
Learning the Solution Operator of Boundary Value Problems using Graph
Neural Networks

Winfried Lötzsch 1 Simon Ohler 1 2 † Johannes S. Otterbach 1

Abstract

As an alternative to classical numerical solvers
for partial differential equations (PDEs) subject
to boundary value constraints, there has been a
surge of interest in investigating neural networks
that can solve such problems efficiently. In this
work, we design a general solution operator for
two different time-independent PDEs using graph
neural networks (GNNs) and spectral graph con-
volutions. We train the networks on simulated
data from a finite elements solver on a variety of
shapes and inhomogeneities. In contrast to previ-
ous works, we focus on the ability of the trained
operator to generalize to previously unseen scenar-
ios. Specifically, we test generalization to meshes
with different shapes and superposition of solu-
tions for a different number of inhomogeneities.
We find that training on a diverse dataset with
lots of variation in the finite element meshes is
a key ingredient for achieving good generaliza-
tion results in all cases. With this, we believe that
GNNs can be used to learn solution operators that
generalize over a range of properties and produce
solutions much faster than a generic solver. Our
dataset, which we make publicly available, can
be used and extended to verify the robustness of
these models under varying conditions.

1. Introduction
Graph Neural Networks (GNNs) (Scarselli et al., 2009)
have recently seen a plethora of new applications ranging
from molecule and protein property modeling (Jumper et al.,
2021; Henderson et al., 2021; Maziarka et al., 2020), learn-
ing complex dynamics from data (Battaglia et al., 2016;

†Work done while at Merantix Momentum 1Merantix Mo-
mentum, AI Campus Berlin, Germany 2Univ. of Kaiserslautern,
Kaiserslautern, Germany. Correspondence to: Winfried Lötzsch
<Winfried.loetzsch@merantix.com>, Johannes Otterbach <jo-
hannes.otterbach@merantix.com>.

2nd AI4Science Workshop at the 39 th International Conference on
Machine Learning (ICML), 2022. Copyright 2022 by the author(s).

Figure 1. We train a neural network to predict solutions of bound-
ary value problems and additional quantities like in this case the
electric potential and electric field of an electrostatics simulation.
Here we compare predictions of the model (pred) with ground
truth data from an FEM simulation (gt). For the electric field, we
visualize the magnitude of the field and overlay it with arrows
depicting the field orientation.

Pfaff et al., 2021) to combinatorial optimization (Cappart
et al., 2021). Many real-world applications produce data ar-
tifacts that are naturally expressed as graphs, such as knowl-
edge databases, social networks or supply chains.

In this paper, we focus on a particular application domain
that is most naturally defined by graphs: the explicit solu-
tion of time-independent (static) boundary value problems.
Solutions to such problems are only implicitly defined via
partial differential equations (PDEs) subject to boundary
value constraints. Solving boundary value problems is re-
quired in many physics disciplines, such as thermodynam-
ics or electromagnetics. Finite element methods (FEM),
which discretize the PDE on a lattice, are commonly used as
generic solvers. The resulting matrix equation is solved us-
ing exact or iterative methods of linear algebra. While these
methods produce high-quality results, they typically are nu-
merically expensive and any variations on the parameters of
the problem require a full rerun to obtain the solutions.

To address this problem, we propose to use GNNs to learn
the solution operator of a class of PDEs similar to previ-
ous works (Li et al., 2020; 2021). The triangulation of
the domain as a first step of an FEM solver is faster than
numerically computing the solution of the PDE, which in-
volves an expensive matrix inversion operation. We use only
the triangulation grid of an FEM solution as the input to a
graph network and employ supervised graph convolution
operations to learn the value of the solution function at the
triangulation points. We complement previous works that
use GNNs to solve time-dependent problems (Pfaff et al.,
2021; Sanchez-Gonzalez et al., 2020; Brandstetter et al.,

ar
X

iv
:2

20
6.

14
09

2v
1

 [c
s.L

G
]

28
 Ju

n
20

22

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks

2022). We compare an example prediction of our model to
the corresponding FEM solution in figure 1.

To show that the network approximates the solution opera-
tor, we investigate if it can learn superpositions of different
solutions and generalize to different meshes (shape general-
ization) beyond the square mesh that is used frequently in
the literature so far (Li et al., 2020; 2021).

GNNs are naturally suited to handle non-square geometries
as opposed to CNNs, which are commonly defined on square
lattices. CNNs can be seen as a special case of GNNs on
regular square domains and a fixed number of neighbors
for each node. Hence, CNNs need to work on interpolated
solutions if the structure of the data deviates or non-square
shapes are used. Moreover, commonly used CNNs need to
use masks if parts of the mesh are defined as cut-out regions.
We show that our proposed GNN naturally solves all these
cases within a unified approach. To our knowledge, this is
the first in-depth analysis of GNNs applied to static PDEs
that goes beyond learning the solution for a single mesh.
Specifically, our contributions are:

• We show that a GNN can efficiently learn the solution
to a PDE from simulation data without explicit access
to the PDE.

• We demonstrate that diversity with regards to the shape
of meshes is a key ingredient for obtaining robust solu-
tion operators.

• We demonstrate that our GNN is able to generalize to
previously unseen geometries and learn superpositions.
As such, we obtain an approximation of the solution
operator, instead of a solution itself.

• We construct a new dataset consisting of tesselations
and solutions of PDEs in the domains of electrostatics
and magnetostatics under non-trivial boundary condi-
tions.

Especially the shape generalization task which we design is
considerably more complex than similar tasks in the recent
literature, e.g. (Li et al., 2020) which uses only square
meshes. We not only verify that the network can adapt to
multiple differently-shaped meshes at the same time, but
also that it generalizes to a different mesh, which has not
been part of the training data. We make both the created
dataset1 as well as the code for our experiments publicly
available2.

1
https://github.com/merantix-momentum/

squirrel-datasets-core

2
https://github.com/merantix-momentum/

gnn-bvp-solver

2. Related Work
Battaglia et al. (2016) introduce GNNs for the simulation of
the time dynamics of physical objects under complex bound-
ary constraints, such as a string draping over a pole under
gravity. They learn the dynamics from purely observational
data obtained via simulations of the physical system. They
show that the learned dynamics generalize to new situations
with a significant speedup over the traditional simulation.
Sanchez-Gonzalez et al. (2020) extend this approach and
learn the complex dynamics governing the motion of fluids
and deformable bodies from simulated data. Each particle
represents a node in a graph and the network learns the time
update operator from the observed data. Pfaff et al. (2021)
are expanding on this by simulating the time dynamics of
complex processes based on learning from meshed data.
They use two types of nodes to, e.g., model a piece of fabric
in the wind held by a flag-pole. Moreover, they show that
the learned dynamics generalize from 2k to 20k nodes in
the graph despite the latter being out-of-distribution. Mayr
et al. (2021) use a GNN to learn the dynamics of a granular
material flowing inside a non-stationary boundary, e.g. a
rotating drum, by introducing a method to update the nodes
describing the geometric boundaries in the GNN.

Fang et al. (2020) use physics-inspired neural networks
(PINNs) to parameterize the solution to time-independent
PDEs. Making use of the auto-differentiation framework,
they minimize the error in the PDE-solution. They develop
solutions to common PDEs on complicated two- and three-
dimensional manifolds. A similar approach is developed
by Cai et al. (2022), who simulate fluid dynamics by com-
bining simulation data and physics-based priors. Afshar et
al. (2019) use a CNN architecture to predict the static flow
field of a hydrodynamics problem from a triangulated ver-
sion of the underlying geometry. Yao et al. (2020) leverage
a PINN based on the combination of physics-based Finite
Element Analysis (FEA) and CNNs to create an efficient
predictor of mechanical response quantities.

Belbute-Peres et al. (2020) integrate an industry-grade PDE
solver as a layer into a GNN simulator. They use adjoint
methods to compute the gradient of the solver efficiently.
They apply this approach to the simulation of complex fluid
dynamics problems. Chamberlain et al. (2021) reverse the
approach and leverage discretization schemes developed
for numerical simulations of PDEs to design new graph
aggregation operations. They show that this approach leads
to superior results on some standard GNN benchmarks.

Aarts et al. (2004) use a precursor to PINNs based on fully
connected layers to study the solution space of a neural
network applied to simple initial as well as boundary value
problems. Palade et al. (2020) use neural networks with
radial basis functions and an integral objective to solve
elliptic PDEs with non-local boundary conditions. However,

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks

both approaches do not leverage data to solve the problem,
but rather parameterize the solution to a specific instance.

Alet et al. (2019) use a Graph Element Network (GEN) to
learn a mapping from initial conditions to the final output
of an FEM-based numerical simulation. They show that
the GEN can be used to optimize the FEM mesh to focus
on the non-linear part of the solution space. A similar ap-
proach is also followed by Chen et al. (2021) who leverage
a Graph Convolutional Neural Network (GCNN) to learn
the solution of steady-state laminar fluid flows around two-
dimensional objects based on solutions of the Navier-Stokes
equation. In contrast to these works, we do not optimize
the grid space but rather study the generalizability across
meshes with different shapes and the ability of the solver
to learn superpositions. We thereby show that the network
approximates a solution operator rather than simply a map
of initial conditions to final solutions.

Comparison to the Neural Operator Network: Li et
al. (2020; 2021), use a data-driven approach to learn the
solution of PDEs by training a model to map an initial con-
dition to the final output. By doing so, this Neural Operator
Network learns the solution operator to the PDE without
knowing its exact form. Salvi et al. (2021) expand the Neu-
ral Operator Network by applying it to stochastic PDEs and
incorporating noise into the driving force of the dynamics.
Brandstetter et al. (2022) push the Neural Operator Method
further by recognizing that numerical methods of classical
solvers can be expressed as a special form of autoregressive
message-passing protocols in GNNs. They apply this to
various time-dependent PDEs for modeling fluid-like flow.

As the Neural Operator Network by Li et al. (2020) ist most
similar to our work, it warrants a deeper discussion: Li et
al. (2020) explore generalization across meshes limited to
different resolution leaving the question of shape generaliza-
tion open, which is addressed in this paper. To successfully
adapt to meshes of different resolution, Li et al. alter the
mesh connectivity by connecting all nodes within a fixed
radius before feeding the graph to the Neural Operator Net-
work. In our system, the GNN operates directly on FEM
meshes where only directly adjacent nodes are connected.
Therefore, generalization across resolution and shapes has
to be learned by the operator without explicit clues. Within
the Neural Operator Network the important information
about PDE inhomogeneities is provided via edge attributes
to the GNN. In contrast to this, our operator directly op-
erates on node features. The edge weights contain only
relative distances between nodes. This formulation allows
the usage of a broader class of GNN operators that do not
need to incorporate extensive processing of edge attributes.

3. Background
In this paper we consider a small but nevertheless important
class of PDEs subject to boundary conditions. Let u 2
C

2(R) be a twice-differentiable function of n variables over
an open domain ⌦ ⇢ Rn. Then, the Poisson Equation with
Dirichlet boundary conditions is given by

r2
u(x) = f(x), 8x 2 ⌦,

u(x) = g(x), 8x 2 @⌦, (1)

where f and g are sufficiently smooth functions defined on
⌦ and @⌦, respectively, where @⌦ denotes the boundary
of the domain ⌦. The Poisson equation is often encoun-
tered in electrostatics or stationary wave (resonance) prob-
lems. Equation (1) is characterized by the absence of a
time-component and the presence of a constraint given by
g.

To solve equation (1) using an FEM solver, we cast it into
its weak form using a test function v. We homogenize
the boundary conditions with the transformation y(x) =
u(x)� g(x) and define h(x) = f(x)�r2

g(x). In the last
step, we used the continuation of g into the domain ⌦. The
weak form is then obtained using Green’s first identity (also
know as Stokes’ theorem) and results in

a(y, v) = ĥ(v), (2)

where

a(y, v) =

Z

⌦
dx

nX

i=1

@y

@x

i

@v

@x

i

,

ĥ(v) =

Z

⌦
dxh(x)v(x). (3)

The key insight of FEM is to choose the test function v such
that it is well behaved and can be represented as a sum over
compact, local basis functions on ⌦, i.e. v(x) =

P
t

�

t

(x),
where the basis elements �

t

are piece-wise linear functions
or simplices, known as finite elements. The solution y(x) is
then expressed as y(x) =

P
t

y

t

�

t

(x) and y

t

is representing
the value of the solution at a defined node of the simplex, i.e.
a finite element. Using this basis expansion, equation (2)
reduces to the linear algebraic equation

Ay = h, (4)

where y = (y
t

)
t=1...T and A can be calculated from the

weak-form integral.

The choice of the finite element grid is still open, but it can
be seen that the relations between the neighborhood of y

t

can be concisely expressed as edges between corresponding
nodes in a graph structure G. Using this relationship, we
use a GNN and graph convolutions to learn the solution
operator of (4).

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks

Poisson Equation for electrostatic and magnetostatic
problems: The Poisson Equation can be used to explain
many physical phenomena. In the following, we focus on
experiments with electrostatics and magnetostatics simu-
lations on two-dimensional meshes. The derivations we
present are based on Langtangen et al. (2017). The electric
potential U can be described with the following variant of
the Poisson Equation:

�r2
U =

⇢

✏

, (5)

where ⇢ is the charge density and ✏ is the permittivity of the
material. With the Dirichlet boundary condition, we set U
at the boundary to a fixed value of zero. Note that we can
still include PDEs with non-zero boundary conditions in
this configuration: Our final operator would be applicable to
non-zero boundary conditions by including the boundary to
the solution domain and placing corresponding charges on
those nodes. The solution can then be found by creating a
new boundary outside of the solution domain, which can be
discarded afterwards. After solving equation (5), the electric
field can be computed via the gradient of the potential:

�rU = E. (6)

Let x and y be the spatial coordinates of the mesh. To simu-
late magnetostatic effects on a two-dimensional mesh, we
consider electric currents along the z axis that are orthog-
onal to the mesh. The magnetic vector potential A can be
described as

�r2
A = µI, (7)

where I is the current density and µ is the permeability of
the material. We consider the case I

x

= I

y

= 0. Our
magnetostatics experiments can thus be viewed as sets of
infinite wires that are orthogonal to the two-dimensional
mesh. As the cross section of the wires looks the same
irrespective of the z coordinate, we find that A

x

and A

y

cannot depend on z. For symmetry reasons, the magnetic
field is zero in z direction and the interesting part of the
vector potential can be reduced to a scalar value A

z

. With
the Dirichlet boundary condition, we set A

z

at the boundary
to a fixed value of zero. With a similar argument as above,
our trained solution operator can generalize to non-zero
boundary conditions as well. After solving equation (7), the
magnetic field can be derived as the curl of A, or in our
case, simply:

B

x

=
@A

z

@y

,B

y

= �@A

z

@x

. (8)

4. GNN Solution Operator Experiments
After discussing the variants of the Poisson equation that we
aim to solve in section 3, we now turn to the description of
the concrete experiments and the data generation process.

PDE Quantities

Input es
Distance to border (dx, dy)

Charge (⇢)
Boundary condition

Output es Electric potential (U)
Electric field (E

x

, E
y

)

Input ms
Distance to border (dx, dy)

Electric current (I)
Boundary condition

Output ms Magnetic vector potential (A
z

)
Magnetic field (B

x

, B
y

)

Table 1. Overview of the node attributes used as input and target
for training of the GNNs. es: electrostratics, ms: magnetostatitcs.

4.1. Expressing PDE problems on graphs

The triangulation of the solution domain for the use of FEM
solutions can naturally be expressed as a graph. Each node
p

i

of the triangulation can be described by a binary feature
b

i

2 {0, 1}, denoting whether the point is a boundary point
or interior point, and additional features q

i

describing the
inhomogeneities of the PDE, i.e. p

i

= (b
i

, q

i

). We also use
relative distances D

ij

between connected nodes as edge at-
tributes in the graph. See table 1 for an overview of the node
attributes. In figure 2 we show two examples of generated
inhomogeneities and PDE solutions within our data.

The goal of our approach is to learn a neural network, such
that

y = NN
✓

[p,D], s.t. Ay = h, (9)

where NN
✓

is a neural network parametrized by ✓ that op-
erates on the node features p and edge features D defined
above. We train this network such that, given a triangulation
mesh x and additional features, it predicts the solution val-
ues y of the underlying PDE. Note that an individual value
y

i

can be a scalar or a vector depending on the underlying
system described by the PDE. This corresponds to learning
the solution operator in equation (4). Our final network is
able to predict solutions for a variety of geometries with
only a few graph convolution operations and faster than an
FEM solver.

We parameterize the model using a GNN where each node
in the triangulation maps to a node in the GNN. In this way,
our approach is extensible to modern FEM triangulation
meshes that are typically not equidistant but dynamically
refined as e.g. in (Pfaff et al., 2021). We train the network
in a supervised fashion to predict the solution to a specific
instance of the corresponding PDE that was obtained from a
simulation via an FEM solver. Adapting the mesh resolution
to underlying properties of the physical simulation would be
a straightforward extension, which we defer to future work.

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks

Figure 2. Visualized input and output quantities for the square mesh. For the scalar fields (potentials) we plot the magnitude. For the
vector fields, we visualize the magnitude of the field and overlay it with arrows depicting the field orientation. (a) The charge input for the
electrostatics problem. (b–c) Prediction targets in form of the potential and the electric field. (d) Current input for the magnetostatics
problem. (e–f) Prediction targets in form of the magnetic vector potential (only z component) and the magnetic vector field.

(a) Visualization of the five mesh types without any mesh augmentation.

(b) Examples of meshes with mesh augmentation. The U-mesh is not augmented.

Figure 3. Examples of the different mesh geometries used for solving the PDEs and constructing the dataset. The augmentations are
applied to (i) the disk mesh and square mesh, where we vary the node density (ii) the disk with a hole, where we vary the hole size and
location (iii) the L-mesh, where we control the size of the cutout. The nodes where Dirichlet boundary conditions are active are marked in
green. Note that the different meshes also vary in resolution.

Mesh augmentation Number of charges / currents
set1 5 1–3
set2 3 1–3
set3 5 4–5

Table 2. For each mesh, we generate sets of 2500 samples each:
we generate data with and without mesh augmentation and also
vary the number of positive charges or currents. For each set in the
table we generate a total of 12 500 samples, as we use 5 meshes.
The data generation is applied equally for the electrostatics and
magnetostatics simulations.

4.2. Dataset Generation

We generate datasets for several physical quantities over
a variety of geometries using different simple simulations
with the FEniCS library (Scroggs et al., 2021), a free FEM
solver.

Mesh geometries and mesh augmentations: We use five
different mesh geometries on which we solve the PDEs

numerically. Our geometries are comparable to recent
work (Hsieh et al., 2019): A square mesh, a disk with and
without a hole, an L-shaped mesh and a U-shaped mesh. See
figure 3(a) for a visualization of the meshes. We use nor-
malized coordinates in the range [0,1] to define our meshes
and thus do not report units for the coordinates. Our de-
fault square mesh has 256 evenly distributed nodes, the disk
mesh has 252 nodes. To construct a disk with a hole, we use
a disk with radius 0.5 and center (0.5, 0.5) and a circular
cutout with center (0.5, 0.5) and radius 0.12. This yields 82
nodes for the disk with hole. For the L-mesh, we cut out
one quarter of a square which yields 80 nodes. We construct
a regular U-mesh with 68 nodes as a cutout from a unit
square. The absolute positions of the nodes in the meshes
are not relevant, as we do not use those during training. We
use Delaunay triangulation to obtain the tesselations for all
shapes.

In addition to the basic meshes, we induce variability to
the data using mesh augmentations. These augmentations
act as a regularizer to the network similar to standard data

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks

augmentation techniques in other domains. We hypothesize
that these augmentations are useful for training a network
that is able to generalize to a variety of meshes with different
geometries. The transforms consist of random variations of
the mesh density of the disk and square shape, the location
and radius of the hole in the disk as well as the size of the
cutout in the L-mesh. A set of exemplary augmentations are
depicted in figure 3(b). We do not apply augmentations to
the U-mesh, as it is only used for testing generalization.

Specifically, for the square shape, we vary the number of
nodes and thereby the resolution of the mesh ranging from
64 to 441 nodes. Similarly for the disk shape, we vary the
number of nodes ranging from 63 to 411. For the disk with
a hole, we vary the x and y coordinates of the cutout, both
in the range of 0.35 to 0.65. We also vary the radius of the
cutout from 0.05 to 0.25. For the L-mesh, we vary the width
and height of the cutout rectangle both in the range of 0.2 to
0.8.

During training, we compare the proposed mesh augmen-
tations with other standard approaches like node or edge
dropout or dropout of embeddings (see section 4.4 for a
more in-depth description).

Physical problems: Having described the mesh geometries
underlying the dataset, we now turn to the physical PDEs we
aim to solve on those meshes. We focused on simulating the
two-dimensional electrostatics and magnetostatics problems
described in section 3. The magnetic vector potential as well
as the electric potential are described by Poisson equations
with current or charge inhomogeneities respectively. We
also experiment with training the networks to predict other
quantities like the magnetic or electric vector fields.

In the case of electrostatics, we generated up to 3 circular
charges for each instance. The charges are distributed ran-
domly over the mesh and all have the same positive charge
density. We consider the permittivity ✏ to be constant. Gen-
eralizing across different values for the permittivity and
charge density should be possible with a minor modifica-
tion of our dataset, but we chose to omit this for simplicity.
We then solved the two-dimensional electrostatics problem
numerically and saved the mesh with its metadata as well as
the resulting field and potential solution as a single instance
of the resulting dataset. For the magnetostatics experiments,
we followed the same approach like above, but replaced the
circular charges with an electric current and assume a con-
stant permeability µ. Again, generalizing across different
values of the permeability has been omitted for simplicity.

For each of the meshes and PDEs, we created three groups
of 2500 simulations: The first group was generated with-
out any mesh augmentation. The second group uses mesh
augmentation as described above. The third group includes
more difficult simulations that are composed of simpler

ones, such as examples with a higher number of charges or
currents. The different settings are summarized in table 2.
We generated 7500 simulations for each mesh, i.e. 37 500
simulations in total.

4.3. Experiments

We create two different tasks to test the capabilities of our
model with respect to its approximation quality and gen-
eralizibility. More specifically, we test (i) superposition,
i.e. the networks’ ability to generalize to a larger number
of inhomogeneities by summing up the results seen dur-
ing training. (ii) Shape generalization, i.e. the model’s
ability to generalize to previously unseen geometries. In
both cases, we test the performance with and without mesh
augmentation to demonstrate the importance of data-driven
regularization. To evaluate these tasks, we need to split the
data into training, validation and test sets accordingly. The
splitting strategies apply equally to the magnetostatics and
electrostatics experiments. We make the full dataset and
experiment splits publicly available.

We design a single experiment to test superposition: Consid-
ering all meshes, we test if the model can generalize from
simple problems (e.g. electrostatics simulations with up to
three charges) to more complex compositions (e.g. elec-
trostatics simulations with up to five charges). For testing
generalization across meshes of different shapes, we train
on a subset of all meshes and use a single unseen mesh for
testing. To make the shape generalization task more diffi-
cult, we chose to exclude the U-mesh, which exhibits less
symmetries than others.

In total, we split the generated data (see table 2) in two test
sets and two training and validation sets:

Training / validation set without mesh augmentation:
We select all generated data without mesh augmentation
and 1–3 charges (set1 in table 2) from the square mesh,
L-mesh, circle and circle with a hole (all meshes except
the U-mesh). We split this data into training and validation
using a 80:20 split. There are a total of 2000 samples in the
validation set and 8000 samples in the training set without
mesh augmentation.

Training / validation set with mesh augmentation: We
select all generated data with mesh augmentation and 1–3
charges (set2 in table 2) from the square mesh, L-mesh,
circle and circle with a hole (all meshes except the U-mesh).
We split this data into training and validation using a 80:20
split. There are a total of 2000 samples in the validation set
and 8000 samples in the training set with mesh augmenta-
tion.

Shape generalization test set: We select all generated data
without mesh augmentation (set1 in table 2) from the U-
mesh. We have 2500 samples in this test set.

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks

Superposition test set: We select all generated data with-
out mesh augmentation and 4–5 charges (set3 in table 2)
from the square mesh, L-mesh, circle and circle with hole
(all meshes except the U-mesh). To be of the same size
like the shape generalization test set, we randomly sample
25% of this data, such that there are 2500 samples in the
superposition set.

The two tasks can be summarized as follows: For the su-
perposition task we train and validate two times, each time
using one of the train and validation sets. We test each
experiment on the superposition test set. For the shape
generalization task we train and validate two times, each
time using one of the train and validation sets. We test each
experiment on the shape generalization test set.

4.4. GNN Architecture and Training Details.

Our model follows the encoder-processor-decoder architec-
ture proposed in recent work on learning physical simu-
lations with GNNs (Pfaff et al., 2021). The encoder and
decoder are two-layer MLPs with 128 hidden units each and
ReLU nonlinearities except for the output layer of the de-
coder, after which we do not apply any nonlinearity. We use
the spectral graph convolution operator introduced by Def-
ferand et al. (Defferrard et al., 2016) with 128-dimensional
hidden features. We set the number of hops for the graph
convolutions in the processor to K = 5. With the same
number of graph convolution layers, this allows capturing
information across a broader receptive field in comparison
to the Neural Operator Network (Li et al., 2020), which
employs message passing only between neighboring nodes
directly. We use 3 consecutive graph convolutions with a
ReLU nonlinearity after each step. The model has a total
of 280 835 parameters. We implement the GNN based on
PyTorch (Paszke et al., 2019) using the PyTorch Lightning
framework (Falcon & the PyTorch Lightning team, 2019)
as well as PyTorch Geometric (Fey & Lenssen, 2019).

We use the Adam optimizer (Kingma & Ba, 2014) with
learning rate 1E-3 and betas 0.9 and 0.999. We use the
mean squared error over all predicted quantities for training
and reporting results. We use a batch size of 32 and train on
an NVIDIA T4 with 16GB VRAM in a Google Kubernetes
cluster. The node attributes, i.e. the input of the encoder,
contain the charge (current) of the node, a flag indicating
whether or not it is part of the boundary and the node’s
distance to the closest boundary node. We use relative
distances to neighboring nodes as edge attributes.

As a normalization strategy, all features are divided by their
respective maximum absolute values, which are obtained
from both accumulated train splits (see section 4.3). The
training data for all quantities thus lies in the range [-1,1].
We report results relative to the normalization constants
without units. The network is tasked to predict the electric

PDE Task Mesh aug. MSEpot MSEfield

es shape 5 0.327E�3 2.723E�3
es shape 3 0.006E�3 1.821E�3

ms shape 5 0.161E�3 2.640E�3
ms shape 3 0.006E�3 1.338E�3

es sup. 5 0.272E�3 0.602E�3
es sup. 3 0.102E�3 0.267E�3

ms sup. 5 0.256E�3 0.434E�3
ms sup. 3 0.172E�3 0.276E�3

Table 3. Test results for electrostatics (es) and magnetostatics (ms)
PDEs. Mesh augmentation (mesh aug.) denotes if the train-
ing/validation set including or excluding mesh augmentation is
used. The best results are highlighted. The data for all experiments
is normalized and thus results are multiples of normalization con-
stants and reported without physical units. The top half shows the
rest results in the shape generalization (shape) task: The shape
generalization test set is used for these experiments. The bottom
half shows the test results for the superposition (sup.) task: The
superposition test set is used in these experiments.

PDE Regularization MSEpot MSEfield

es feature drop 1.094E�3 4.104E�3
es none 0.327E�3 2.723E�3
es node drop 0.077E�3 3.077E�3
es edge drop 0.041E�3 2.826E�3
es mesh augmentation 0.006E�3 1.821E�3

Table 4. Study comparing mesh augmentation with various other
regularization techniques for the electrostatics (es) PDE. The shape
generalization test set is used in all experiments. The best results
for each quantity and problem are highlighted.

(magnetic) potential as well as the electric (magnetic) vector
fields.

We train each experiment for 150 epochs and validate after
each epoch. For the final evaluation, we use the model
parameters from the epoch with the lowest validation loss.
We use the same random seed for all experiments.

We compare our proposed mesh augmentation with other
regularization and augmentation techniques. We use
dropout of node features before feeding them to the en-
coder with a probability of 0.2 (feature dropout), dropout of
nodes in the graph with a probability of 0.1 and dropout of
edges in the graph with a probability of 0.2.

4.5. Results

We first show that the capability to solve PDEs on meshes
with varying shapes is greatly enhanced by mesh augmenta-
tion during training. Table 3 summarizes the results for the
shape generalization task for both the electrostatics and mag-

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks

(a) Largest errors for Superposition.

(b) Largest errors for shape generalization.

Figure 4. Visualizations of the largest testing errors for our best
performing models. We compare predictions of the model (pred)
with ground truth data from the FEM simulation (gt). The back-
ground color depicts the magnitude of the respective field and the
orientation is denoted by the arrows. The mean squared errors
(vector field) for the shape experiments are 7.327E�3 (electro-
statics) and 10.05E�3 (magnetostatics). The mean squared errors
(vector field) for the superposition experiments are 1.013E�3
(electrostatics) and 1.154E�3 (magnetostatics).

netostatics problems. Note that, due to the normalization of
all quantities, we report results without units as described
in section 4.4. For this task, the model is presented with an
unseen mesh (the U-mesh) during testing. Comparing the
results for the electric (magnetic) potential, the version of
the model with mesh augmentation outperforms the baseline
without mesh augmentation by at least two orders of magni-
tude. For the derived quantities, i.e. the electric (magnetic)
field, there is a smaller but still substantial improvement.
Overall, mesh augmentation seems to be a crucial compo-
nent for generalizing to unseen shapes.

Secondly, we show that mesh augmentation improves the

performance for the superposition task as well. Table 3
summarizes the results for the superposition task for both
the electrostatics and magnetostatics problems. For both the
prediction of the potentials as well as the derived quanti-
ties, the electric and magnetic fields, we notice substantial
improvements when using mesh augmentation. We there-
fore argue that mesh augmentation is a general technique to
improve generalization for different kinds of tasks. More
generally, diversity in the training data seems to improve the
performance of the model with respect to a variety of tasks,
which suggests that training on a diverse dataset with dif-
ferent meshes is a key ingredient for learning generalizable
solution operators for static PDEs.

To investigate this further, we study other techniques to aug-
ment and regularize training and compare those with the
proposed mesh augmentation. We exemplarily select the
electrostatics problem to carry out this study. In general,
those techniques that augment and vary the graph struc-
ture lead to improvements. Table 4 shows the results for
this experiment comparing mesh augmentation with ran-
dom dropout of entire nodes or edges as well as dropout
of node features and no augmentation at all. The dropout
of features, which does not change or augment the graph
structure, performs worse than no augmentation at all. Both
dropout of edges and nodes change the mesh structure and
thus contribute to better generalization. Mesh augmentation
clearly outperforms all other augmentation techniques. This
supports our argument that changes in the mesh structure
during training are essential for learning generally applica-
ble solution operators.

We further investigate the root cause of the comparatively
high prediction error for the electric and magnetic fields.
This behavior can be observed especially for the shape gen-
eralization task in table 3. In figure 4, we analyze the largest
errors of our best-performing model for both the shape gen-
eralization and the superposition tasks. For the shape gener-
alization task, we observe, that there is a mismatch in the
prediction of the directions for both the magnetic and elec-
tric field. We also find that the model’s predictions violate
physical constraints like r⇥ E = 0 for the electric field.

4.6. Runtime comparison

To demonstrate the runtime benefits of our GNN opera-
tor, we compare the time to compute solutions for a fixed
electrostatics PDE solved on a square mesh with varying
resolution. We use 16 Intel(R) Xeon(R) CPU @ 2.80GHz
cores for the study. A major advantage of our GNN operator
is that it can be parallelized and executed on a GPU, while
there is no GPU implementation available for the FEniCS
library (Scroggs et al., 2021). We also evaluate the run-
time using an NVIDIA T4 with 16GB VRAM for running
inference with our trained GNN operator.

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks

Figure 5. Runtime comparison of our GNN with the fenics FEM
solver for predicting solutions on square meshes. We plot the time
for solving a single example PDE versus the number of nodes in
the mesh using a logarithmic scale. We compute each point on
the curves as an average over 5 independent runs. The error bars
depict the 95% confidence interval.

In figure 5, we compare the runtime of our trained operator
with the iterative baseline. Our GPU-based implementation
in PyTorch Geometric (Fey & Lenssen, 2019) is more than
an order of magnitude faster than the baseline using an it-
erative FEM solver, while we already observe significant
improvements for the CPU-based version due to paralleliza-
tion on multiple CPU cores. Our results are similar to those
of (Hsieh et al., 2019), who observe faster execution using
a CNN-based approximation of an iterative FEM solver.

5. Summary and Conclusion
To the best of our knowledge, we are the first to investigate
the role of diversity in training data for learning accurate
solutions operators in the case of static PDE problems. We
show, that graph networks as approximators for static FEM
simulations can generalize to unseen meshes with different
shapes as well as an increased number of inhomogeneities
with respect to charges or currents.

One of our key findings is that augmentation techniques
on meshes are essential to enhance the ability of the neural
operator to generalize. This suggests that graph neural net-
works can be used as universal solution operators for classes
of PDEs, but only if they are trained carefully. Especially,
diversity in the training data seems to be a key ingredient to
enable robust generalization.

In all our tasks, the electric or magnetic potential can be
approximated with high accuracy. We therefore show that
our system can solve the Poisson equation for a variety of

different constraints. For the prediction of derived quantities
like the electric or magnetic field, we observe comparatively
large errors. As mentioned in section 4.5, we observe that
for these quantities the model violates physical constraints.

Finally we argue that our GNN-based approach is flexible
and able to generalize to a variety of different meshes, while
it exhibits significant runtime advantages compared to itera-
tive PDE solvers and heavily benefits from parallelization
especially on GPUs.

We conclude that further research is needed to enable the
learning of explicit or implicit physical constraints. As a
main limitation of our work, it remains to be shown that
more general classes of PDEs besides Poisson equations
can be solved using our method. We aim at extending this
study for a range of different problems and believe that our
dataset should be used to verify the robustness for other
neural operators in the future. The meshes that we use are
generated using Delaunay triangulation with similar dis-
tances between all connected nodes. It remains to be shown
that our approach generalizes to meshes with dynamically
refined node densities.

Contributions and Acknowledgments. WL lead the in-
vestigation, designed and implemented the experiments. SO
supported with the experiment design, writing and delivered
input on the physics problems. JSO helped in designing the
study and experiment framework and oversaw the overall
work. We would like to thank Maximilian Schambach for
insightful discussions and feedback on the writing.

WL and JSO kindly acknowledge funding by the Fed-
eral Ministry for Economic Affairs and Climate Action
(BMWK) within the project ”KITE: KI-basierte Topolo-
gieoptimierung elektrischer Maschinen” (#19I21034B). SO
acknowledges funding by the DFG under SFB TR 185,
Project Number 277625399.

References
Aarts, L. P. and der Veer, P. V. Neural network method for

solving partial differential equations. Neural Processing
Letters, 14:261–271, 2004.

Afshar, Y., Bhatnagar, S., Pan, S., Duraisamy, K., and
Kaushik, S. Prediction of aerodynamic flow fields using
convolutional neural networks. Computational Mechan-
ics, 64:525–545, 2019.

Alet, F., Jeewajee, A. K., Bauzá, M., Rodriguez, A., Lozano-
Perez, T., and Kaelbling, L. P. Graph element networks:
adaptive, structured computation and memory. ArXiv,
abs/1904.09019, 2019.

Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D. J., and
Kavukcuoglu, K. Interaction networks for learning about

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks

objects, relations and physics. ArXiv, abs/1612.00222,
2016.

Brandstetter, J., Worrall, D. E., and Welling, M. Message
passing neural pde solvers. ArXiv, abs/2202.03376, 2022.

Cai, S., Mao, Z., Wang, Z., Yin, M., and Karniadakis, G. E.
Physics-informed neural networks (pinns) for fluid me-
chanics: A review. ArXiv, abs/2105.09506, 2022.

Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris,
C., and Veličković, P. Combinatorial optimization and
reasoning with graph neural networks. arXiv preprint
arXiv:2102.09544, 2021.

Chamberlain, B. P., Rowbottom, J. R., Gorinova, M. I.,
Webb, S., Rossi, E., and Bronstein, M. M. Grand: Graph
neural diffusion. In ICML, 2021.

Chen, J., Hachem, E., and Viquerat, J. Graph neural net-
works for laminar flow prediction around random two-
dimensional shapes. Physics of Fluids, 2021.

de Avila Belbute-Peres, F., Economon, T. D., and Kolter,
J. Z. Combining differentiable pde solvers and graph
neural networks for fluid flow prediction. In ICML, 2020.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. Advances in neural information pro-
cessing systems, 29, 2016.

Falcon, W. and the PyTorch Lightning team. Py-
torch lightning, 2019. URL https://www.

pytorchlightning.ai.

Fang, Z. and Zhan, J. Z. A physics-informed neural network
framework for pdes on 3d surfaces: Time independent
problems. IEEE Access, 8:26328–26335, 2020.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Henderson, R., Clevert, D.-A., and Montanari, F. Improv-
ing molecular graph neural network explainability with
orthonormalization and induced sparsity, 2021.

Hsieh, J.-T., Zhao, S., Eismann, S., Mirabella, L., and Er-
mon, S. Learning neural pde solvers with convergence
guarantees. arXiv preprint arXiv:1906.01200, 2019.

Jumper, J. M., Evans, R., Pritzel, A., Green, T., Figurnov,
M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
Zı́dek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl,
S. A. A., Ballard, A., Cowie, A., Romera-Paredes, B.,
Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S.,
Reiman, D. A., Clancy, E., Zielinski, M., Steinegger, M.,
Pacholska, M., Berghammer, T., Bodenstein, S., Silver,

D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli,
P., and Hassabis, D. Highly accurate protein structure
prediction with alphafold. Nature, 596:583 – 589, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Langtangen, H. P. and Logg, A. Solving PDEs in python:
the FEniCS tutorial I. Springer Nature, 2017.

Li, Z.-Y., Kovachki, N. B., Azizzadenesheli, K., Liu, B.,
Bhattacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Graph kernel network for partial differential
equations. ArXiv, abs/2003.03485, 2020.

Li, Z.-Y., Kovachki, N. B., Azizzadenesheli, K., Liu, B.,
Bhattacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. ArXiv, abs/2010.08895, 2021.

Mayr, A., Lehner, S., Mayrhofer, A., Kloss, C., Hochreiter,
S., and Brandstetter, J. Boundary graph neural networks
for 3d simulations. ArXiv, abs/2106.11299, 2021.

Maziarka, L., Danel, T., Mucha, S., Rataj, K., Tabor, J., and
Jastrzebski, S. Molecule attention transformer, 2020.

Palade, V., Petrov, M. S., and Todorov, T. D. Neural network
approach for solving nonlocal boundary value problems.
Neural Computing and Applications, pp. 1–19, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. W. Learning mesh-based simulation with
graph networks. ArXiv, abs/2010.03409, 2021.

Salvi, C. and Lemercier, M. Neural stochastic partial differ-
ential equations. ArXiv, abs/2110.10249, 2021.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. W. Learning to sim-
ulate complex physics with graph networks. ArXiv,
abs/2002.09405, 2020.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20:61–80, 2009.

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks

Scroggs, M. W., Dokken, J. S., Richardson, C. N., and
Wells, G. N. Construction of arbitrary order finite element
degree-of-freedom maps on polygonal and polyhedral cell
meshes, 2021. URL fenicsproject.org.

Yao, H., Gao, Y., and Liu, Y. Fea-net: A physics-guided
data-driven model for efficient mechanical response pre-
diction. ArXiv, abs/2002.01893, 2020.

Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks

6. Appendix
6.1. Elasticity data

In an effort to create a more challenging dataset to foster
future research, we create data for another PDE correspond-
ing to gravity-induced deflection within a linear elasticity
problem. The following derivations are based on Langtan-
gen et al. (2017). The initial equations, describing small
elastic deformations, are

�r · � = f (10)
� = �Tr (✏) I + 2µ✏ (11)

✏ =
1

2

h
ru+ (ru)T

i
. (12)

Here, f is the force acting on the body, � and µ are the Lamé
coefficients, I is the identity matrix, ✏ is the strain tensor, �
is the stress tensor and u is the displacement vector field.
By combining the last two equations we obtain

� (u) = �(r · u)I + µ(ru+ (ru)T). (13)

When solving these equations numerically, it is useful to
work in a variational formulation. For this reason, we intro-
duce an arbitrary test vector v and integrate over the whole
body to obtain the condition that must hold for any v:

a (u, v) = L (v) (14)

where

a (u, v) =

Z

⌦
� (u) : ✏ (v) dx, (15)

L (v) =

Z

⌦
f · v dx+

Z

@⌦T

T · v ds, (16)

✏ (v) =
1

2

⇥
rv + (rv)T

⇤
(17)

The colon operator represents the inner product between
tensors (summed pairwise product of all elements) and @⌦

T

is the part of the boundary where we prescribe the boundary
condition � · n = T , with n being the outward pointing
surface normal vector.

The data generation process for the elasticity problem is
exactly the same as described in section 4.2. See figure 6
and table 5 for an overview of the input and output quantities
we use for the linear elasticity data. For set1 and set2 in table
2, we use 1–3 fixed vertical lines (via boundary conditions).
For set3, we use an increased number of 4–5 fixed vertical
lines to test superposition. For future reference, we will
also publish training/validation/test splits like described in
section 4.3 for this part of the dataset, although we did not
conduct any experiments yet.

Figure 6. Elasticity input boundary conditions and displacement
field.

Linear Elasticity

Input
Distance to border (dx, dy)

Distance to boundary condition (dx, dy)
Boundary condition

Output Displacement field (u
x

, u
y

)

Table 5. Overview of the node attributes used as input and target
for the linear elasticity problem.

