
Quantized single-particle Thouless pump induced by topology transfer from a Chern

insulator at finite temperature

Lukas Wawer,1 Razmik Unanyan,1 and Michael Fleischhauer1

1Department of Physics and Research Center OPTIMAS,
University of Kaiserslautern, 67663 Kaiserslautern, Germany

(Dated: October 26, 2021)

Quantized particle or spin transport upon cyclic parameter variations, determined by topological
invariants, is a key signature of Chern insulators in the ground state. While measurable many-body
observables exist that preserve the integrity of topological invariants also at finite temperature,
quantized transport is generically lost. We here show that a coupling of a one-dimensional Chern
insulator at arbitrary finite temperature to an auxiliary lattice can induce quantized transport
determined by the finite-temperature invariant. We show for the example of a Rice-Mele model that
the spatial distribution of a single particle in the auxiliary chain moves by a quantized number of
unit cells in a Thouless cycle when subtracting a spatially homogeneous o↵set even at a temperature
exceeding the band gap.

I. INTRODUCTION

Topology has become an important concept to clas-
sify ground states of many-body quantum systems [1–
26]. A gapped band structure is called topological if its
Bloch eigenstates show, colloquially speaking, non-trivial
”twists” as a function of system parameters. This global
property, characterized by integer invariants, has a high
degree of robustness to perturbations or deformations of
the Hamiltonian. The existence of topological invariants
is also the origin of a number of practically important
features of these systems. An example is the strictly
quantized particle or spin transport in insulating states
upon cyclic parameter variations, which manifests itself
in the one-dimensional Thouless pump [6–11] or in the
quantization of conductivities in the Quantum-Hall [1–7]
and Quantum-Spin-Hall e↵ects [20–23]. The quantiza-
tion of these observables is however restricted to ground
or low-temperature states of the many-body system and
the mixedness of a quantum state is seen as a general
adversary to topological quantization.

Extending topology to finite-temperature or non-
equilibrium states is a long standing quest [10, 27–43].
In [27] a topological classification of mixed states of non-
interacting fermions, which are Gaussian, was suggested
in terms of the ground state of the so-called fictitious
Hamiltonian, fully characterizing the Gaussian state.
More recently many-body correlators were identified that
generalize topological invariants to mixed states of sys-
tems with broken time-reversal (TR) symmetry [28–30]
as well as with TR invariance [31], and which support
this classification. While these many-body correlators
can be measured and corresponding detection schemes
have been proposed [29], it remains an open question if
topological quantization of observables with more direct
practical relevance survives for finite-temperature or non-
equilibrium systems. In the present paper we address this
question for a special class of 1 + 1 dimensional, Chern
insulators of non-interacting fermions in a thermal state
with temperatures below and above the band gap.

In a recent paper [32] we have shown that a one-
dimensional lattice system weakly coupled to an auxil-
iary, commensurate lattice of non-interacting fermions
can transfer its topological properties to the auxiliary
system at zero temperature. As a consequence of this
”topology-transfer” a quantized transport could be ob-
served in the auxiliary system upon an adiabatic cyclic
variation of system parameters of the original system
associated with its topological winding or Chern num-
ber. We here show for the simplest example of a 1 + 1-
dimensional model with broken TR symmetry, the Rice-
Mele model (RMM) [44], that the topology transfer
scheme also leads to a quantized transport of a single
particle in the auxiliary chain if the RMM is in a finite-
temperature state, provided an appropriate initial state
of the auxiliary particle is prepared.

II. TOPOLOGY TRANSFER

Let us consider a one-dimensional lattice of non-
interacting fermions with particle number conservation
consisting of L unit cells and with periodic boundary
conditions at some finite temperature T . The lattice
constant is a = 1 and we set ~ = 1 throughout this
work. The operators ĉµ,j , ĉ

†
µ,j describe the annihilation

and creation of a fermion in the jth unit cell and the
index µ 2 {1, . . . , p} denotes a possible internal degree of
freedom. Assuming translational invariance for simplic-
ity, the Hamiltonian can be written in momentum space
as

Hs =
X

k

pX

µ,⌫=1

ĉ†µ(k) hµ⌫(k) ĉ⌫(k). (1)

with k being the lattice momentum. h(k) is the single-
particle Hamiltonian in Bloch space which we assume to
have a non-trivial topological band structure. This sys-
tem is now weakly coupled to a commensurate lattice of
otherwise non-interacting auxiliary fermions with respec-
tive annihilation and creation operators âµ(k) and â†µ(k)
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as indicated in Fig.1,

H = Hs +H⌘, (2)

H⌘ = ⌘
X

k

pX

µ,⌫=1

ĉ†µ(k)ĉ⌫(k)â
†
µ(k)â⌫(k), (3)

where we have assumed a unit cell of p sites. Obviously
the number of fermions in both chains is individually
conserved.

FIG. 1. Topology transfer scheme: The original chain of
fermions (top) is weakly coupled to an auxiliary chain of oth-
erwise non-interacting fermions (bottom). In the absence of
the coupling the auxiliary fermions are deeply bound with
negligible hopping between lattice sites. The coupling is di-
agonal in momentum space and conserves the particle num-
bers in both chains. We here consider a single, initially well
localized particle in the auxiliary chain.

In Ref.[32] we have shown that an adiabatic cyclic vari-
ation of parameters of Hs(t), known as a Thouless pump,
induces a strictly quantized particle transport in the aux-
iliary chain if the system is in the ground state. In the
present paper we are going to show that this transfer
remains intact if the topological lattice is in a finite-
temperature state.

Let us first discuss the e↵ect of the auxiliary chain to
the topological lattice. We note that in an insulating
state of the isolated Chern insulator, particle transport
is entirely due to non-adiabatic terms and the action of
the auxiliary chain has to be compared to those terms.
In the instantaneous eigenbasis of h(k, t) the time evolu-
tion of the Chern insulator is described by the e↵ective
Hamiltonian

he↵(k) = diag
�
"µ(k)

�
+ @tr(k) · r�1(k) (4)

where r(k, t) is the matrix that diagonalizes h(k, t). The
second term describes non-adiabatic contributions and
scales as ⌧�1 where ⌧ is the cycle time. In order for a
Thouless pump in the combined system to be adiabatic ⌧
has to be chosen large enough, such that ⌘⌧ � 1, where
⌘ is strength of the weak coupling to the auxiliary chain.
On the other hand the perturbation created by the aux-
iliary chain to the dynamics of Hs is on the order of ⌘nk

where nk is the typical number of auxiliary particles per
lattice momentum k. Thus with respect to the adiabatic
transport in the original lattice the coupling to the auxil-
iary chain is a non-negligible perturbation if nk ⇠ O(1).

This back-action e↵ect can be eliminated either by us-
ing several identical topological lattices coupled to a sin-
gle auxiliary chain or by considering a single, initially well
localized auxiliary particle. In the latter case, which we
shall discuss in the following, the characteristic particle
number per mode scales inversely with system size and
H⌘ becomes an irrelevant perturbation to the adiabatic
particle transport in the Chern insulator.

III. SINGLE-PARTICLE TRANSPORT IN
TOPOLOGICAL BAND STRUCTURE

Let us first discuss a single particle in an given one-
dimensional topological band structure with lattice con-
stant a = 1 and length L with periodic boundary condi-
tions. The system is in general described by the single-
particle Hamiltonian matrix h(k) in momentum space,
describing the internal dynamics of a single unit cell. The
solution of the single-particle Schrödinger equation with
initial condition |� (t = 0)i = |�0i, can be represented
as

|� (t)i = 1p
L

L/2X

k=�L/2

Ck |ki ⌦ |�(k, t)i , (5)

where |Ck|2 gives the initial quasi-momentum probability
distribution. Since lattice momentum is conserved, the
time evolution factorizes and is governed by

i
@

@t
|�(k, t)i = h(k) |�(k, t)i . (6)

Now lets us consider a slow and cyclic time variation
h(k) ! h(k, t) such that the single particle band gap is
not closed, and h(k, t) = h(k, t + ⌧). We are interested
in the particle transport over a single period ⌧ . In the
following, we will only analyze the case when the initial
state |�(k, 0)i coincides with one of the adiabatic eigen-
states of h(k, 0) and corresponds to the same Bloch band
(e.g. the ground state) for all values of k.
The probability to find a particle in the unit cell n,

without specification of internal states, is

Pn (t) = hun(t) |un(t)i , (7)

where

|un(t)i = hn|�(t)i

=
1p
L

L/2X

k=�L/2

Ck hn |ki |�(k, t)i (8)

=
1

L

L/2X

k=�L/2

Ck exp

⇢
2⇡i

L
kn

�
|�(k, t)i .

Further we will examine the case of large system size
L ! 1. In this limit, the sum can be replaced by an
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integral, q = 2⇡k/L,

|un(t)i = 1

2⇡

Z ⇡

�⇡
dq C(q)einq |�(q, t)i . (9)

The shift of the center of mass (COM) of the parti-
cle upon an adiabatic cyclic change of Hamiltonian pa-
rameters without closing the single particle band gap,
R(t) = hx̂i0 � hx̂it, can be written as

R(t) =
1X

n=�1
nPn(t) =

Z ⇡

�⇡
dq

Z ⌧

0
dt |C(q)|2 @✏(q, t)

@q

+
1

2⇡

Z t

0
dt0

Z ⇡

�⇡
dq |C(q)|2A(q, t0), (10)

where for simplicity we assumed the initial condition
hx̂i0 = 0. The first term describes the dynamical con-
tribution in the adiabatically varying band structure in
the chosen Bloch band of energy ✏(q, t). The second
term describes geometric contributions with A(q, t) =
i h�(q, t) |@q�(q, t)i being the Berry connection. If we
choose |C(q)|2 equal for all lattice momenta q, the dy-
namical term vanishes and the term |C(q)|2 can be pulled
out of the second integral, which is then just the topolog-
ical winding number (Chern number) of the band struc-
ture. Thus after one cycle ⌧ the shift of the center of mass
R(⌧) is quantized. In the following we assume C(q) =
e�in0q (n0 denoting the initial unit cell). In this case the
state vector |un(t = 0)i coincides with the Wannier func-
tion of unit cell n0 in the given Bloch band (e.g. the low-
est band), which we set to n0 = 0. Analogously, we may
calculate the uncertainty�R2(t) = h�x̂2it = hx̂2it�hx̂i2t
of the center of mass coordinate. After a simple calcula-
tion we eventually obtain the following form

�R2(t) =
1X

n=�1
n2Pn(t)�R(t)2 (11)

=
1

2⇡

Z t

0
dt0

Z ⇡

�⇡
dq h@q�(q, t0) |@q�(q, t0)i �R(t)2.

(12)

After one cycle �R2 (⌧) = A+B, where

A =
1

2⇡

Z ⌧

0
dt0

Z ⇡

�⇡
dq h@q�(q, t0)|⇧(q, t0) |@q�(q, t0)i � 0

(13)
and

B =
1

2⇡

Z ⌧

0
dt0

Z ⇡

�⇡
dq |h� (q, t0) |@q�(q, t0)i|2 �R(⌧)2 � 0.

(14)
Here ⇧(q, t) = � |�(q, t)i h�(q, t)| is the projection op-
erator onto the orthogonal space to |�(q, t)i. In the adi-
abatic limit A does not vanish and has the geometric
interpretation of ”band flatness”. The second term, B,
includes a geometric dispersion, which does not depend
on the period ⌧ .

FIG. 2. Center-of-mass R(t) and dispersion �R (t) for a
RMM with hopping amplitudes t1,2 = �⌦0

4

�
1± cos

�
2⇡t
⌧

��

and o↵set � = ⌦0
2 sin

�
2⇡t
⌧

�
for an adiabatic Thouless pump

(a) ⌦0⌧ = 100 and (b) ⌦0⌧ = 20.

In Fig.2 we have illustrated the time evolution of the
center-of-mass R(t) as well as the dispersion �R(t) for
a Rice Mele model [44]. This model is used also in the
remainder of the paper to illustrate our findings. It has
a unit cell of two sites labelled (A) and (B), and has al-
ternating hopping amplitudes t1 and t2 as well as energy
o↵sets ±�

HRM = (15)

=
X

k

✓
ĉ†A(k)
ĉ†B(k)

◆T ✓
� �t1 � t2e�ik

�t1 � t2eik ��

◆✓
ĉA(k)
ĉB(k)

◆
.

Since the dynamical dispersion of the wave packet in-
creases with the length of the cycle period ⌧ , the adi-
abatic limit required for the quantization of the COM
motion is usually associated with a large spread of the
wave function. This can be seen from Fig.2. In the adi-
abatic limit, Fig.2a, there is quantization of the COM
shift but the spread is large, while going away from that
limit, Fig.2b, the spread is reduced but quantization is
lost. By flattening the energy surface of the adiabatic
transfer state one can reduce the dynamical dispersion of
the particle transport and only the geometric dispersion
remains.
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IV. TOPOLOGY TRANSFER TO A SINGLE
PARTICLE

In order to analyze the e↵ect of topology transfer from
a Chern insulator at finite temperature to a single parti-
cle, it is instructive to decompose the total Hamiltonian
(2) in the form

H = H0 +H1 (16)

where

H0 = Hs + ⌘
X

k

pX

µ,⌫=1

⌦
ĉ†µ(k)ĉ⌫(k)

↵
â†µ(k)â⌫(k) (17)

contains the system Hamiltonian Hs and the mean-field
interaction Hamiltonian, where mµ⌫ = hĉ†µ(k)ĉ⌫(k)i is
evaluated in the initial thermal state of Hs. The sec-
ond term in (16) formally describes the coupling of the
auxiliary chain to fluctuations in the original system

H1 = ⌘
X

k

pX

µ,⌫=1

⇣
ĉ†µ(k)ĉ⌫(k)�

⌦
ĉ†µ(k)ĉ⌫(k)

↵⌘
â†µ(k)â⌫(k)

(18)
and is responsible for the buildup of entanglement be-
tween the two chains.

Eq.(17) describes the evolution of auxiliary fermions
under an e↵ective single-particle Hamiltonian, which cor-
responds to the fictitious Hamiltonian of the original
topological model in the Gaussian thermal state

⇢ =
1

Z
exp

(
��

X

k

ĉ†(k) (h(k)� µ) ĉ(k)

)
(19)

where � = 1/(kBT ) and µ is the chemical potential.
Since this state is Gaussian, correlations can easily be
calculated leading to an e↵ective single-particle Hamilto-
nian proportional to

hc†µ(k)c⌫(k)i =
1

2


1� tanh

✓
�(h(k)� µ)

2

◆�

⌫,µ

, (20)

which has the same eigenstates than h(k). Moreover the
energy bands are flattened as compared to those of h(k).
In fact in the limit T ! 0 the band dispersion vanishes
completely.

A. Topology transfer in mean-field approximation

The discussion of the Sect.III can straightforwardly be
applied to the topology transfer scheme in mean-field ap-
proximation. In this limit, described by H0 alone, the
auxiliary particle evolves under the fictitious Hamilto-
nian of the finite-temperature Chern insulator. As seen
from eq.(20), the eigenstates of the fictitious Hamilto-
nian show a topological winding at any finite tempera-
ture with a winding- or Chern-number given by that of

FIG. 3. (a) Particle distribution Pn(t) of auxiliary parti-
cle after one Thouless pump cycle ⌧ = 100 for a finite-
temperature RMM in the mean-field limit with coupling
⌘ = 0.01�gap. The mean-field Hamiltonian is an e↵ective RM

Hamiltonian with hoppings t̃1,2(k) = ⌘
2"(k) tanh

⇣
�"(k)

2

⌘
t1,2

and staggered potential �̃(k) = ⌘
2"(k) tanh

⇣
�"(k)

2

⌘
�, where

"(k) =
p

�2 + t

2
1 + t

2
2 + 2t1t2 cos(2⇡k/L) is the energy and

t1,2 = (1 ± cos(2⇡t/⌧)), � = �2 sin(2⇡t/⌧) are the parame-
ters of the RMM. (b) Center of mass R(t) = hx̂it and spread
of the wave packet �R

2(t) = h�x̂

2it. While the motion of
the center of mass is strictly quantized for all temperatures
the spreading increases with increasing temperature.

the ground state of the topological model. Thus we ex-
pect a strictly quantized transport of the center of mass
R = hx̂i of the auxiliary particle in a single Thouless
cycle in the adiabatic limit. We see in Fig. 3 for the
example of a finite-temperature RMM that the particle
transport R(⌧) is indeed quantized for any temperature.
Furthermore for temperatures small compared to the gap
of the topological model the spread of the wave packet
in position space �R2(⌧) is small but increasing with
growing temperature, because the reduced flatness of the
mean-field energy bands with temperature.

B. Full dynamics

We now turn to the discussion of the full problem, i.e.
including the fluctuation coupling, H1. We again con-
sider a RMM at finite temperature coupled to a single
fermion according to eq.(1). Initially the auxiliary par-



5

ticle is prepared in a single unit cell in the lowest Wan-
nier state. We numerically calculate the time evolution
of the probability distribution Pn(t) to find the auxil-
iary particle at lattice site n. Fig.4a shows the resulting
distribution before and after one Thouless cycle in the
adiabatic limit for di↵erent temperatures of the RMM.
At t = 0 the Wannier state has equal weight at the two
sites of the unit cell. One recognizes that after one Thou-

FIG. 4. (a) Particle distribution Pn(t) after one Thouless
pump cycle in the auxiliary system of the full Hamiltonian
with coupling ⌘ = 0.01�gap. Despite increasing temperature
T one observes a clear and single peak which motion is strictly
quantized. (b) Particle distribution of the peak and the next
nearest neighbour peaks. For all temperatures the peak is
separated by its neighbouring peaks.

less cycle the peak of the probability distribution of the
auxiliary particle is shifted by exactly one unit cell for all
temperatures, even above the single particle gap. Di↵er-
ent from the mean-field limit there is a small spreading of
the distribution even at T = 0, while the COM of the dis-
tribution shifts by exact one unit cell as in the mean field
case. At finite values of T the dispersion of the probabil-
ity distribution di↵ers substantially from the mean field
behaviour. As can be seen in Fig.5 the spread is much less
pronounced in the full model than in the mean-field limit.
However, increasing the temperature there is a small flow
of probability away from the peaks into the wings of the
distribution creating a homogeneous background of prob-
ability in all unit cells. This homogeneous o↵set causes
a small shift of the center of mass of the particle distri-
bution from exact integer values. We numerically ver-
ified, however, that when the o↵set is subtracted and

FIG. 5. Comparison of the particle distribution Pn(t) af-
ter one Thouless pump cycle in the mean-field and the exact
model with coupling ⌘ = 0.01�gap.

the resulting distribution renormalized, the COM shift is
again perfectly quantized. Moreover, as seen in Fig.4b,
the probability weights in the main and second-to-main
peaks saturate at a rather large value when increasing
the temperature beyond the single-particle gap �gap of
the RMM. We conclude that the topology transfer from
a high-temperature topological model leads to quantized
transport of the peak of the probability distribution of
a single auxiliary particle. While there is a small proba-
bility flow to all other unit cells, this flow saturates and
only leads to constant background which can be well sep-
arated.

V. SUMMARY AND CONCLUSION

In the present paper we have shown that topological
properties of a one-dimensional Chern insulator at arbi-
trary temperature can be transferred to a single particle
in a second, auxiliary chain, weakly coupled to the first.
An adiabatic cyclic variation of parameters of the Chern
insulator leads to a quantized transport of the proba-
bility distribution of the auxiliary particle. While the
topologial quantization of transport in the Chern insula-
tor itself is lost for temperatures close or above the single-
particle gap, its topological properties remain encoded in
the covariance matrix of single-particle correlations. The
coupling is constructed in such a way that the auxiliary
particle experiences an e↵ective mean-field Hamiltonian,
called fictitious Hamiltonian, which is given by this co-
variance matrix. As a consequence an adiabatic cyclic
variation of parameters induces in the mean-field limit a
quantized motion of the center of mass determined by the
Zak-phase winding number of the fictitious Hamiltonian,
which is an integer-valued topological invariant.
We first considered the mean-field limit correspond-

ing to a single particle in an e↵ective topological band
structure. We showed that the change of the COM of an
initially well localized particle is always quantized for an
adiabatic Thouless pump cycle. At the same time there
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is a substantial spread of the particle distribution which
increases with the cycle time. This spread is minimized
to a geometric contribution if the band structure has flat
bands. At low temperatures of the Chern insulator, the
e↵ective mean-field Hamiltonian of the auxiliary particle
has a flat spectrum and there is only a small spread of
the probability distribution during a Thouless cycle.

The exact adiabatic time evolution of the system di↵ers
from the mean-field behaviour at larger temperatures,
which we could however only investiagte numerically for
a finite-temperature RMM model coupled weakly to a
single particle. Surprisingly and di↵erent from the mean
field limit, the peak of the probability distribution re-
mains well defined at all temperatures after a Thouless
cycle. It moves by an integer number of unit cells, de-
termined by the finite-temperature topological invariant

of the RMM. Because the initial state is however not
an exact eigenstate, there are non-adiabatic correction
during a pump cycle which result into a homogeneous
o↵set in the particle distribution. Subtracting this o↵set
and renormalizing the probability distribution leads to an
exactly quantized shift of the COM. Thus the discussed
transfer scheme provides a tool to directly observe topo-
logical invariants of finite-temperature states, such as the
ensemble geometric phase in non-interacting [28, 29] sys-
tems.
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