in [36] can be applied similarly to reveal en-
tanglement properties of such systems.

As pointed out above, it has to be studied whether
DCN fosters learning and it needs to be validated as a
useful educational tool for conveying the basics of quan-
tum computing. As discussed in Sec. II the effectiveness
of DCN likely depends on learner prerequisites. This
should be considered in future empirical studies. Even
beyond educational contexts, DCN can possibly be used
to enhance understanding of many different quantum al-
gorithms in order to shed more light on this complex
field. For this, the flexibility of the representation that
is shown in Appendix F is a particular strength.
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Appendix A: Single-qubit operations in circle
notation

To understand single-qubit operations in multi-qubit
systems in DCN, it is enough to understand these oper-
ations in single-qubit systems which is one of the main
advantages of DCN in comparison to the standard cicle
notation. Fig. 13 shows some important single-qubit op-
erations in single-qubit systems in circle notation.

FIG. 13. Single qubit operations in circle notation. The X-
gate flips the coefficients of two states. The Z-gate adds a +π
phase to the |1〉-state, flipping the sign of the coefficient. The
Hadamard-gate splits a state into two, flipping the phase if
starting at |1〉. All these gates are self-adjoint, i.e. their own
inverse.

Appendix B: Separating single Qubits from n-Qubit
States

The following ratio characterization [36, 37] of sepa-
rability in n-qubit systems is used throughout this work
to visualize entanglement. It is formulated here for the
purpose of showing separability in DCN.

https://github.com/QuanTUK/
https://dcn.physik.rptu.de/
https://dcn.physik.rptu.de/
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Theorem 1. Let α, β, ci ∈ C. An n-qubit state

|ψ〉 =
∑2n−1

i=0 ci |i〉 is 2-2n−1 separable into |ψ〉 =

(α |0〉 + β |1〉) ⊗
∑2n−1−1

i=0 c′i |i〉 if and only if for all i ∈
{0, . . . , 2n−1−1} either c2n−1+i = 0 or there exists a ratio
r ∈ C such that ci = rc2n−1+i.

Proof. ”⇒”: Let first |ψ〉 =
∑2n−1

i=0 ci |i〉 be separable

into |ψ〉 = (α |0〉 + β |1〉) ⊗
∑2n−1−1

i=0 c′i |i〉. Then,

|ψ〉 =
∑2n−1−1

i=0 αc′i |0〉 |i〉 +
∑2n−1−1

i=0 βc′i |1〉 |i〉 =∑2n−1−1
i=0 αc′i |i〉 +

∑2n−1
i=2n−1 βc′i |i〉. If β = 0, then

c2n−1+i = βc′i = 0 for all i ∈ {0, . . . , 2n−1 − 1}. If
β 6= 0, then with r = α/β: rc2n−1+i = ci, again, for all
i ∈ {0, . . . , 2n−1 − 1}.
”⇐”: Let first c2n−1+i = 0 for all i ∈
{0, . . . , 2n−1 − 1}. Then, |ψ〉 is separable into

|ψ〉 = |0〉 ⊗
∑2n−1−1

i=0 c′i |i〉. Let otherwise ci = rc2n−1+i.

Then, |ψ〉 =
∑2n−1−1

i=0 rc2n−1+i |i〉 +
∑2n−1

i=2n−1 ci |i〉 =

r |0〉
∑2n−1−1

i=0 c2n−1+i |i〉 + |1〉
∑2n−1−1

i=0 c2n−1+i |i〉 =

(r |0〉 + |1〉) ⊗
∑2n−1−1

i=0 c2n−1+i |i〉 = (α |0〉 + β |1〉) ⊗∑2n−1−1
i=0 c2n−1+i/β |i〉 = (α |0〉 + β |1〉) ⊗

∑2n−1−1
i=0 c′i |i〉

with r = α/β.

Appendix C: Full Separability of n-Qubit States

Theorem 1 can be used in fully separable systems for
every qubit [37]. Again, here we formulate this for the
purpose of showing full separability in DCN.

Theorem 2. Let αi, βi, ci ∈ C. An n-qubit state |ψ〉 =∑
i∈{0,1}n ci |i〉 is fully separable into |ψ〉 = (αn |0〉 +

βn |1〉) ⊗ . . . ⊗ (α1 |0〉 + β1 |1〉) if and only if for all
j ∈ 1, . . . , n:
for all pairs of bit strings i, i′ ∈ {0, 1}n which only differ
at position j such that ij = 0 and i′j = 1 and ik = i′k for
all k 6= j:
either ci′ = 0 (for all such i′) or there exists a ratio
rj ∈ C such that ci = rjci′ .

Proof. In the two-qubit case, Theorem 2 is the same as
Theorem 1. Assume that Theorem 2 is correct for n− 1
qubits and let |ψ〉 =

∑
i∈{0,1}n ci |i〉. Let, without loss of

generality, j = n. Then, according to Theorem 1, |ψ〉 is

separable into |ψ〉 = (αn |0〉 + βn |1〉) ⊗
∑2n−1−1

i=0 c′i |i〉 =
(αn |0〉+ βn |1〉)⊗ |ψ′〉 if and only if for all i, i′ ∈ {0, 1}n
with in = 0 and i′n = 1 and ik = i′k for all k 6= n: either
ci′ = 0 for all i′, or there exists a ratio rn ∈ C such
that ci = rnci′ . Then, we can apply Theorem 2 to the
n− 1-qubit state |ψ′〉.

Appendix D: Multi-Qubit Gates and Algorithms in
two-Qubit Systems

Phase kickback is an inherently quantum concept and
an essential part of quantum computing. The main idea

is that by local basis transformation, operations with a
control and a target qubit are inverted such that the roles
of control and target qubit are swapped. This happens
because the control qubit inherits the phase of the target
qubit while the target qubit is unchanged. This has ap-
plications in, e.g., so-called oracle functions that are part
of many quantum algorithms – the controlled gates are
applied to a set of auxiliary qubits in the Hadamard ba-
sis, such that the logical qubits are changed [46]. Fig. 14
shows the most basic example of a phase kickback and
Fig. 15 shows a use case of this: the Deutsch algorithm.

Appendix E: Interactive (web-based) DCN-tool

We provide a python package to visualize DCN,
which can be accessed at github.com/QuanTUK/
QC-Education-Package. Using this package we built a
set of hands-on examples for exploring DCN. For easy
and fast access we also provide an interactive web tool
which utilizes the addressed python packages. This
web tool can be accessed via https://dcn.physik.
rptu.de/, the source files are provided at (github.com/
QuanTUK/DCN_Webtool). We plan to further extend and
improve the package and web tool in the near future,
e.g. with visualizations for more than three qubits as
discussed in Appendix F.

github.com/QuanTUK/QC-Education-Package
github.com/QuanTUK/QC-Education-Package
https://dcn.physik.rptu.de/
https://dcn.physik.rptu.de/
github.com/QuanTUK/DCN_Webtool
github.com/QuanTUK/DCN_Webtool
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FIG. 14. Basic phase kickback, i.e. the relation CNOT12 = (H2 ⊗ H1)CNOT21(H2 ⊗ H1), shown with the initial state
|ψ〉 = 1/

√
2(|00〉 − |11〉). The change of basis into the Hadamard basis by applying Hadamard gates on all qubits makes the

CNOT21-gate work like a CNOT12-gate

FIG. 15. The Deutsch algorithm to determine whether a function f : {0, 1} → {0, 1} is constant (f = 0 or f = 1) or balanced
(f(x) = x or f(x) = x ⊕ 1 where 1 ⊕ 1 = 0). The Qubits are initialized to the state |10〉. After application of Hadamard-
Gates on all qubits, the system is in equal superposition with a phase shift on qubit #2. Then the oracle Uf defined by
Uf : |x〉 |y〉 → |x〉 |f(x)⊕ y〉 is applied. The two cases where f is constant and the two cases where f is balanced only differ by
a global phase, respectively. Therefore, only the cases f = 0 and f(x) = x are shown. After application of a Hadamard-Gate
on qubit #1, one can see that the operation Uf actually acted on qubit #1 due to phase kickback. When measuring qubit #1,
the result will be 0 when f was balanced and 1 when f was constant.
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Appendix F: Modular DCN in four- and five-qubit
systems

In this section, we give examples on how to represent
qubit ensembles of four and five qubits in various ways.
There are multiple ways to represent four-qubit systems
(systems with 16 basis states) in three dimensional space
(and, on paper, then in two dimensions). One natural
possibility is a projection of a four dimensional hyper-
cube into three dimensions. This retains the geometric
depiction of entanglement that is presented in this pa-
per. For the ratio characterization of separability, eight
pairs of coefficients have to be compared for each qubit
in order to check for separability of that qubit from the
system.

In quantum settings, decoherence is a common factor
to consider. Quantum Error correction can counteract
the effects of decoherence. Classical error correction is
often thought of in terms of hypercubes [47–49]. In fact,
similar ideas exist for quantum error correction as seen in
hypercubes or hypercube-like lattices [50, 51]. Therefore,
it makes sense to apply DCN to quantum error detection
and correction. Here, we show the four-qubit error detec-
tion code demonstrated experimentally in [52] in Fig. 16
in a hypercube. Note that for a code to also correct the
detected error, it needs five qubits to function [53].

Another possibility is to represent the system using a
mixture of circle notation and DCN that we call modu-
lar DCN. We can have two or more qubits on every axis
and assign only specific qubits to their own axis. We
can then check, again via ratio characterization, separa-
bility from the system of the qubits that have their own
axis. The five qubit error correction code that is shown
in e.g. [54] is visualized in Fig. 17 (simple three-qubit
encoding process and three possible single-qubit flip er-
rors), Fig. 18 (transfer Syndrome and error correction in
modular 2x2x8 DCN) and Fig. 19 (the last step of error
correction in a four-cube system). DCN is flexible as we
can arrange qubit ensembles in modular DCN in a vari-
ety of different ways to lay focus on specific multi-partite
entanglement properties and/or in a way such that the
visualized unitary operations remain geometrically intu-
itive with the aim of enhancing understanding of complex
multi-qubit algorithms.
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FIG. 16. Four-qubit quantum error detection code as demonstrated experimentally in [52], here in the case of a Hadamard
error. The system is initialized to the state |ψ〉 = 1/

√
2(|0〉+ |1〉)⊗|0〉⊗1/

√
2(|00〉+ |11〉) where qubit #1 and #2 are entangled

and qubit #4 is brought into the Hadamard basis |+〉 = 1/
√

2(|0〉 + |1〉) in order to detect a phase flip. First, an error ε1 is
applied, in this case a Hadamard error H1 corresponding to half of a bit flip and half a phase flip on qubit #1. Then, the bit
flip error is encoded onto qubit #3 via the CNOT13CNOT23 operation. Afterwards, the operation CNOT41CNOT42 that can
be seen as a 180◦ rotation of the cube corresponding to qubit #4 being in the state 1 in the plane spanned by qubit #1 and
#2. In the end, qubit #4 will be found in the state 1 if a phase flip has occurred while qubit #3 will be found in the state 1
when a bit flip has occurred. In this case of a Hadamard error, the error detection algorithm will always find that there was
some error, as qubit #3 and #4 are anti-correlated as can be seen in DCN.

FIG. 17. The initial step of error correcting the (arbitrary) state |ψ〉1 =
√

2/
√

3 |0〉 + 1/
√

3e−iπ/4 |1〉 using four additional

qubits. First, qubit #1 is entangled with qubit #2 and #3 in a GHZ-similar state |ψ〉 =
√

2/
√

3 |000〉+ 1/
√

3e−iπ/4 |111〉 with
two CNOT gates. Then, a bit flip error is applied. Here, three possible bit flip errors are shown (lilac = bit flip error on qubit
#1, orange = bit flip error on qubit #2 and green = bit flip error on qubit #3) as well as the case of no bit flip errors in gray
blue. We assume that only one bit flip error occurs at the same time.
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FIG. 18. The ”transfer syndrome” step of error correcting the state |ψ〉1 =
√

2/
√

3 |0〉 + 1/
√

3e−iπ/4 |1〉 using four additional
qubits. We start in the final state |ψ〉 of Fig. 17, flatten out the cube to standard circle notation and introduce the anzilla
qubits #4 and #5, arranging the system in modular DCN. The CNOT24- and CNOT34-gates encode an X2-error onto anzilla
qubit #4 and the CNOT35- and CNOT15-gates encode an X1-error onto anzilla qubit #5 while an interesting and desirable
byproduct of these operations is that an X3-error is encoded on both anzilla qubits.
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FIG. 19. The last step of error correcting the state |ψ〉1 =
√

2/
√

3 |0〉+ 1/
√

3e−iπ/4 |1〉. We start by transforming the depiction
of the last state |ψ〉 in Fig. 18 to a four-cube system where the cubes are represented in space depending on anzilla qubit #4 and
#5. Here, we can see that the three different kinds of bit flip errors correspond to three different configurations of anzilla qubits
#4 and #5. Now, CNOT gates are applied to correct these errors. The CNOT51 gate corrects the X1-error, the CNOT42-gate
corrects the X2-error and the CCNOT453-gate corrects the X3-error. Lastly, the CCNOT452- and CCNOT451-gates are needed
to counteract the unwanted effects of the first two CNOT-gates in the case of an X3-error. Now we can see that in all three
cases, qubit #1 is in the desired state |ψ〉1. As can be seen, qubit #4 and #5 are now disentangled from the rest of the system
and can be measured to see whether a bit flip error has occurred and which one.
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Appendix G: Representing partial traces of density
matrices of two-qubit systems

FIG. 20. Partial traces ρ1(ψ1) and ρ1(ψ2) of the separable

state |ψ1〉 = 1/2 |00〉+ 1/
√

12e−iπ/4 |01〉+ 1/
√

2e−iπ/4 |10〉+

1/
√

6e−iπ/2 |11〉 and the entangled state |ψ2〉 = 1/2 |00〉 +

1/
√

12e−iπ/4 |01〉+1/
√

6e−iπ/2 |10〉+1/
√

2e−iπ/4 |11〉. In the

case of separability, we find a constant c = 1/
√

3e−iπ/4. In
case of entanglement, we find no such constant.

Density matrices are used to describe general quan-
tum states, including mixed states, and can be used to
calculate probabilities of measurement outcomes of ob-
servables using the Born rule [55]. Being introduced to
the density matrix formalism can come with challenges
due to the outer product formulation and to their general
abstractness. A general introduction to this formalism
can be found in e.g. [56] that visualization could ease
the entry to.

In the following we provide a way of representing den-
sity matrices of single qubits in DCN and show that
the ratio characterization of separability can be seen, i.e.
whether the single-qubit state is pure or mixed/part of
a larger entangled state. This representation could be
incorporated in the DCN web tool, allowing the ability
to visually trace out single qubits from the system.

For a general two-qubit state

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 ∈ H2 ⊗H1

(G1)
we can write the density matrix in the computational

basis as

ρ = |ψ〉 〈ψ| =

 |α00|2 α00α
∗
01 α00α

∗
10 α00α

∗
11

α01α
∗
00 |α01|2 α01α

∗
10 α01α

∗
11

α10α
∗
00 α10α

∗
01 |α10|2 α10α

∗
11

α11α
∗
00 α11α

∗
01 α11α

∗
10 |α11|2

 ,

(G2)

and tracing out qubit #1 to find the density matrix of
qubit #2, we find

ρ2 = tr1(ρ) =

(
|α00|2 + |α01|2 α00α

∗
10 + α01α

∗
11

α10α
∗
00 + α11α

∗
01 |α10|2 + |α11|2

)
,

(G3)
whereas

ρ1 = tr2(ρ) =

(
|α00|2 + |α10|2 α00α

∗
01 + α10α

∗
11

α01α
∗
00 + α11α

∗
10 |α01|2 + |α11|2

)
.

(G4)
As stated in Sec. IV, one possible characterization of

separability is the following: |ψ〉 is separable if and only
if

i) α00 = α10 = 0 or

ii) there exists a ratio c ∈ C such that α01 = cα00 and
α11 = cα10.

In the case of i),

ρ1 =

(
0 0
0 1

)
. (G5)

In the case of ii),

ρ1 =

(
|α00|2 + |α10|2 c∗(|α00|2 + |α10|2)
c(|α00|2 + |α10|2) |c|2(|α00|2 + |α10|2)

)
=

(
p1(0) c∗p1(0)
cp1(0) |c|2p1(0)

)
.

(G6)

where p1(0) is the probability of obtaining 0 when mea-
suring qubit #1. This way, the ratio characterization of
separability can be visually represented as can be seen in
Fig. 20. When tracing out qubit #1 to find ρ2, we find
an analogous and equivalent characterization of separa-
bility:

i) α01 = α11 = 0 or

ii) there exists a ratio c′ ∈ C such that α00 = c′α01

and α10 = c′α11.

Then we find analogously to above in the case of i)

ρ2 =

(
0 0
0 1

)
(G7)

and otherwise

ρ2 =

(
p2(0) c′p2(0)
c′∗p2(0) |c′|2p2(0)

)
. (G8)
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