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I. I n t r o d u c t i o n  

Many branches of contemporary physics require atoms or molecules prepared in 
specified quantum statesmnot only for traditional studies of state-to-state collision 
dynamics, isotope separation, or laser-controlled chemical reactions, but also in 
more recently developing research areas of atom optics and quantum information. 
Of greatest interest is the fraction of all atoms or molecules in a specific state, a 
time-varying probability here termed thepopulation P(t). Schemes for transferring 
population selectively (i.e., to a single predetermined quantum state), such as 



58 N. If. Vitanov et aL 

excitation with frequency-swept pulses and stimulated Raman adiabatic passage 
(STIRAP), have opened new opportunities for coherent control of atomic and 
molecular processes. With the growing interest in quantum information, there 
is also concern with creating and controlling specified coherent superpositions 
of quantum states. These more general properties of an ensemble of atoms or 
molecules are embodied in the time-varying state vector g,(t). 

This chapter describes the basic principles underlying a variety of techniques 
that can be used to control state vectors and, in particular, to transfer popula- 
tion, selectively, between quantum states of atoms or molecules. We also describe 
experimental demonstrations of the various principles. (Aspects of these popula- 
tion transfer schemes have been reviewed by Vitanov et al., 2001.) All the methods 
share a common reliance on adiabatic time evolution, induced by a sequence of 
delayed, but partially overlapping, laser pulses. They begin with an ensemble of 
atoms or molecules in which the population is in a specified discrete quantum 
state. Then the sequence of laser pulses forces the population into a desired target 
state. Only highly monochromatized light can provide the selectivity needed to 
isolate a single final state--broadband light or charged particle pulses cannot so 
discriminate. The control of phase imposes further constraints; it requires coherent 
radiation, available only from a laser. 

One goal of the theory of coherent excitation is to predict, for a given set 
of radiation pulses, the probability that atoms will undergo a transition between 
the initial state and the desired target state (the population transfer efficiency). 
More generally, theory can predict the changes of a state vector g,(t) produced by 
specified radiation. Alternatively, theory can provide a prescription for pulses that 
will produce a desired population transfer or state vector change. 

We begin our discussion, in Section I.A, with a brief summary of the his- 
torical background for the subsequent discussions of adiabatic transfer schemes. 
Although the excitation techniques described in this chapter require coherent ra- 
diation, incoherent light, such as that from filtered atomic vapor lamps or from 
broadband lasers with poor coherence properties, also has very useful applications 
for selective excitation, some of which are described briefly in Section I.B. Coher- 
ent excitation differs qualitatively from incoherent excitation. To emphasize this 
difference, Section I.C contrasts some simple examples. 

Starting with Section II, we develop the general mathematical principles needed 
to describe coherent excitation and adiabatic time evolution of quantum systems. 
In Section III we apply this to the basic STIRAP process, wherein adiabatic 
evolution produces complete population transfer in a three-state Raman system. 
Section IV discusses various experimental demonstrations of the STIRAP tech- 
nique. Sections V-VIII describe various theoretical and experimental extensions 
of the original three-state STIRAP. Although our primary concern is with the 
effect of prescribed fields on atoms, the atomic excitation creates localized po- 
larization which alters the radiation as it propagates; Section X discusses some 
of the effects to be found by treating the field and the atoms together. Section XI 
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discusses some applications of the STIRAP principles in the rapidly growing area 
of quantum information and in the general area of quantum optics. Section XII 
offers a summary and comments on possible future work. 

A. EARLY DAYS OF LASER STATE SELECTION 

The use of lasers to address individual states in atoms or molecules dates back 
more than 30 years [for reviews see Bergmann (1988), Rubahn and Bergmann 
(1990)]. The early work, taking advantage of the small bandwidth and high spectral 
power density of laser radiation, employed lasers to populate individual rotational- 
vibrational levels in an electronically excited state of molecules, as preparation 
for collision studies (Kurzel and Steinfeld 1970; Bergmann and Demtr6der, 1971) 
or for spectroscopic analysis (Demtr6der et al., 1969). Later, individual thermally 
populated states in the electronic ground state were labeled through population 
depletion by optical pumping (Bergmann et al., 1978; Gottwald et al., 1986). That 
work paved the way for detailed studies in crossed molecular beams involving 
molecules in preselected rotational (Hefter et al., 1981) or individual vibrational 
states (Ziegler et al., 1988) colliding with atoms (Gottwald et al., 1987) or electrons 
(Ziegler et al., 1987). By 1986 laser state selection by population depletion had even 
been developed sufficiently to allow collision studies of molecules in individual 
magnetic sublevels (Mattheus et al., 1986; Hefter et al., 1986) with high resolution 
of the scattering angle. 

State selection by population depletion through optical pumping is limited to 
thermally populated levels. Access to higher lying vibrationally excited levels in 
the electronic ground state was gained by the Franck-Condon pumping method 
(Rubahn and Bergmann, 1990) whereby excitation, from thermally populated 
levels ( j " ,  v"), into a suitably chosen rovibrational level ( j ' ,  v f) in the electronically 
excited state, followed by spontaneous decay back to the electronic ground state, 
establishes a distribution fv , (v  f') of population over vibrationally excited levels v". 
Within the limits given by the optical transition rates, the distribution fv , (v")  can 
be controlled by a suitable choice of the level v'. 

In the early 1980s, high-power pulsed lasers became more readily available and a 
variety of other schemes for laser state selection, in particular for the population of 
vibrationally excited levels in the electronic ground state, such as overtone pumping 
(OTP) (Crim, 1984) or off-resonance stimulated Raman scattering (ORSRS) (Orr 
et al., 1984; Meier et al., 1986), were developed. In OTP, levels v 'I > 1 are directly 
excited from v " =  0 in a single photon transition. High laser power is needed 
because the transition probability decreases rapidly with A v". Only a small fraction 
of the molecules are typically excited to high-lying levels. In ORSRS the frequency 
difference between a strong (possibly fixed frequency) laser and a tunable laser 
matches the transition frequency between rotational levels in the vibrational states 
v I' = 0 and v" = 1. A substantial fraction (< 50%) of the molecules in a given state 
( j " ,  v" = 0) can be excited to v" = 1. 
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Another two-step process, stimulated emission pumping (SEP) (Kittrell et al., 
1981), has proven to be a flexible and very successful method for population 
transfer. In SEP a suitable level in an electronic state is excited. Rather than allowing 
spontaneous emission to distribute the population over many vibrational levels, 
another laser, the frequency of which is tuned to resonance with the desired target 
state, forces as much as 50% of the electronically exited molecules into that state. 
However, about 50% of the population will remain in the excited electronic state and 
will subsequently be distributed by spontaneous emission over other vibrational 
levels v". 

In the context of this early work the coherence properties of the radiation were 
not essential. It was therefore natural, in seeking to improve the flexibility of state 
selection, to look for schemes which also exploit coherence properties of lasers. 
Of particular interest were methods that would efficiently and selectively populate 
high-lying vibrational levels of molecules, which otherwise were not accessible 
for detailed collision studies. 

The attempts to selectively populate high-lying levels in the electronic ground 
state led to the development of a Raman laser that utilized a molecular beam as a 
gain medium (Jones et aL, 1983; Hefter et al., 1985). In that work, a ring cavity was 
built around a molecular beam whose axis coincided with the waist of the cavity 
(Fig. 1). The directional flow carried molecules into and out of the active region of 

M i 

2 

2 

3 
I0 cm 

FIG. 1. Raman laser with molecular beam and ring cavity. Top and side view. (From P. L. Jones, 
U. Gaubatz, U. Hefter, B. Wellegehausen, and K. Bergmann. An optically pumped sodium-dimer 
supersonic beam laser. Appl. Phys. Lett. 1983;42:222-224.) 
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the laser cavity. A pump laser, propagating along the cavity axis, coupled thermally 
populated levels (j",  v" = 0) to near resonance with levels v' in an electronically 
excited state. When implemented with a beam of sodium dimers, the rotational 
degree of freedom was cooled to a temperature of the order of Trot = 20 K by 
supersonic expansion. Therefore the density of molecules in levels (j",  v" = 0) 
with j "  < 15 was sufficiently high to provide a substantial gain. Thus, driven by 
the pump laser, Stokes radiation was generated in the cavity. Intracavity filters 
restricted laser oscillation to a single vibrational band v' --+ v", thereby providing 
the desired selectivity. Indeed, it was found (Becker et al., 1987) that up to 70% of 
the molecules in (j",  v" = 0) could be transferred to a specific level ( j " ,  v" --- 5). 

Further analysis of the scheme revealed, however, that the coincidence of the 
axis of the pump beam and the generated Stokes beam limited the achievable trans- 
fer efficiency for the following reason (see Fig. 2). The transit time of the molecules 
across the waist of the cavity was about an order of magnitude longer than the ra- 
diative lifetime in the electronically excited state. Near the axis of the cavity, the 
Stokes radiation (established during the prior buildup of laser oscillation) was suf- 
ficiently strong to compete successfully with spontaneous emission and thus to 
force the molecules into the desired state v" by a Raman process. However, detri- 
mental processes are unavoidable as the molecules enter or leave the cavity. When 
entering the cavity, the molecules are exposed to pump radiation while the Stokes 
radiation is still weak. Therefore, the latter cannot yet compete with the sponta- 
neous emission and a fraction of the molecules is lost by optical pumping to other 
vibrational levels. Detuning the pump laser from resonance with the level v' would 
not cure the problem: although detuning would reduce the loss rate, the gain would 
be reduced as well. As the molecules, placed into a level v" >> 1 near the center of 
the pump and Stokes beams, leave the cavity, they are still exposed to the Stokes 
radiation. This, again, leads to some loss of molecules due to optical pumping. 

Obviously, the detrimental losses due to spontaneous emission could be reduced 
when the axis of the Stokes laser beam, provided by an external source rather than 
generated in the cavity, would be shifted upstream of the axis of the pump laser, 

~D 

.,..~ 

(i) 

velocit----~of~ P 

0 Z 

(ii) 

0 z 

FIG. 2. (i) Profile of pump and Stokes laser intensities. The z axis is parallel to the axis of the 
molecular beam; z -- 0 corresponds to the intersection with the cavity waist. (ii) Same as (i) but with 
Stokes field shifted somewhat upstream. 
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while retaining some overlap of the beams. Although that reasoning aimed at the 
reduction of the losses due to incoherent processes, it led quickly to the develop- 
ment of the stimulated Raman adiabatic passage process (STIRAP). Encouraging 
results were obtained from numerical studies, including incoherent processes, and 
were supported by first experimental evidence (Gaubatz et al., 1988), before the ba- 
sic theory and experimental technique was fully developed (Gaubatz et al., 1990). 

It is important to note that already in 1984, Oreg et al. had published theoretical 
work that included the essential elements of the consequences of sequential pulse 
interaction, namely, 100% transfer efficiency when the Stokes radiation interacts 
first. However, the practical relevance of the result of that work remained unrec- 
ognized until the phenomenon was independently rediscovered and the method 
developed in Kaiserslautern. 

B. INCOHERENT POPULATION TRANSFER SCHEMES 

1. Incoherent Excitation o f  Two-State Systems 

Until the advent of laser light sources, theoretical descriptions of radiative excita- 
tion followed the lead of Einstein, who treated two-state atoms within a radiation- 
filled cavity (Einstein, 1917). With this approach one postulates a set of equations 
for the rate of change in atomic populations exposed to beams of light, the radiative 
rate equations, 

a_ 
Pn(t) = Z Rn m(t)Pm(t), (1) 

dt 
m 

linking the various changes in probabilities Pn(t) by a matrix of rate coefficients 
Rn,m(t) in which excitation and stimulated emission rates for two-state atoms are 
proportional to the instantaneous radiation intensity I(t) (power per unit area) and 
to the Einstein-Milne B coefficient, and in which spontaneous emission from the 
excited state (level 2) takes place at a rate A (cf. Shore, 1990, sect. 2.2). When all 
the two-level atoms are initially (at time t ~ - ~ )  unexcited (in state 1), when 
the radiation is sufficiently intense (the saturated regime in which spontaneous 
emission has a negligible effect, B I >> A), and when the two levels have the same 
degeneracy, then the excited-state population at time t is 

1 Pe(t) = ~ [1 - e-~F(t)], (2) 

where F(t) - ft_~ I(t ')  dt'  is the pulsed radiationfluence (energy per unit area) up 
to time t. As this expression shows, an increase of pulse fluence always increases 
the excited-state population, which approaches monotonically the saturation value 
of 50%. This is the best population-transfer efficiency achievable with incoherent 
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light. Once the radiation ceases, the atoms will spontaneously emit radiation and 
return (with exponential decay at rate A) to lower-lying levels. Eventually no ex- 
citation will remain; any excitation must be maintained by radiation. 

2. Optical Pumping 

The presence of spontaneous emission hinders direct excitation by providing an 
ever-present deexcitation rate. However, when one deals with more than two lev- 
els, spontaneous emission offers a mechanism for creating complete population 
transfer. The procedure can be understood from Fig. 3a: a radiation beam reso- 
nantly couples the initially populated state ~Pl to the excited state 7z2, from which 
spontaneous emission occurs. This uncontrolled radiative decay not only returns 
population to state ~Pl, it also takes some population into a third state 7z3 that is 
unaffected by the radiation beam. (Either its energy lies far from resonance with 
the initial state or it is prevented from interacting by selection rules based on po- 
larization of the light.) Each time an atom in state 7z~ absorbs a photon, there is a 
chance that the resulting decay of excited state lP2 will carry population into state 
7z3. Once population is in state ~P3 it is immune to further action by the radiation. If 
there are no other decay options than those to 7rl and 7z3, the resulting population 
transfer, opticalpumping, will eventually place all population into state 7r3. 

The simplicity of optical pumping has led to widespread use as a means of 
preparing atoms or molecules in a well-defined ground or metastable state--it re- 
quires only a single light source, which need not be a laser. Its main limitation is the 
lack of selectivity: the spontaneous emission step will generally place population 
in a mixture of final states--all the states into which the pump-excited state lp2 
can decay. The distribution of final populations is determined by the relative decay 
rates that link each final state with the excited state. For vibrational transitions 
in molecules these rates are proportional to Franck-Condon factors. These rarely 
exceed a few percent, and so the selectivity is correspondingly low. Furthermore, 

FIG. 3. (a) Linkage diagram for optical pumping. A pump field (not necessarily a laser) excites 
state ~P2, which spontaneously decays either back to state ~1, or to state %, or possibly to some other 
states. (b) Linkage diagram for stimulated emission pumping. A pump field populates state ~2, and a 
subsequent Stokes (or dump) field populates state %. 
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optical pumping has limited use in optically thick vapors: subsequent absorption 
of the spontaneous-emission photons will reexcite the atoms, via the transition ~3 
to gr2. Finally, the buildup of population in the target state takes place gradually, at 
a rate fixed by the A coefficient. It is therefore not possible to use optical pumping 
to move population more rapidly than this. 

3. Stimulated Emission Pumping 

Although optical pumping uses only a single light source, the overall population 
transfer involves two photons, as a Raman process: a pump photon from the 
imposed light source followed by a spontaneously emitted Stokes photon. It is 
natural to consider a stimulated Raman process in which externally supplied 
fields drive both transitions. A strong stimulated emission field will induce a 
transition to a selected final state, rather than to the mixture that would occur with 
spontaneous emission. 

In one form of this two-photon process of population transfer, stimulated emis- 
sion pumping (SEP) (Dai and Field, 1995), a pump field first places population 
from the initial state 7rl into the excited state gr2. Some time later a Stokes (or 
dump) field transfers population into the desired final state gr3 (hence the names 
pump and dump). Figure 3b depicts the relevant A-type linkage. 

Because of its simplicity, the SEP technique has enjoyed widespread application 
in collision dynamics and spectroscopy (Hamilton et al., 1986; Dai and Field, 
1995). Its main limitation is the low efficiency: typically the transfer efficiency 
does not exceeds 10%, but this is quite adequate for many spectroscopic studies. 

The reason for low efficiency is readily understood. If the intensity of the pump 
laser is sufficiently strong to saturate the ~1 +-~ 1/)'2 transition, then, as suggested 
by the solution to the two-level rate equations, at most 50% of the population will 
be transferred from state ~l to state gr2. If the Stokes laser is also sufficiently 
strong to saturate its transition, then half of the population in state gr2 will be 
subsequently transferred to the target state 7r3. Therefore at most one-quarter of the 
population can be transferred to the target state. Half of the population remains in 
the initial state, and the remaining quarter is distributed according to the branching 
of spontaneous emission from state 7r2. 

SEP efficiency can be improved slightly if the pump and Stokes pulses are 
applied simultaneously, rather than successively. If they are sufficiently strong to 
saturate the transitions, thereby equalizing the populations, then one-third of the 
population can be transferred to the target state gr3. 

C. COHERENT POPULATION TRANSFER 

The response of a quantum system to coherent (laser) radiation differs significantly 
from its response to light from a lamp, even a very monochromatic lamp. Whereas 
the sudden application of incoherent radiation to an atom or molecule typically 
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results in a monotonic approach to some equilibrium excitation, the sudden ap- 
plication of steady coherent radiation typically produces oscillating populations. 
These differences are clearly seen in the behavior of two-state systems, as noted 
below. They are equally evident in multilevel systems. 

1. Resonant Coherent Excitation: Rabi Oscillations 

The excited population Pz(t) of a two-state system exposed to steady coherent 
radiation does not follow any monotonically increasing pattern, such as Eq. (2). 
Instead it oscillates sinusoidally (Rabi oscillations). When the radiation is resonant 
(the carrier frequency equal to the Bohr frequency), the result is 

1 
P 2 ( t )  - 511 - c o s ( a t ) ] .  (3) 

The frequency of population oscillation, the Rabifrequency S2, will be associated 
below with the strength of the atom-radiation interaction. As will be shown, it is 
proportional to the square root of the laser intensity. 

When the radiation intensity varies, then so does the Rabi frequency S2(t), 
and the cosine argument f2t is replaced by the so-called pulse area A(t), or time 
integral of the Rabi frequency, 

f 
t 

f2t --+ S2(t') dt' = A(t). 
o o  

(4) 

Unlike the monotonic approach to a steady saturation value observed for incoherent 
excitation, here the excited-state population oscillates between 0 and 1. At times 
when the pulse area A(t) is an odd multiple of Jr (odd-zr pulses) the population 
resides entirely in the excited state: the population is completely inverted. (Recall 
that with incoherent excitation, no more than half the population can be excited.) 
For pulse areas equal to even multiples of zr (even-zr pulses), the system returns 
to the initial state. 

Although it is useful to consider single stationary atoms, in practice one must 
deal with an ensemble of atoms or molecules, often with a distribution of velocities. 
Atoms that move in the direction of a traveling wave experience a Doppler-shifted 
laser field, so their excitation is not exactly resonant. As noted in Eq. (18), their 
population oscillations are more rapid and have smaller peak values than do those 
of resonant atoms. Atoms that move across a laser beam will experience a pulse 
area that is dependent on the duration of their transit time across the beam, and 
hence on their velocity. These velocity-dependent interactions, and the presence 
of fluctuations in the laser intensity, require an averaging over excitation proba- 
bilities. The result is an effective excitation probability that has less pronounced 
oscillations; in extreme cases the averaging can bring the excitation probability to 
0.5, the same as with incoherent excitation. 
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2. Three-State Systems 

The oscillatory Rabi cycling characteristic of two-state systems can also be found in 
multistate systems. One example is a coherently driven three-state system subjected 
to the same pulse sequence as in SEP: first the pump pulse, followed after its 
completion (without overlap) by the Stokes pulse. Then the excitation can still be 
considered as a two-step process, but the probabilities for each step are different 
from those in SEE In the case of exact single-photon resonances the transition 
probabilities P12 from state ~l to state ~2 and P23 from state ~2 to state ~r 3 are 

P12 - ~1( 1 - c o s  Ap), /1923 - -  l(1 - c o s  As). ( 5 )  

where Ap and As are the pump and Stokes pulse areas [as in Eq. (3)]. If the system 
is initially in state grl, then the population of state gr3 after the excitation is the 
product of the two probabilities, 

P13 = �88 - cos Ap)(1 - cos As). (6) 

Hence, when the pulse areas are both equal to odd multiples of re, there occurs 
complete population transfer from state l~r 1 t o  state ~P3. However, the transfer 
efficiency depends strongly on the pulse areas, and it can even vanish (when A p 
or As is an even multiple of re). 

When the pump and Stokes pulses share a common time dependence, the pop- 
ulation changes can no longer be separated into two consecutive independent two- 
state transitions. Nevertheless, an exact analytic expression can still be derived. If 
the system is initially in state 7z~ and the two lasers are each resonantly tuned, then 
the population of state 7r3 at the end of the excitation pulse is 

ApAs (1 - cos  1A)  
P13 = A 2 ' (7) 

where A = ~Ap + A 2. Here again, the transfer efficiency depends on the pulse 
areas: complete population transfer from state lpl  t o  state gr3 occurs whenever 
A = 2(2k + 1)Jr (k = 0, 1, 2 . . . .  ) and Ap = As, while complete population return 
to the initial state l]r 1 takes place when A = 4kre. 

Just as with two-state Rabi oscillations, intensity fluctuations or a distribution of 
velocities will tend to average out the population oscillations and to lower the trans- 
fer efficiency. Moreover, because the population passes through the intermediate 
state ~2 during the transfer process, inevitable spontaneous emission will lead to 
population losses unless the excitation time is much shorter than the lifetime of gr2. 

Rabi cycling is but one of the ways in which coherent laser pulses can induce 
population changes. Another class of change, the central theme of this chapter, 
adiabatic evolution, can occur when the Hamiltonian changes sufficiently slowly. 
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Section II explains the basic principles of adiabatic population transfer in terms of 
energy-level crossings, and Section III describes adiabatic population transfer by 
sequential laser pulses. 

II. Principles of Coherent Excitation 

A. COHERENT EXCITATION 

The quantum mechanical description of the internal excitation of an atom (or 
molecule) is embodied in a time-dependent state vector, ~( t ) ,  and in a fixed set 
of basis states ~1, ~P2 . . . . .  associated with likely energy states of the atom in the 
absence of any radiation pulses. These basis states serve as a fixed coordinate 
system (in a Hilbert space) wherein one can express the state vector as a time- 
varying superposition, which we take to be 

N N 

�9 ( t ) -  Z Cn(t) exp[-i(,(t)]~n =- Z Cn(t)!~n(t)' (8) 
n=l n=l 

where ~n is the static bare physical state. Hereafter, we write 1//n for ~n(t), the bare 
state with RWA phase factor exp[- i  ~'n(t)]. The real-valued phase ~n(t) is specified 
a priori, usually for mathematical convenience (as will be noted below), and the 
complex-valued function of time Cn(t) is a probability amplitude, whose absolute 
square is the probability (or population) P,(t) that the atom will be found in state 
7z, at time t: 

Pn(t) = Ifn(t)l 2 = I(~nl~(t))[ 2. (9) 

As the latter part of the equation indicates, the probability amplitude can be 
regarded (apart from a phase) as the projection of the state vector onto one of 
the coordinate axes of the Hilbert space. 

Changes in the state vector are governed by the time-dependent Schr6dinger 
equation, 

O qJ(t)=-iT-[(t)~(t). 
at 

(10) 

For all the excitation processes discussed here (those produced by laser pulses 
whose frequencies lie in the optical or infrared region of the spectrum), the 
Hamiltonian operator 7-((t) varies with time as a result of the interaction energy 
d.  E(t) of atomic dipole transition moment operator d with the electric field vector 
evaluated at the center of mass of the atom, E(t). In the simplest examples the 
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electric field has the form of a periodic variation at a carrier frequency (the optical 
frequency co) and a more slowly varying envelope, s 

E(t) = es + ~b) 

-- leg(t)  [exp(icot + idp) + exp(- icot  - iq~)]. m 2 (11) 

Here e is a unit vector defining the direction of the electric field, i.e., the polarization 
direction. The connection between the electric field envelope and the intensity of 
the radiation I(t) is 

s  - 27.4682v/I( t )[W/cm2].  

When the state-vector expansion of Eq. (8) is used with the time-dependent 
Schr6dinger equation (10), there results a coupled set of ordinary differential 
equations. These may be written in vector form as 

d 
h ~-~C(t) = - i ld ( t )C( t ) ,  (12) 

where C ( t ) =  [Cl(t), C2(t) . . . . .  CN(t)] T is an N-component column vector of 
(complex-valued) probability amplitudes. The elements of the N • N Hamiltonian 
matrix H(t) depend on how the phases are chosen in Eq. (8), as will be noted 
subsequently. 

B. PARTIAL COHERENCE: THE DENSITY MATRIX 

We shall be concerned in this chapter only with excitation by purely coherent radi- 
ation. Obviously, this is an idealization that cannot hold under all circumstances. In 
practice, a variety of uncontrollable stochastic events, ranging from spontaneous 
emission to atomic collisions and laser fluctuations, all cause irreversible changes. 
To treat such situations one must formulate quantum mechanics in terms of a den- 
sity matrix p(t)  rather than a state vector tI,(t) (cf. Shore, 1990, chap. 6). In brief, 
probabilities are obtained as diagonal elements of this matrix, 

Pn(t) = P n , n ( t ) - -  (~PnlP(t)lTrn), (13) 

and the off-diagonal elements represent coherences. Instead of the Schr6dinger 
equation, one deals with the equation of motion, 

d 
h -~ p(t)  = - i H ( t ) p ( t )  + ip(t)H(t)  - ~ ( t )p ( t ) .  (14) 
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The Hamiltonian matrix H(t) is identical to what occurs with the Schr6dinger 
equation; the operator 7~(t) incorporates the various stochastic processes which 
are not present with purely coherent excitation. 

The density matrix can also be used to treat purely coherent excitation of an 
ensemble in which the initial state is not expressible as a single state vector, as in 
the example 

/9(0) "-- [lpl ) COS0(lPl [ -'i-IlP2) s in0(O2[ .  (15) 

In this case there is no stochastic operator, 7~(t) = 0, and the evolution is equivalent 
to that predicted by the Schr6dinger equation. 

For simplicity we will not consider the density matrix, although many of the 
papers treating STIRAP do discuss it, and realistic modelings often require using it. 

C. Two STATES 

For a simple two-state atom C(t) = [Cl(t), C2(t)] r is a two-component column 
vector whose elements are the probability amplitudes of the two states 7rl and ~2. 
The precise appearance of the matrix elements of the Hamiltonian H(t) depends 
on the choice of phases ~n(t). Were we to set the phases to zero (the Schr6dinger 
picture), then the diagonal elements of H(t) would be the energies of the two states, 
E1 and E2, and the off-diagonal elements would contain the laser-atom dipole 
interaction energy, including the carrier-frequency oscillations from cos(cot + 4)). 

1. The Rotating Wave Approximation (RWA) 

It proves more convenient to incorporate the state energies and the carrier frequency 
co as phases (the rotating-wave picture): ~'1 (t) = E1 t and ffz(t) -- ~'1 (t) -a t- cot. By so 
doing we can make the first of the diagonal elements of the Hamiltonian matrix 
zero; the second diagonal element, the detuning A, is the difference between the 
Bohr frequency and the carrier frequency: 

h A  -- E 2 -  E1-  ha). 

As presented here, the detuning is constant in time. More generally, the laser pulses 
induce time-varying Stark shifts of the energy levels (see Section II.D.3), and the 
detuning then becomes explicitly time-dependent. 

The off-diagonal matrix element acquires a factor exp(-icot) which cancels 
one part of the rapid carrier variation of the electric field--one of the two expo- 
nentials shown in Eq. (11). The remaining exponential is then exp(+i2cot). For 
most near-resonant excitation situations this factor varies much more rapidly than 
any changes of the probability amplitudes, and it is then permissible to neglect this 
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term (thereby making the rotating wave approximation, RWA). When this is done, 
and the detuning is allowed to vary in time, the Hamiltonian matrix reads (Shore, 
1990) 

H(t) -- h 1 ~2(t) " (16) 

The off-diagonal element f2(t), the Rabi frequency,  parameterizes the strength 
of the atom-laser interaction; it is proportional to the component of the atomic 
transition dipole moment in the direction of the electric-field vector, d12, and to 
the laser electric-field amplitude ,5'(0; i.e., 

hf2(t)  = dleg(t) .  (17) 

As long as the phase ~b of the electric field (1 l) remains constant, it is always 
possible to choose the expansion phases ~n(t) so that the Rabi frequency is real- 
valued and positive (Shore, 1990). The diagonal elements of H(t) are the two RWA 
energies: the zero element is the energy of state 7el lifted (dressed) by the photon 
energy ho9 and used as the reference energy level, while the energy h A is the 
frequency offset (detuning) of state 7t2. 

For the RWA to be valid it is necessary that both the frequencies f2(t) and A(t) 
be much smaller than the carrier frequency co, and that the pulse duration be many 
optical cycles. For a discussion of deviations from the RWA, see Section III.B.8. 

We have presented the RWA as a combination of choosing phases and neglecting 
high-frequency oscillations. A more physical picture is possible (Series, 1978). The 
presence of the phases in the expansion (8) is equivalent to the introduction of a 
time-varying coordinate system in the two-dimensional Hilbert space spanned by 
the states 7zl and ~2. Indeed, this is a rotation at a steady rate co, the carrier frequency 
of the laser. In this rotating coordinate system one term of the interaction energy is 
slowly varying (it varies only with the varying intensity envelope), while the second 
term oscillates at twice the carrier frequency. The neglect of this "counterrotating" 
term leads to the RWA. 

2. Rabi Cycling 

The simple periodic solution to the resonant RWA equations reveals the connection 
of the frequency of population oscillations and the strength of the interaction to 
be the Rabi frequency. For numerical estimates of this frequency the following 
formula is useful, 

(d12)  v/i[W/cm2 ] ]S2[rad/ns][ - 0.22068 \ ~  
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where e is the electron charge and a0 is the Bohr radius, so that eao is the atomic 
unit of dipole moment. 

An analytic solution for two-state excitation exists not only for resonant excita- 
tion but for detuned excitation, when the radiation remains steady. The excitation 
probability is then 

Pc(t) -- -~ [1 - cos(fit)], (18) 

where (2 = ~/~'2 2 -+- n 2 is the nonresonantflopping frequency. As can be seen, 
when detuning grows, the population oscillations become more rapid and less 
completempopulation never resides entirely in the excited state. 

The solution (18) predicts that, at the termination of a pulse of constant-intensity 
radiation, some population may remain in the excited state. When one treats pulses 
that turn on and offmore gradually, this tends not to be the case. Instead, a detuned, 
slowly varying pulse will return the population to the initial state--a process often 
termed coherent population return (Vitanov, 1995; Vitanov and Knight, 1995; 
Kuhn et al., 1998). 

3. Probability Loss 

The model of a two-state system is an idealization that, however useful, is never 
completely correct. Real atoms have an infinite number of bound states lying below 
the ionization continuum and molecules have numerous vibrational and rotational 
levels below each dissociation limit. When the radiation is very close to resonance 
between the ground state and a single excited state, the remaining levels hold 
little probability; primarily their influence comes indirectly, through providing the 
polarizability that appears as Stark shifts of the two energy levels of interest. 

However, one effect of additional energy levels can become important: the 
excited state can always undergo spontaneous emission (over a time interval com- 
parable to the inverse of the spontaneous emission time). When this emission leads 
to levels other than the ground state, then population is lost from the two-state sys- 
tem. To account correctly for this loss, one should really include not only additional 
levels in the description of the system, but one should base the mathematics on a 
density matrix rather than a state vector (cf. Section II.B). One simple way of ac- 
counting for probability loss out of the system of interest, occurring from state l/t 2 at 
a rate F, is to take the state energy to be a complex number. The resulting detuning is 

1 hA -- E2 - hco - igF.  

Under the influence of such a non-Hermitian Hamiltonian, probability is not 
conserved. The probabilities Pn(t) will in general approach zero at long times. 
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4. Adiabatic States and Adiabatic Following 

Theoretical discussion of time-evolving quantum systems is greatly facilitated 
by introducing instantaneous eigenstates ~k(t) of the time-varying Hamiltonian 
matrix, 

bl(t)~k(t) = fiek(t)~k(t). (19) 

Because the Hamiltonian changes with time, both the eigenvalues hek(t) and the 
eigenvectors, the adiabatic states ~k(t), will change with time. The adiabatic states 
are time-dependent superpositions of the unperturbed states 7zl and ~r 2 (known also 
as diabatic states) (Shore, 1990), 

�9 +(t) = lpl sin | 4- IP2 COS | (20a) 

�9 _(t) = 1/t 1 cos |  lp2 sin | (20b) 

where the mixing angle | is defined (modulo zr) as 

1 1 | = ~ arctan ~ - ~  . 

The energies of the adiabatic states are the two eigenvalues of H(t), 

1 E+(t) - 2[A(t) + x/AZ(t) + g22(t)]. (21) 

What we here term adiabatic states are known also as dressed states, implying 
that the field interaction has clothed the atom in photons; the original (physical) 
states 1/s n are termed bare states. 

The adiabatic states can serve as a moving coordinate system in which to place 
the state vector ~( t )  as it changes under the influence of the coherent radiation 
pulse. Such coordinates are most useful when the elements of the Hamiltonian--the 
Rabi frequency and the detuning--change sufficiently slowly (i.e., adiabatically); 
then the state vector remains fixed in the adiabatic coordinates space. Mathemat- 
ically, adiabatic evolution requires that the coupling between the adiabatic states 
be negligible compared to the difference between their eigenfrequencies (Shore, 
1990; Messiah, 1962; Crisp, 1973), viz., 

(22) 

where the dot denotes a time derivative (note that (+ +1~- ) = - (~ +1+)). Explic- 
itly, the two-state adiabatic condition reads 

1 2 I ~ A  -- ~'2/kl ~ (~'22 + A2)3/2" (23) 
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According to Eq. (23), adiabatic evolution requires a smooth pulse, long interaction 
time, and large Rabi frequency and/or large detuning. 

When the adiabatic condition holds, there are no transitions between the adi- 
abatic states and their populations are conserved. That is, the state vector ~( t )  
remains fixed in the time-varying coordinate system of adiabatic states, as the lat- 
ter move with respect to the fixed basis 7tl and 7t2. In particular, if the state vector 
�9 (t) coincides with a single adiabatic state ~(t) at some time t, then it will remain 
in that adiabatic state as long as the evolution is adiabatic: the state vector ~( t )  
will adiabatically follow the state ~(t). The relationship of the single adiabatic 
state ~(t)  [and of the state vector ~(t)] to the diabatic (bare) states will change if 
the mixing angle | changes, and so adiabatic evolution can produce population 
transfer between those diabatic states. 

Generally speaking, successful population transfer means that the state vector 
�9 (t) connects to the initial state 7tl at early times, and connects to a specified 
target state lpN at late times. Under appropriate conditions, this connection can be 
provided by a single adiabatic state. Such a state is termed an adiabatic transfer 
(AT) state. One refers to these asymptotic connections with initial and target states 
as connectivity. 

5. Rapid Adiabatic Passage 

When discussing adiabatic time evolution it is useful to plot the values of the 
adiabatic energies as a function of time, and to view carefully the time intervals 
during which the curves are close together--it is during these intervals that the 
adiabatic condition is most likely to be violated. There are two distinct types of 
adiabatic population changes, distinguished by the behavior of the diabatic energies 
0 and hA(t). The no-crossing case is depicted in Fig. 4 (top left frame) in the 
particular case of constant detuning; then the diabatic energy curves are parallel to 
each other during the interaction. In the absence of interaction the adiabatic energies 
coincide with the diabatic ones, but the (pulsed) interaction f2(t) pushes them away 
from each other. As Eqs. (20) show, at early and late times each adiabatic state is 
identified with the same diabatic state: ~_(t  --+ q-cx~) = ~Pl, ~+(t  --+ -+-~) = 7r2, 
while at intermediate times it is a superposition of diabatic states. Consequently, 
starting from the ground state lpl initially, the population makes a partial excursion 
into the excited state ~2 at intermediate times and eventually returns to 7q in the 
end (bottom left frame). Hence in the no-crossing case adiabatic evolution leads 
to complete population return. 

A rather different situation occurs when the detuning A(t) sweeps slowly from 
some very large negative value to some very large positive value (or vice versa), as 
shown in Fig. 4 (top right frame). That is, the Hamiltonian at the end of the pulse 
differs from the Hamiltonian at the beginning, because of the detuning change. 
Large in this context means much larger than the Rabi frequency f2(t). The two 
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FIG. 4. Time evolution of the energies (upper frames) and the populations (lower flames) in a two- 
state system. In the upper plots, the dashed lines show the unperturbed (diabatic) energies, and the 
solid curves show the adiabatic energies. The left-hand frames are for the no-crossing case, while the 
right-hand frames are for the level-crossing case. 

diabatic energies 0 and h A(t) intersect at time to when the detuning is zero. The 
adiabatic energies approach the diabatic energies when A(t) is large (at early and 
late times), but the presence of interaction prevents their intersection--the adia- 
batic energies have an avoided crossing. Indeed, as Eq. (21) shows, the eigenenergy 
separation h e + ( t ) -  he+(t) --hv/A2(t)+ ~2(t) is equal to hfa(to) at the cross- 
ing. For constant ~(t) this is the minimum value of the eigenvalue separation, 
while for pulse-shaped f2(t) (as in Fig. 4), there are two minima near to. At very 
early and late times the ratio A(t)/fa(t) t-++~o 4-00. Hence, during the excitation 
the mixing angle t0(t) rotates clockwise from |  re/2 to |  0 
and the composition of the adiabatic states changes accordingly. Asymptoti- 
cally, each adiabatic state becomes uniquely identified with a single unperturbed 
state, 

-cx~ +--t t - + + ~  
~1 "- ~+(t) 1//2, (24a) 

--1//'2 ---<oo<--t O_(t)t-++~ ~Pl. (24b) 

Consequently, starting from state 1]/1 initially, the system follows adiabatically the 
adiabatic state ~+(t) and eventually ends up in state 7/2. The laser pulse, with 
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detuning sweep, has produced complete population transfer, a process known as 
adiabatic passage or, because it must occur in a time shorter than the radiative life- 
time of the excited state, as rapid adiabatic passage. We emphasize that adiabatic 
passage in a two-state system does not depend on the sign of the detuning slope: 
it takes place for both/k(t) > 0 (as was assumed above) and/k(t) < 0. 

The adiabatic condition (23) expresses a constraint at each moment; it is a 
"local" condition. A "global" condition can be obtained from the expression 
(~ +l~_ ) = (9. The average value of this angle, as it increases from 0 to Jr/2 is Jr/4. 
For resonant excitation the time-integrated difference of the two eigenvalues is just 
the time integral of the Rabi frequency, i.e., the pulse area. Hence one finds the 
commonly used rule of thumb that the pulse area must be very large, 

F 
o o  

A -- dt ~2(t) >> 1. 

Adiabatic passage offers significant advantages over Rabi cycling as a means 
of producing complete population transfer in an ensemble of atoms. Unlike Rabi 
cycling, adiabatic passage is robust against small-to-moderate variations in the 
laser intensity, detuning, and interaction time. Therefore it can produce uniform 
excitation for a broad range of Doppler shifts. 

6. Estimating Transition Probabilities 

A popular tool for estimating the transition probability between two crossing dia- 
batic states is the Landau-Zener formula (Landau, 1932; Zener, 1932), 

P = I - p ,  p =  exp[ - re ~2(t~ ] -  , (25) 
2lA(t0)l 

where/k(t0) is the rate of change in the detuning evaluated at the crossing time 
to and f2(t0) is the value of the Rabi frequency at to. This formula is exact only 
for a constant Rabi frequency and a linearly varying detuning over an infinite 
time interval, so it is only an approximation to any actual probability for adi- 
abatic passage. Nevertheless, it correctly identifies the importance of the ratio 
of ~-'~2 to A as a measure of the likelihood of population transfer. We note here 
that the probability for (nonadiabatic) transition between the adiabatic states 
is p --- 1 - P .  

There exist other models of level-crossing excitation, more realistic because 
they allow pulsed interactions. The Allen-Eberly-Hioe model (Allen and Eberly, 
1975; Hioe, 1984) assumes a hyperbolic-secant pulse and a hyperbolic-tangent 
chirp. The Demkov-Kunike model (Demkov and Kunike, 1969; Suominen and 
Garraway, 1992) adds a static detuning to this model. 
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D. THREE STATES 

1. The Three-State RWA Hamiltonian 

The usual situation with three discrete quantum states can be regarded as a linkage 
chain 7tl <--> ~k2 <--> 7t3 in which one of the states, the intermediate state 7t2, is cou- 
pled by radiative interaction to two other states, which have no radiative coupling 
between them. (When the excitation is only by means of electric dipole radiation, 
the parity selection rule forbids the 3-1 linkage for free atoms or molecules.) Typ- 
ically, each of the two linkages originates in a separate laser pulse, whose carrier 
frequency is close to the relevant Bohr frequency. The following variants of this 
chain occur, distinguished by the ordering of their unperturbed energies Ej (see 
Fig. 5): 

�9 The states may form a ladder, in which successive energies lie higher than the 
predecessors. Population begins in state ~1. The ladder configuration occurs 
when one has interest in stepwise excitation toward ionization. It readily 
generalizes to multiple levels, each more highly excited. 

�9 The linkage may form a lambda, in which the middle state, 7r2, has unper- 
turbed energy lying above either other state (the relative energy ranking of ~Pl 
and 7t3 is not significant). Again, population begins in state ~1. The lambda 
configuration exemplifies a Raman process. 

�9 The linkage may form a vee, in which the middle state has lowest unperturbed 
energy, and initially holds the population. The vee configuration has interest- 
ing quantum-beat interference patterns between the two excitation branches 
leading to and from a single state. 

In all of these cases the phases G(t) of the state vector expansion (8) can be 
chosen to place a zero as one of the diagonal elements of the Hamiltonian matrix, 
and to permit a generalized rotating wave approximation in which time variations 

FIG. 5. Linkages for three-state coupling: (a) ladder configuration; (b) A configuration; (c) V 
configuration. 
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at the carrier frequencies have been eliminated. When the zero goes into the first 
element, the pattern is 

I 1 f21(t) 0 1 
0 g 1 f22(t) 1~'-2 ( t )  A 2 ~ . I-t(t)  - ~ 5 

1 f22(t) A3 _] 0 
(26) 

The off-diagonal elements are the Rabi frequencies f2j(t), related to transition- 
dipole moments and electric-field envelopes by the relationships 

h~l(t) -- d12. gl(t), h~2(t) = d23. gz(t). (27) 

The expressions for the detunings Aj(t) depend on whether the Hamiltonian de- 
scribes a ladder, a lambda, or a vee linkage. For the ladder arrangement one has 

hA2 = E2 - E1 - h c o j ,  

hA3 = E3 - E1 - hCOl -- hco2, 

(28a) 

(28b) 

while for the lambda the formulas read 

hA2 = E 2 -  E 1 -  hCOl, 

hA3 = E 3 -  E 1 -  hCOl -+-hco2. 

(29a) 

(29b) 

It is not difficult to obtain numerical solutions to the set of coupled ordinary 
differential equations, from which one can make plots of populations as a function 
of time or, for time fixed at the end ofboth pulses, as a function of other parameters. 
Some special limiting cases have properties that are of particular importance for 
population transfer. 

2. Pulse Sequences 

Much of the early theoretical work on three-state systems involved steady fields. 
Although population transfer can take place under such circumstances, all pop- 
ulation changes are periodic, and so there is a regular return of population into 
the initial state, just as with the two-state atom. Of greater interest are various 
sequences of pulse pairs, one associated with each of the two transitions. These 
typically fall into two classes: when the first pulse introduces a coupling between 
the initial state and the next state of the chain, the sequence is often called "intu- 
itive" ordering of pulses, because intuition suggests that one should start moving 
population by acting on a populated state. As will be noted in the sections on 
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STIRAP, a "counterintuitive" sequence, acting first on an unpopulated state, often 
is a better choice. 

There are two possibilities for causing individual atoms (or molecules) to expe- 
rience a sequence of pulses. The atoms may be relatively stationary, say in a vapor 
cell, and be exposed to pulsed lasers. Alternatively, the atoms may be moving 
together, say in an atomic beam, and pass across beams from steady lasers. What 
matters for excitation is the timing of the fields in the rest frame of each atom. 

3. Adiabatic Elimination 

An important special case of three-state excitation occurs when the detuning A 
from the intermediate state ~2 is very large, but the two-photon detuning 3 be- 
tween states ~Pl and ~P3 is small. This situation implies nearly resonant two-photon 
excitation without having a single-photon resonance. The RWA Hamiltonian of 
Eq. (26) provides the following equation for the amplitude in the intermediate 
state, 7t2: 

d 
1 1 ~2C3(t ) i--~C2(t) = 2f21Cl(t)+ A2C2 -k- ~ (30) 

When A 2 is very large, rapid oscillations of amplitude C2(t) will occur, at this 
frequency. These variations are much more rapid than any changes of interest. 
One can average over many such oscillation periods (i.e., over a time interval 
At >> A21) to obtain more slowly varying amplitudes, (7,,(t), for which the time 
variation of (72(t) vanishes. By setting (d/dt)C2 -- 0, we obtain from Eq. (30) that 

- f21Cl( t )  C3(t). 
C2(t) = 2A2 2A2 (31) 

This approximation, known as adiabatic elimination, relates the intermediate-state 
amplitude C2(t) to those of the other two states. Because A2 is large (in order that 
adiabatic elimination be valid), the amplitude C2(t) is small, and the population is 
confined to the two states 7tl and ~P3. The two-state Hamiltonian that results from 
adiabatic elimination, 

I ~fi(t) ] s~( t )  ~ , (32) H(t) h ~fi(t) /x (t) + s3(t) 3 

is similar to the simple two-state equation (16), but the interaction term--the Rabi 
frequency--now involves the product of two interactions, 

f i ( t )  = - f 2~ ( t ) f 22 ( t )  
, ( 3 3 )  

2A2 
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and the diagonal elements have acquired dynamic Stark shifts, 

- I~( t ) l  2 -1~22(t)12 
Sl(t) -- , S3(t) -- . (34) 

4A2 4A2 

By incorporating S 1 (t) into the phase (k(t), the Hamiltonian can be made to appear 
as in Eq. (16). The detuning then involves the difference between Stark-shifted Bohr 
frequencies and the carrier frequency, 

hA(t) = E3 --t- h S 3 ( t )  - E1 - h S l ( t )  - hco. 

The preceding formulas give the essential properties of two-photon interactions. 
For more accurate results one should include a larger number of possible inter- 
mediate states (ideally an infinite number). In so doing one should avoid making 
the RWA at an early stage, and should treat the full Hamiltonian (cf. Shore, 1990, 
sect. 14.8). 

The two-photon Rabi frequency and the dynamic Stark shifts are both conse- 
quences of the presence of additional energy states that do not participate strongly 
in the excitation because they are far off resonance. The electric field interacts not 
only with any permanent dipole transition moments, as embodied in the operator 
d, but also with an induced dipole moment. The proportionality between this in- 
duced moment and the electric field is the complex-valued frequency-dependent 
p o l a r i z a b i l i t y  tensor Q(co). The polarizability contributes to the Hamiltonian an 
interaction energy (Shore, 1990, sect. 14.9; Yatsenko et al., 1998), 

7 - L i n t ( t )  - -  -�89 O(a~). E(t). (35) 

The Hamiltonian matrix of such an interaction has both diagonal elements (acting 
as dynamic Stark shifts) and off-diagonal elements (acting as two-photon Rabi 
frequencies.) 

4. A u t l e r - T o w n e s  Sp l i t t i ng  

Another important situation occurs when the coupling between two states (taken 
here to be f22 between ~2 and ~P3) is strong, whereas the coupling to the first 
state, S21, is weak. For simplicity, let the fields be steady, not pulsed, and let the 
strong 2-3 transition be resonant with field of frequency 092 while the weak field 
has tunable frequency ~o. It is natural to diagonalize the strong-coupling portion of 
the Hamiltonian, which is a two-level system. This leads to the dressed states ~_ 
and ~+, whose composition is identical to that given above, and to the following 
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expression for the state vector: 

qJ(t) = ~ J 1 C l ( t ) e  - i ~  n t- ~ _ B _ ( t )  + ~ + B + ( t ) .  (36) 

The RWA Hamiltonian takes the form 

[ 1 1 ] A $~_ Sfa+ 
1 H(t) - h ~ 2 -  - s  0 , 
1 ~f2+ 0 +s  

(37) 

11ff221, the detuning is A -- (E2 - El )~  where the dressed eigenvalues are i s  - 4-g 
h - co, and the Rabi frequencies f2• are expressible in terms of the components 
of the dressed states. The situations of interest are when there occur two identi- 
cal diagonal elements of this Hamiltonian, i.e., there is a degeneracy of diabatic 
energies; such a situation is one in which the excitation is dominated by Rabi os- 
cillations between the degenerate states. There are two choices of probe frequency 
that make two diagonal element identical: 

1 b o o -  E2 - E1 -t-he = Ez - E1 -+- ghlf221. (38) 

That is, there are two weak-field detunings for which there will be appreciable 
coupling between state 1/r 1 and the strongly driven two-state system. In essence, 
the strong field has split the energy level accessed by the third state into two levels, 
separated by the Aut le r -Townes  splitting 2s = h1~'221 (Autler and Townes, 1955). 

The Autler-Townes effect manifests itself in the absorption spectrum in the 
form of a splitting of the resonance. There is, however, another interesting feature 
when the lifetime of state 7r3 is much longer than that of the excited state ~2. In 
this case one observes that the absorption exactly vanishes when the weak field 
is tuned midway between the two dressed energy levels (38). This is a result of 
an interference between the two absorption channels starting from the ground 
state grl via the two dressed states ~+ with subsequent decay out of the system 
(Imamoglu et al., 1989; Lounis and Cohen-Tannoudji, 1992; Fleischhauer et al., 

1992), as illustrated in Figs. 6 and 7. The interference of the decay channels 
becomes apparent if we include decay rates 1-" 2 and F3 in the above analysis. After 
the partial diagonalization we find 

i (1- '2 "1- F3) H ( t ) = h  _ - 2 s -  

[_a+ i(F3 - 1'2) 

~ ] 
i ( I " .3  - -  1- '2) �9 

2 e -  2(F2 + 1"3) 

(39) 
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FIG. 6. Left: Diagonalization of strong, resonant coupling of levels ~J2 and 1/I3 leads to symmetrically 
split Autler-Townes doublett ~+. Right: Absorption of weak probe field as function of detuning A 
for f2 -- 2F2. Destructive interference of absorption pathways for F3 << 1-'2 leads to cancellation of 
absorption on resonance. Interference is absent for F3 -- I-'2 and constructive for 1-'3 > F2. 

Three cases are of interest: 

�9 If F3 << ['2, i.e., if the decay out of state 1~3 can be disregarded, the two 
absorption channels start and end in the same states and there is destructive 
interference. When F3 = 0 there is complete cancellation of the absorption. 
This case, termed electromagnetically induced transparency (EIT) (Boller 
et al., 1991), has a number of important implications (cf. Section XA). 

�9 If 1-'3 ~ 1-'2, the interference is constructive and there is an enhanced absorp- 
tion compared to a simple sum of two Lorentzian line profiles. 

�9 Finally, i f  1-'3 ~ 1-'2, the in ter ference  effect a lmos t  van ishes  and only  the split- 

t ing remains .  

FIG. 7. Experimental demonstration of Autler-Townes splitting in neon. The Stokes (dressing) laser 
intensity is 55 mW and the probe laser intensity is 0.62 #W. From Bergmann et al. (1998). 
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III. Three-State STIRAP: Theory 

A. BASIC PROPERTIES OF STIRAP 

When the three-state linkage forms a lambda pattern (see Fig. 3b), one has a 
typical stimulated-Raman excitation scheme. The field acting on the initial state 
~1 is termed the pump field, and the interaction leading to the final (target) state 
7t3 is termed the Stokes. 

It is intuitively evident that population transfer between states ~1 and lp3 can 
take place, as in SEP, when the pump pulse precedes the Stokes pulse. Simultaneous 
and steady pulses can also produce complete population transfer, if the pulse areas 
are carefully chosen. What may not be obvious at first is that even more satisfactory 
population transfer can be produced if the Stokes pulse occurs first--the pulses then 
arrive in a "counterintuitive" ordering. This is the basis for a process now called 
stimulated Raman adiabatic passage (STIRAP) (Oreg et aL, 1984; Kuklinski et aL, 
1989; Gaubatz et aL, 1990; Bergmann and Shore, 1995; Shore, 1995; Bergmann 
et al., 1998, Vitanov et al., 2001). 

The STIRAP technique uses the coherence of two pulsed laser fields to achieve 
a (nearly) complete population transfer from an initially populated state ~Pl to a 
target state ~P3 via an intermediate state ~2 (see Fig. 3b). Ifa two-photon resonance 
between aPl and lp3 is maintained, if there is sufficient overlap of the two pulses, and 
if the pulses are sufficiently strong that the time evolution is adiabatic, then (almost) 
complete population transfer occurs between states ~Pl and ~3. Furthermore, there 
is almost no population in the (usually decaying) intermediate state 1//2 at any time. 
The following sections offer explanations for this remarkable result. 

1. Basic Equations and Definitions 

The mathematical description of STIRAP derives from the Schr6dinger equation 
(12) with C(t) a three-component column vector. Initially the population resides 
entirely in state ~1, meaning C(-c~)  = [1, 0, 0] T. The objective is to transfer 
population into state ~3, meaning C(+oo) = [0, 0, 1 ]T. 

With the rotating wave approximation, the Hamiltonian H(t) for purely coherent 
excitation has the form 

I 1 f2P(t) 1 0 ] 0 
1 H(t) - h 7f2p(t) Ap ~f2~(t) . 

1 ~s(t) Ap -- As_J 0 
(40) 

Here f2p(t) and f ts(t)  are the (real-valued) Rabi frequencies of the pump and 
Stokes pulses, respectively, 

h ~ p ( t )  = dl2Ep(t), ~ s ( t )  -- d23~s(t). 
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The diagonal elements of this matrix involve the single-photon detunings of the 
pump and Stokes lasers from their respective transitions, 

h Ap = E2 - E1 -- h o p ,  h a s  = E 2 - E 3 - h O ) s .  (41) 

An essential condition for STIRAP is that there be two-photon resonance be- 
tween states 7zl and 7z3, meaning Ap ___ A s -- A, or 

6 = A p -  As = 0. (42) 

The single-photon detuning A has relatively little effect on STIRAP; Section III.B.3 
will discuss its effect. 

Although the definitions of Eq. (14) pertain to excitation in the absence of any 
incoherent processes, it is easy to include the possibility of loss from state ~2 at 

1. a rate F by making the replacement E2 ~ E2 - ~t 1-'. In this way it is possible 
to model the effect of spontaneous emission out of state 7t2 into states other 
than ~Pl or ~P2. As long as the excitation is adiabatic, the presence of a complex- 
valued detuning has no effect on the STIRAP process, because population never is 
found in state ~2. However, as the detuning and the loss rate increase, adiabaticity 
deteriorates, which eventually reduces the transfer efficiency; for further discussion 
see Sections III.B.3 and III.B.5. 

In practice, a part of the spontaneous emission acts to repopulate states ~Pl and 
~P3. Such effects cannot be treated within the Schr6dinger equation; they require a 
density matrix treatment. 

2. Adiabatic States 

The population transfer mechanism in STIRAP is most easily understood in a 
Hilbert space whose coordinate basis vectors are instantaneous eigenstates of the 
time-varying Hamiltonian (i.e., a basis of adiabatic states). When the two-photon 
resonance condition (42) is fulfilled, the eigenvalues of H(t), which represent the 
energies of the adiabatic states, are he_, heo, and he+, where 

I[A + V/A 2 a2 l~(t)cot~0(t) e + ( t ) -  5 + ( t ) ] -  5 , 

eo(t) = 0, 

e _ ( t ) -  ~l[A -- v/A 2 + f22(t)] = --gl f2(t) tan qg(t). 

(43a) 

(43b) 

(43c) 

The presence of a null eigenvalue follows from the choice of energy zero point 
[and the phases ~'n (t)], which here reckons all energies as excitation from the initial 
state 7Zl. 
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The corresponding eigenstates ~+(t),  ~0(t), and ~_( t )  of H(t) are connected 
to the bare (diabatic) states ~1, ~P2, and 7r3 by the relations 

�9 +(t) - l~r 1 sin O(t) sin ~o(t) + ~f2 COS go(t) + lp3 COS O(t) sin go(t), 

�9 o(t) = ~1 cos O(t) - ~3 sin O(t), 

�9 _(t) = ~1 sin O(t) cos ~0(t) - 1/t 2 sin tp(t) + l~r 3 COS O(t) cos r 

where the time-dependent mixing angles O(t) and r are defined as 

(44a) 

(44b) 

(44c) 

tan O(t) - ~ ' ~ p ( t )  ~'~(t) (45) ffas (t) ' tan 2~0(t) = A ' 

with ~(t)  the root-mean-square (RMS) field 

= + (46) 

The adiabatic state ~0(t) associated with the null eigenvalue has particular 
importance: it has no component of the excited state ~P2. The latter state can 
undergo spontaneous emission back to state ~1, state ~P3 (in the A configuration), 
and in most cases it can also decay to other states. By avoiding the possibility 
of such loss, the state ~I'0(t) acts to trap population; it is known as a trapped 
state (Alzetta et al., 1976, 1979; Arimondo and Orriols, 1976; Gray et al., 1978; 
Arimondo, 1996). 

We introduce the diabatic or adiabatic bases by writing one of the two expansions 

�9 (t) = Z ~nCn(t)exp[-i(n(t)] 
11 

- Z ~k(t)Bk(t). (47) 

According to Eqs. (44), the probability amplitudes of the adiabatic states B(t) - 
[B+(t), Bo(t), B_(t)] T are connected to the diabatic-state (or bare-state) ampli- 
tudes C(t) by the orthogonal transformation 

C ( t ) -  F:l(t)B(t), (48) 
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where the rotation matrix R(t) is given by 

I sin 0 sin ~o cos 0 sin O cos ~o-] 
R(t) = cos ~o 0 - sin ~p ~ . 

cosOsin~p - s i n O  cosOcos~p 
(49) 

The Schr6dinger equation in the adiabatic representation is obtained from Eqs. 
(12), (48), and (49) and is given by 

d B(t) -- -iHb(t)B(t) 
hd-- 7 (50) 

with the Hamiltonian given by Hb -- R-1PIR - ihR-1R, or explicitly, [1 ] 2 f2 cot ~p ib sin~o i~b 
]"[b -- h -- ib sin ~p 0 --ib cos ~o , 

--i  ~b i b cos ~o - 1 f2 tan ~o.J 
(51) 

where an overdot means a time derivative. 

3. The STIRAP Mechanism 

STIRAP is based on tying the state vector ~ ( t )  to the zero-eigenvalue adiabatic 
state ~0(t), which is a coherent superposition ofthe initial state ~1 and the final state 
~P3 only. For the counterintuitive pulse ordering the relations ~p(t)/f2s(t)t~-~O 
and ~p(t)/f2s(t)t~+~ apply; hence, as time progresses from - 0 o  to +e~, the 
mixing angle O(t) rises from 0 to 7r/2. Consequently, the adiabatic state ~0(t) 
evolves from the bare state 7rl initially to a superposition of states 7rl and 7r3 at 
intermediate times and finally to the target state 7r3 at the end of the interaction; 
thus, state ~0(t) links adiabatically the initial state 7rl to the target state 7r3. Since 
the Hamiltonian is explicitly time dependent, the derivative terms in Eq. (51) 
(the nonadiabatic couplings) are nonzero and, consequently, diabatic transitions 
between the adiabatic states will occur. The goal is to reduce the diabatic transition 
rates to negligibly small values, i.e., to ensure adiabatic evolution. Then the system 
can be forced to stay in the trapped state at all times, and a complete population 
transfer from O l to ~P3 will be achieved, as shown in Fig. 8. Moreover, because 
the intermediate state lp2 does not participate in the trapped state ~0, it does not 
participate in the population transfer either and remains unpopulated throughout 
the interaction. Hence, as long as the excitation is adiabatic, its properties, such 
as radiative decay, do not influence STIRAP. From another viewpoint, when the 
Stokes pulse is stronger (in the beginning) the population is predominantly in 
state ~Pl, and when the pump pulse is stronger (in the end) the population is 
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FIG. 8. Time dependencies of the pump and Stokes Rabi frequencies, the eigenfrequencies, the 
mixing angle and the populations in three-state STIRAP. Dotted lines separate five phases of STIRAP; 
see Section III.A.4. 

predomonantly in state ~3; thus the intermediate state is always weakly coupled 
to the more populated state, which provides another explanation why this state is 
bypassed by STIRAP during the transfer. A vector picture of the STIRAP process 
is shown in Fig. 9. 

4. Five-Stage Description o f  STIRAP 

The STIRAP process can be viewed as comprising five stages, each defined by the 
relative strengths of the two fields (Fig. 8). For each stage, coherence is essential. 
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FIG. 9. Vector picture of STIRAP. 01, 02, and 03 are bare atomic eigenstates or diabatic states. 
~o, ~+, and ~_ are the adiabatic dressed states. The trapped state ~0 is rotated from 01 to 03. Under 
adiabatic conditions, the state vector �9 follows the evolution of ~0. 

�9 Phase 1: Only the Stokes pulse is present; its intensity increases steadily. The 
pump laser does not act yet, i.e., the population in state ~1 is not perturbed 
yet, the mixing angle remains zero, and the state vector remains parallel to 
state 7tl. The Stokes pulse prepares for the lossless transfer process in the 
sense that it provides the Autler-Townes splitting of levels, needed in phase 2. 
This phase is therefore the Stokes-inducedAutler-Townes phase. Its purpose 
is to line up the state vector �9 with the state ~0, i.e., I(~[~o)l = 1. 

�9 Phase 2: The Stokes pulse has nearly reached the maximum intensity, but the 
pump pulse is still weak. The state vector deviates only by a very small angle 
from state ~1. One might ask: why is the pump laser radiation not absorbed? 
Here the Autler-Townes effect leads to a cancellation of the transition rate 
from the ground state to the two Autler-Townes states. This is the same 
mechanism that leads to EIT. The effect of the Stokes-induced Autler-Townes 
splitting is very obvious here. This phase is therefore the Stokes-induced EIT 
phase. 

�9 Phase 3: The Stokes pulse decreases and the pump pulse increases. Now 
the essential part of the population dynamics starts. The pump pulse couples 
state 7tl strongly to the other levels. The mixing angle increases and the state 
vector departs from the state ~1 direction toward state -gt3, while remaining 
in the ~Pl ~P3 plane and leaving state ~P2 unpopulated. This phase is the adi- 
abatic passage (AP) phase, with Stokes and pump acting on equal footing, 
because it is the ratio of these two Rabi frequencies which determines the 
dynamics. 
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�9 Phase 4: The population is now almost completely deposited into state gr3, 
but the Stokes pulse is still not zero. Why is there no loss due to optical 
pumping out of state gr3 by the Stokes field? The answer is that the pump 
field protects the population in state gt3 by inducing Autler-Townes splitting 
and interference (coupling of states gq and gr2). This is the pump-induced 
EITphase. 

�9 Phase 5: The Stokes pulse intensity is zero and the pump-induced Autler- 
Townes splitting must be reduced to zero. This phase is the pump-induced 
Autler-Townes phase. 

We emphasize that the phenomena of Autler-Townes splitting, EIT, and adi- 
abatic passage all depend on the coherence of the radiation. Phase fluctuations 
would cause the state vector to "jiggle arround," thereby causing strong nonadia- 
batic coupling. 

5. Intermediate-State Population: Importance of  the Null Eigenvalue 

Once the conditions for STIRAP are fulfilledutwo-photon resonance between 
states 7tl and gt3, counterintuitive pulse ordering, and adiabatic evolutionma com- 
plete population transfer from grl to gr3 is guaranteed. Moreover, because the 
adiabatic transfer (AT) state (44b) does not involve the intermediate state gr2, the 
latter remains unpopulated during the transfer: the AT state is a dark state. This 
means that its properties have little impact on the transfer efficiency. For example, 
this remarkable feature of STIRAP allows efficient population transfer on time 
scales exceeding the lifetime of the intermediate state, which usually can decay on 
the nanosecond scale. 

For example, such a situation arises in the implementation of STIRAP with 
continuous lasers, when the atomic or molecular beam crosses two spatially dis- 
placed and partially overlapping continuous-wave (CW) laser beams at right angles 
(Gaubatz et aL, 1990; Theuer and Bergmann, 1998). The time it takes for the atoms 
or molecules to cross the laser beams is often two orders of magnitude longer than 
the lifetime of the excited state. It would be impossible to achieve any population 
transfer by intermediate storage in the excited state, e.g., by stimulated emis- 
sion pumping. STIRAP, however, produces a transfer efficiency of nearly 100%, 
because the upper state is never populated appreciably. 

It is readily shown that only on two-photon resonance ( 8 -  0) does there exist 
a trapped state, without a contribution from the intermediate state 7t2. Indeed, it 
follows from the Hamiltonian (40) that the components of any of the eigenstates 
of H must obey the relation 

1 ~~sC2  - -  (g  - ~)C3 2 

Because on two-photon resonance (8 = 0) one of the eigenvalues is zero (e = 0), 
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the right hand side (RHS) of the above equation vanishes and the corresponding 
eigenstate--the trapped state--has no component from the intermediate state, 
C2 - 0. Off two-photon resonance (3 r 0), one can easily show that no eigenvalue 
is equal to 6 (e -r 3) and thus the RHS does not vanish; the implication is a nonzero 
component 6'2 :~ 0 from the intermediate state. 

6. Intuitive versus Counterintuit ive Pulse Sequences 

When both the pump and Stokes lasers are on resonance with their respective 
transitions, the two opposite pulse sequences lead to qualitatively different re- 
sults. While, as explained above, the counterintuitive sequence induces complete 
population transfer to state ~P3, the intuitive sequence produces generalized Rabi 
oscillations in the populations of all three states (He et al., 1990; Shore et al., 
1992a,b; Vitanov and Stenholm, 1997b). This is readily seen by noting that for 
A = 0, we have q9 = zr/4. Because for the intuitive ordering 0 ( - o 0 )  = zr/2 and 
O(+oc) = 0, we find that the adiabatic states behave as 

1 Z ~  +% ~(Ol + ~2) ,+(t) ~(~2 + ~3), 

-~3 ~-~ ,o(t) +% ~,  

1 (~1  - ~ 2 )  Z ~ +% �9 _(t)  ~2 (-1r --[- lp3 ). 

(52a) 

(52b) 

(52c) 

It follows from the above equations that initially both states ~+(t)  and ~_(t)  
are populated. Because of the interference between the two different paths from 
state r to state 7t3, the final population of state ~P3 will oscillate (Vitanov and 
Stenholm, 1997b), 

1 1 P1 -- 0, P2 -- sin 2 g A, /93 -'- COS2 ~ A, (53) 

with A - f_+o~ f2 ( t )d t .  Thus, only for certain values of the RMS pulse area (gen- 
eralized Jr pulses) is it possible to obtain complete population transfer from state 
~Pl to state ~3 with a resonant intuitive pulse sequence. However, in such a setup, 
the intermediate state would receive appreciable transient population and consid- 
erable population losses would occur, unless the pulse durations are much shorter 
than the intermediate-state lifetime. 

When the two lasers are tuned away from the respective single-photon reso- 
nances, while maintaining the two-photon resonance, adiabatic evolution produces 
complete population transfer from ~1 to ~3 for both pulse sequences (Shore et al., 
1992b; Vitanov and Stenholm, 1997b). For the counterintuitive sequence (Stokes 
before pump), this occurs because, as emphasized above, the trapped state does not 
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depend on the single-photon detuning A. For the intuitive sequence (pump before 
Stokes), the adiabatic transfer is carried out through the adiabatic state ~_(t). 
Indeed, for the intuitive ordering, the relations O(-c~) = 7r/2, tg(+cxz) = 0, and 
~p(-c~) = ~0(+cx~)= 0 apply; then the adiabatic state ~_(t) has the following 
asymptotic behavior: 

7el <-~ ~_(t) +~ ~3. (54) 

Thus the adiabatic state ~_(t) provides adiabatic connection between states ~Pl 
and ~3. However, unlike the counterintuitive ordering, here the intermediate state 
receives a significant transient population, Pe = sin 2 ~p(t). Hence, if the lifetime 
of state ~2 is comparable or shorter than the excitation duration, then efficient 
population transfer can be achieved only with the counterintuitive pulse sequence. 

The similarity of population transfer by the two pulse sequences in the off- 
resonant case (A -r 0) is easily explained when the single-photon detuning A 
is large (IAI >> f2p, f2s); then the intermediate state ~P2 can be eliminated adia- 
batically (Shore et al., 1992b; Vitanov and Stenholm, 1997b). As shown in Sec- 
tion II.D.3, the resulting effective two-state model involves a coupling ~ '2ef  f - -  

- f 2 p f 2 s / 2 A  and a detuning A e f f - - ( ~ 2 _  f2s2)/4A. Obviously, for sequential 
pulses the detuning Aefr(t) passes through resonance at the time to when f2p(to) = 
f2~ (t0); this level crossing leads, in the adiabatic limit, to complete population trans- 
fer for both pulse orderings, because the ordering reversal leads to the unimportant 
change of sign in Aefr, and does not affect flefr. 

Finally, another interesting feature of STIRAP is that the population P~ of the 
initial state ~1 does not depend on the pulse order, as can be inferred from the 
symmetric dependence of P1 on the pulse delay r in Fig. 10. This symmetry can 
be deduced rigorously (Vitanov, 1999). 

7. Adiabatic Condition: Local  and Global Criteria 

For adiabatic evolution, the coupling between each pair of adiabatic states should 
be negligible compared to the difference between the energies of these states. With 
respect to the trapped state ~0(t) the adiabatic condition reads (Messiah, 1962; 
Crisp, 1973; Shore, 1990) 

(55) 

(note that (~01++) = -(+01~+)) or, explicitly (Vitanov and Stenholm 1997a,b), 

sin 2 q9 

COS q9 
lf2 <<~ , 

COS 2 (/9 
l f2 (56) <<~ . 
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FIG. 10. Numerically calculated populations of the initial state (thin solid line), the intermediate 
state (dashed line), and the final state (thick solid line) plotted against the pulse delay for different single- 
photon detuning A and loss rate F, whose values are denoted in each frame. We have assumed Gaussian 
pulse shapes, ~p(t) - -  ~ 0  exp[-(t - "t') 2 / T 2 ] ,  ~s(t) - -  ~20 exp[-(t + .g)2 / T 2 ] ,  with f20T = 40. 

On one-photon resonance (A -- 0), we have rp -- rr/4 and the adiabaticity con- 
dition simplifies (Gaubatz et al., 1990), 

>> Ibl cx T -~, 

where T is the pulse width. Assuming that the pump and Stokes pulses are suffi- 
ciently smooth and have the same peak Rabi frequency f20, this condition can be 
written as 

f20T >> 1. (57) 

On the left-hand side of this inequality we have the factor f20 T, which, up to an 
unimportant pulse-shape-dependent factor of the order of unity, is essentially the 
pulse area. Hence adiabaticity demands a large pulse area. In terms of incoherent 
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excitation, the large pulse area means saturation of the transitions. In practical 
applications, the pulse area should exceed 10 to provide efficient population trans- 
fer, f20T > 10. 

The above adiabatic criteria (56) and (57) are directly applicable to STIRAP 
with continuous-wave lasers in the crossed-beam geometry (atomic beam crossing 
two spatially displaced CW laser beams), because CW lasers have almost perfect 
coherence properties. For pulsed lasers, the adiabatic conditions need to be modi- 
fied. For perfectly coherent pulsed lasers, the adiabatic condition is essentially the 
same, but it is more conveniently written in the equivalent form 

100 
> - - U  (58) 

This condition imposes a lower limit on the pulse energy (which is proportional 
to f2gT) for a given pulse duration T; obviously, the needed laser energy grows 
rapidly when the pulse duration decreases. 

Pulsed lasers, however, often suffer from phase fluctuations, i.e., the actual 
linewidth Aw deviates from the transform limit cox L = 1/T. A careful analysis 
of the effect of imperfect laser coherence on the STIRAP efficiency leads to the 
modified adiabaticity condition (Kuhn et aL, 1992), 

g20T >> 1 + AWTL (59) 

The adverse effect of imperfect laser coherence derives from the fact that both 
phase fluctuations and frequency chirp correspond to time-dependent changes in 
the laser frequencies. Unless these changes are correlated (e.g., if the pump and 
Stokes pulses are derived from the same laser), they will result in time-dependent 
detuning from two-photon resonance. The two-photon detuning induces nonadia- 
batic couplings between the dark state and the other adiabatic states that reduce the 
transfer efficiency. These population losses can be reduced by increasing the laser 
intensity, thereby suppressing nonadiabatic transitions. This problem is discussed 
in more detail in Section IV.B. 

8. Nonadiabat ic  Transitions 

An important subject of theoretical investigation is the behavior of the system away 
from the adiabatic limit. Of particular interest is here the question in what manner 
the adiabatic limit is approached. 

For smooth, ramped pump, and Stokes pulses, diabatic corrections are expo- 
nentially small in the inverse adiabaticity parameter (Elk, 1995). This behavior is 
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very similar to the classic result by Dykhne (1962) and Davis and Pechukas (1976) 
for two-level systems. For many STIRAP models this is not the case, however, 
and there is a power-law dependence (Laine and Stenholm, 1996; Vitanov and 
Stenholm, 1996; Drese and Holthaus, 1998). 

The following section discusses various other factors that affect adiabaticity. 

B. SENSITIVITY OF STIRAP TO INTERACTION PARAMETERS 

1. Sensitivity to Delay 

The following considerations affect the choice of an optimum delay between the 
Stokes and pump pulses. 

�9 Coincidentpulses: In this case the mixing angle 0 is constant and the evolu- 
tion is fully adiabatic because the nonadiabatic coupling vanishes (t~ = 0). 
However, the initial projection of the state vector ff~ onto the trapped state 
�9 0(t) is incomplete, i.e., the trapped state is not the only adiabatic state pop- 
ulated initially and the interference between different evolution paths from 
~Pl to ~P3 lead to oscillations in the final population of the target state 7t3 
(Vitanov, 1998b), rather than to complete population transfer. Hence this 
regime presents the "good adiabaticity argument" but the "bad projection 
argument." 

�9 Small delay, very large overlap: For delayed and counterintuitively ordered 
pulses, the initial projection of the state vector onto ~0 is unity. When the 
pulses are only slightly delayed, the mixing angle 0 is nearly constant dur- 
ing most of the overlap and hence t~ ~ 0 ("good adiabaticity argument"); if 
the pump and Stokes peak Rabi frequencies are equal, then 0 ~ 7r/4 dur- 
ing the overlap. However, O rises too quickly from 0 to about 7r/4 during 
the short interval between the arrivals of the Stokes and pump pulses, and 
then again rises too quickly from 7r/4 to 7r/2 during the short interval be- 
tween the disappearance of the two pulses. During these two time inter- 
vals, the nonadiabatic coupling (which is ~x O) can reach significant values 
and can cause nonadiabatic transitions to the other adiabatic states ~+ and 
�9 _. Thus when the system enters the pulse overlap region the state vector 
ff~ is not parallel to the trapped state ~0, i.e., we have "bad projection." 
The presence of two nonadiabatic zones eventually leads to interference and 
oscillations in the transfer efficiency, as for coincident pulses. Hence this 
regime presents the "good adiabaticity argument" during the pulse overlap, 
but the "bad projection argument" at the entry and the exit of the overlap 
region. 

�9 Large delay, very small overlap: The initial projection of the state vector 
onto ~0 is unity. However, the mixing angle 0 stays nearly constant for most 
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of the excitation (,~0 early when only the Stokes pulse is present and ~ zr/2 
at late times when only the pump pulse is present) and rises from 0 to zr/2 
during only a very short period when the pulses overlap; during this period 
the nonadiabatic coupling (cx 0) is very large and causes transitions to the 
other adiabatic states ~+ and ~_, resulting in loss of transfer efficiency. 
Hence this regime presents the "good projection argument" but the "bad 
adiabaticity argument" during the pulse overlap. 

�9 Optimum delay: The optimal pulse delay, which must lead to maximal trans- 
fer efficiency, can be determined by maximizing adiabaticity. For maximal 
adiabaticity, the mixing angle O(t) must change slowly and smoothly in time, 
so that the nonadiabatic coupling (~x 0) remains small, without pronounced 
peaks. As follows from the above discussion, the optimal adiabaticity oc- 
curs for a certain range of moderate delays, when both the two-peak time 
dependence of 0 appearing for small delay and the sharp-single-peak time 
dependence appearing for large delay, are absent. The particular optimal 
value of r depends on the pulse shapes. For Gaussian pulses, the optimum 
occurs when the delay is nearly equal to the pulse width, ~opt '~ T. 

2. Sensitivity to Rabi Frequency and Pulse Width 

It is best to have intensities adjusted such that when combined with the given 
dipole transition moments rates the two peak Rabi frequencies are about equal. 
If the maximum Rabi frequencies are very different, and the pulse widths are 
about the same, than the projection of the state vector onto the adiabatic trans- 
fer state is very good early (or late) but necessarily less good late (or early), 
i.e., "good projection" cannot be achieved both early and late, and consequently 
the transfer efficiency will be small. It is interesting to note that in this case the 
population which does not end up in state r returns to state r i.e., the trans- 
fer efficiency is not limited by spontaneous emission losses. The same reasoning 
leads to the conclusion that the pump and Stokes pulse widths should also be about 
equal. 

It should be noted that with large pulse areas those prescriptions are not in 
conflict with the claim that the method is robust. For large pulse areas, small 
deviations from the optimum do not lead to significant drop in transfer efficiency. 
Using equal peak Rabi frequencies and equal pulse widths allows to reduce the 
necessary pulse areas and hence facilitates efficient population transfer. 

3. Sensitivity to Single-Photon Detuning 

Typical STIRAP experiments permit measurement of the population transfer prob- 
ability for various choices of the two carrier frequencies. Because a plot of transfer 
probability versus frequency appears similar to a plot of emission or absorption 
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intensity versus frequency (a spectral line profile), the full-width at half-maximum 
(FWHM) profile is termed the line width. 

Two profiles are of interest. Variation of both the pump and Stokes frequencies, 
while maintaining the two-photon resonance condition, presents a single-photon 
profile, P3(A). Alternatively, variation of either cartier frequency, while keeping 
the other fixed, will cause a change in the two-photon detuning, and will lead to a 
two-photon profile, P3(~). 

As is evident from Eqs. (44), the single-photon detuning A does not affect 
the formation or the composition of the trapping state (as long as two-photon 
resonance is maintained), because the mixing angle 0 does not depend on A. 
However, the other mixing angle q9 depends on A and therefore the detuning af- 
fects the adiabatic conditions (56). Since [qgl _< re~4, and hence I sin qgl _< cos qg, the 
latter of conditions (56) is more stringent. Because q9 is a decreasing function of A 
[cf. Eq. (45)], the LHS ofthis condition increases with A. This implies that STIRAP 
works best on single-photon resonance; when the single-photon detuning A in- 
creases, adiabaticity deteriorates and the transfer efficiency decreases. 

We can easily derive the scaling properties of the FWHM A 1/2 o f  the single- 
photon line profile P3(A). For large A, when A begins to affect adiabaticity, we 

lf22 have q9 ~ f2/2A and condition (56) becomes ~ >> IAbl. Because b depends 
only on the pulse delay r and the pulse shapes [cf Eq. (45)], but not on A or on 
the peak Rabi frequency ~0, the width A 1/2 must scale with f22. Upon introducing 
a pulse-delay dependent proportionality factor D(r), one may write (Vitanov and 
Stenholm, 1997a) 

A1/2 - -  D(r )~  2. (60) 

Because the Rabi frequency is proportional to the electric field amplitude, the 
single-photon width A 1/2 is proportional to the peak intensity. 

4. Sensitivity to Two-Photon Detuning 

It is also possible to derive a simple scaling relationship for the sensitivity of 
population transfer to the two-photon detuning 3 = Ap -- As (Danileiko et al., 
1994; Romanenko and Yatsenko, 1997; Fewell et al., 1997; Vitanov, 2001). The 
detuning from two-photon resonance is much more crucial for STIRAP than the 
single-photon detuning, because the two-photon detuning prevents the exclusive 
population of the trapped state. 

The sensitivity of the transfer efficiency to the two-photon detuning 8 can be 
quantified by examining the behavior of the three eigenstates of the Hamiltonian 
(40), which are no longer given by Eqs. (44) (Danileiko et al., 1994; Romanenko 
and Yatsenko, 1997; Fewell et al., 1997). In particular, the trapped state ~0(t) is 
no longer an eigenstate of H(t). For nonzero 3, each of the three eigenstates of the 
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Hamiltonian (40) connects to the same  bare state at both t - - c ~  and t = +c~z, 
and hence there is no adiabatic transfer state providing an adiabatic connection 
from state 7zl to state 7z3, as does the trapped state ~0 for 6 = 0. Thus adiabatic 
evolution leads to complete population return of the system to its initial state 7q, 
i.e., to zero transfer efficiency. The only mechanism by which some population 
transfer to state 7z3 can occur is by nonadiabatic transitions between the adiabatic 
states. Such transitions can take place for small values of ~ when there are narrow 
avoided crossings between the adiabatic eigenvalues. This is illustrated in Fig. 11. 
By using the Landau-Zener formula (Landau, 1932; Zener, 1932) to evaluate the 
nonadiabatic transitions at these avoided crossings, analytic expressions for the 
two-photon linewidth have been derived (Danileiko et aL, 1994; Romanenko and 
Yatsenko, 1997). 

An alternative approach to estimating the two-photon line width makes use of 
the adiabatic condition (Vitanov, 2001). We assume for simplicity single-photon 
resonance, A -- 0. From the initial bare-state basis we make a transformation to 
the basis of the states (44), which are the eigenstates of H(t) for 6 - -0 ,  rather 
than to the genuine 3 r 0 adiabatic basis. In the basis (44), the effect of nonzero 
two-photon detuning 6 shows up in additional terms in the respective Hamiltonian 
proportional to 3 (Vitanov 2001), 

Hb(3) = Hb(3 = 0) 

I 1 - ~ / 2  tan 0 1 1 
+ 1~. h 3 cos 20 - x/2 tan O 2 tan 20 - ~ tan O , 

1 - ~ / 2  tan 0 1 

(61) 

where Hb(6 = 0) is given by Eq. (51). If we now assume that the evolution is 
adiabatic for 3 - - 0  (i.e., that we have unity transfer efficiency on two-photon 
resonance), we can neglect all nondiagonal terms in Hb(3 = 0). We can also neglect 

3 

2 
i,- ..................................................... 1 

(a) 

Time 

3 3 
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FIG. 11. Time evolution of the energies in a three-state system with two-photon detuning: (a) large 
two-photon detuning (no transfer); (b) narrow avoided crossings for small two-photon detuning (transfer 
through diabatic transitions). 
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all 6 terms in the diagonal elements of Hb(6), unless the two-photon detuning is 
comparable with the eigenvalue separation (then the transfer efficiency would be 
virtually zero). Then the effect of the nonzero two-photon detuning 6 shows up 
as additional nonadiabatic couplings (which do not vanish in the adiabatic limit) 
between the 6 = 0 adiabatic states (44). Considerable population transfer between 
states ~Pl and 7t3 can still be realized if the A system is forced to stay in the trapped 
state ~0. This requirement leads to the condition 

6 sin 0 cos 0 << ~2 S2. 

Because, as we emphasized above, the mixing angle 0 does not depend on the 
peak Rabi frequency S20 but only on the ratio S2p/~2s, i.e., on the pulse delay r 
and the pulse shapes, the width 61/2 of the two-photon line profile P3(6) must scale 
with ~0. By introducing a pulse-delay dependent proportionality factor d(r), one 
may write (Vitanov 2001) 

31/2 = d(r)S20. (62) 

By contrast with the single-photon width A1/2, the two-photon width 31/2 varies 
in proportion to the Rabi frequency, meaning the square root of the peak intensity. 

In conclusion, STIRAP efficiency is much less sensitive to single-photon de- 
tuning (because the single-photon linewidth grows with the square of the pulse 
area, A1/2 (X (f20 T) 2) than to two-photon detuning (where the linewidth increases 
only linearly with the pulse area, 31/2 cx S20 T). A numerical example is shown in 
Fig. 12 and experimental results in Fig. 13. 

5. Sensitivity to Losses from the Intermediate State 

As we emphasized above, in the adiabatic limit, no population resides in state 
7t2, and spontaneous emission from l/r 2 is not detrimental to successful popula- 
tion transfer. However, a strong decay from state lp2 may reduce adiabaticity and 
demands larger laser intensity for high transfer efficiency. The influence of spon- 
taneous emission from the intermediate state 1/t 2 both within the A system (back to 
states ~Pl and ~P3) (Band and Julienne, 1991a, 1992) and to other states (Glushko 
and Kryzhanovsky, 1992; Fleischhauer and Manka, 1996; Vitanov and Stenholm, 
1997d) has been studied. Modeling spontaneous emission within the A system re- 
quires using the Liouville density-matrix equation and it is hard to derive analytic 
estimates, while population losses to states outside the A system allow analytic 
treatment (Fleischhauer and Manka, 1996; Vitanov and Stenholm, 1997d) using 
the Schr6dinger equation. 

The effect of irreversible losses is most conveniently estimated in the lossless 
(V = 0) adiabatic basis (51), where the effect of the loss rate shows as additional 
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FIG. 12. Numerically calculated transfer efficiency in STIRAP plotted versus the sum and the 
difference of the pump and Stokes detunings (i.e., versus the single-photon and two-photon detun- 
ings) for Gaussian pulse shapes, ~p = f20 exp[-(t  - r)2/T2], ~s = if20 exp[-(t  + r)2/T2], with 
f20 T = 20, r = 0.5 T. The curves show the P3 -- 0.5 value. 

FIG. 13. Experimentally measured transfer efficiency of STIRAP plotted versus the pump and Stokes 
detunings. (From J. Martin, B. W. Shore, and K. Bergmann. Coherent population transfer in multilevel 
systems with magnetic sublevels. III. Algebraic analysis. Phys. Rev. A 1996;54:1556-1569.) 
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imaginary terms (Vitanov and Stenholm, 1997d) in the Hamiltonian 

, [ 0 1 Hb(r) -- Hb(r = 0) + ~ir '  0 0 
1 _ sin 2 ~o j s i n  2~o 0 

(63) 

where mb(1-"--0) is given by Eq. (51). Obviously, the losses affect much more 
strongly population transfer by the intuitive pulse ordering because then the 
decaying intermediate state may receive considerable transient population. Since 
then the population is transferred via the adiabatic state ~_,  which decays with a 
rate ~1F sin 2 q0, the transfer efficiency decreases exponentially with F 

For the counterintuitive pulse ordering, the population losses occur by two 
mechanisms. The first mechanism, which dominates at small to medium decay 
rates, is by dissipation of population that visits state lp2 due to imperfect adiabatic- 
ity. In the adiabatic basis, imperfect adiabaticity leads to nonadiabatic transitions 
from the nondecaying dark state ~0 to the other, decaying adiabatic states ~+ 
and ~_,  from which population losses occur. The second mechanism is quantum 
overdamping, which dominates for large I" and leads to effective decoupling of the 
three-state system from the laser fields. These two mechanisms lead to different 
damping of the transfer efficiency with F: exponential at small 1-" (but with a much 
smaller effective loss rate than for the intuitive pulse ordering) and polynomial at 
large F. 

By using a similar approach as for the estimation of the single-photon line width 
A1/2 (Section III.B.3), one can show that the "linewidth" F1/2, the loss rate value 

1 is proportional to the squared pulse area at which the transfer efficiency drops to g, 
(Vitanov and Stenholm, 1997d), 

r l /2 ~,~ G -~ (~0T)  2, (64) 

where G(1"/T) is a coefficient that depends on the pulse delay 1" (and on the specific 
pulse shapes) but not on ~20 T. In the case of Gaussians, an analytic approximation 
for the coefficient G(1"/T) reads (Vitanov and Stenholm, 1997d) 

3 ( r /T )  ln2 _2(r/T)2 (65) 
G ( r /  T) ~ e . 

8(l ' /T) 2 n t- 7r/2 

Formula (65) suggests that G ( r / T )  rises from zero at r = 0 to its maximum value 
of about 0.23 at r ~ 0.302 T and then decreases in a near-Gaussian fashion with 
r. The decrease of G ( r / T )  at small r / T  is because then the loss rates of states ~+ 
and ~_ increase and larger pulse area is needed to suppress them. The decrease of 
G ( r / T )  at large r / T  is due to the larger nonadiabatic coupling between the dark 



1 O0 N.V. Vitanov et aL 

state ~o and the other adiabatic states ~+ and ~_,  which again requires larger 
pulse area to ensure sufficient adiabaticity. 

6. Sensitivity to Beam Geometry 

The optimum geometry of the laser beams (circular or cylindrical with different 
orientations of the ellipsoid) depends on the purpose of the excitation. For scattering 
experiments it is desirable to maximize the flux of atoms which crosses the laser 
beams in regions that allow adiabatic evolution. In other applications, one may 
want to manipulate a highly collimated beam, and the laser power may be at the 
limit of what is needed; in that case, one wants to increase the interaction time to 
improve the adiabatic evolution. 

Given the nonspherical intensity distribution according to 

E(x,-" y, t) = ~1 ~Eoei~Ot e-(X/Wx)2-(y/Wy)2 _11_ C.C., (66) 

l C~og2(X y) and P -- the intensity I(x,  y) and power P are given by I(x,  y) = ~ 
fx,y d x d y I ( x ,  y ) =  2WxWylo, respectively. From these one obtains the Rabi 
frequency, 

n=g (67) 

The global adiabaticity criterion can be written in a form which contains the shape 
parameters of the laser beam, 

, I xP 
c rE~ V Wy >> 1, 

(68) 

where v is the atom velocity. 
It is interesting to note that the adiabaticity criterion is independent of the laser 

beam diameter D for circular beam geometry! This is because the interaction time 
increases linearly with D, while the local (and maximum) Rabi frequency decreases 
inversely proportional to D. Thus, the dependence on D cancels. 

As illustrated in Fig. 14, a laser beam focused cylindrically with the long axis 
perpendicular to the particle beam axis allows one to manipulate a relatively large 
flux, but the Rabi frequency increases less than the interaction time decreases 
(given the same power of the laser beam, of course). Thus the price for a high flux 
of manipulated (excited) atoms or molecules is a higher intensity. 
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FIG. 14. Laser beam geometries for STIRAP. 

A cylindrical focus with the long axis parallel to the particle beam axis reduces 
the flux of manipulated particles. However, since the interaction time increases 
more than the Rabi frequency decreases, the required intensity is smaller. 

Given these considerations it is interesting to ask: how large can we allow the 
cylindrical focus to be? One obvious limitation is that the interaction time can 
not be increased indefinitely. Increasing the interaction time makes the transfer 
process more sensitive to the detrimental phase fluctuations during the adiabatic 
passage process. Thus the transit time through the overlap region should be small 
compared to the inverse of the laser linewidth. 

7. Multiple Intermediate States 

In the standard three-state STIRAP, the Raman linkage between the initial state ~1 
and the final state ~3 takes place via a single intermediate state ~2. In real atoms, 
and particularly in molecules, it may happen that there are multiple intermediate 
states strongly coupled to ~Pl and ~3 by the pump and Stokes fields, thus forming 
a parallel multi-A system. Such couplings may be present because, while very 
sensitive to the two-photon resonance, STIRAP is relatively insensitive to the 
single-photon detuning from the intermediate state. Coulston and Bergmann (1992) 
were the first to consider the effects of multiple intermediate states in the simplest 
case of N =  2 states and equal couplings ~p(t) to state ~1 and equal couplings 
~s(t) to state ~3. Vitanov and Stenholm (1999) studied the general case of unequal 
couplings and unevenly distributed, N intermediate states. It has been concluded 
that the dark state (44b) remains a zero-eigenvalue eigenstate of the Hamiltonian 
only when, for each intermediate state ~Pk, the ratio S2~)(t)/s2~k)(t) between the 
couplings to the initial and target states is the same and does not depend on k. Then 
the multi-A system behaves very similarly to the single-A system in STIRAE 
and complete population transfer with no transient population in any intermediate 
state can take place for adiabatic evolution. When this proportionality condition 
is not fulfilled, a dark state does not exist but a more general adiabatic transfer 
state, which links adiabatically the initial and target states, may exist under certain 
conditions on the single-photon detunings and the relative coupling strengths. This 
AT state, unlike the dark state, contains contributions from the intermediate states 
which therefore acquire transient populations during the transfer. 
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It has been shown (Vitanov and Stenholm, 1999) that when the pump and 
Stokes frequencies are scanned across a manifold of N intermediate states (while 
maintaining the two-photon resonance), the target-state population passes through 
N regions of high transfer efficiency (unity in the adiabatic limit) and N -  1 
regions of low efficiency (zero in the adiabatic limit). It is most appropriate to 
tune the pump and Stokes lasers either just below or just above all intermediate 
states because there the AT state always exists, the adiabatic regime is achieved 
more quickly, the transfer is more robust against laser fluctuations, and the transient 
intermediate-state populations, which are inversely proportional to squared single- 
photon detunings, can easily be suppressed. 

8. STIRAP Beyond the RWA 

Conventional STIRAP assumes applicability of the rotating-wave approximation. 
This approximation requires that the two Rabi frequencies and the single-photon 
detunings are much smaller than the Bohr transition frequencies. In most experi- 
ments, these conditions are well satisfied. 

Several extensions of conventional STIRAP beyond the RWA have been ex- 
plored. In the most extreme case, Gurrin and Jauslin (1998) have examined, by 
using an adiabatic Floquet approach, the situation when the Rabi frequencies are 
comparable to the Bohr frequencies. Then the feasibility of adiabatic population 
transfer can be deduced by analyzing a plot of the eigenenergies of a Floquet 
Hamiltonian. 

Yatsenko et al. (1998) have studied the case when the envelopes of the laser 
pulses are not smooth but are modulated periodically in time. In the adiabatic 
Floquet picture, a success or failure of adiabatic population transfer can be deduced, 
again, from a plot of the eigenenergies of a Floquet Hamiltonian. In such a plot, 
there occurs an infinite sequence of eigenenergy triplets. The distance between 
the triplets is proportional to the modulation frequency, while the splitting of the 
Floquet energies within each triplet is proportional to the peak Rabi frequency g20. 
When the modulation frequency exceeds the peak Rabi frequency, high transfer 
efficiency can be achieved because the adjacent triplets are well separated and do 
not interfere with each other. When S20 is comparable or larger than the modulation 
frequency, the success or failure of adiabatic population transfer is determined by an 
interplay between the splitting within each triplet and the separation of the triplets. 

It may also occur that the two laser fields act on both the pump and Stokes 
transitions, e.g., when the two laser fields have the same polarization. If the two 
Bohr frequencies are sufficiently different, so that their difference is large compared 
to the Rabi frequencies of the pump and Stokes pulses (1o912 -o9321 >> ~2p, ~s), 
one can neglect the off-resonant channels, i.e., the action of the pump laser on 
the Stokes transition and the action of the Stokes laser on the pump transition. If 
the Rabi frequencies are comparable to or bigger than the difference of the Bohr 
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frequencies (lap, fas ;~ [Wl2- (-032[), the off-resonant channels have to be accounted 
for (Unanyan et al., 2000c). Then efficient and robust population transfer can 
still be possible under certain conditions with the exchange of one or more (odd- 
number) photons between each laser field and the atom. With the multiple-photon 
scenario, however, the transient population of the intermediate level is no longer 
negligibly small, even when the evolution is adiabatic. 

IV. Three-State STIRAP: Experiments 

When continuous-wave lasers are used in combination with atomic or molecular 
beams, it is straightforward to expose the atoms or molecules to a delayed sequence 
of interactions by spatially displacing the axes of the laser beams (see Fig. 15). 
When pulsed lasers are used, the axes of the laser beams need to coincide but the 
pulses must be delayed in time. 

A. EXPERIMENTAL DEMONSTRATIONS WITH CW LASERS 

1. Sodium Dimers  

After preliminary, incomplete, results (Gaubatz et al., 1988), the first convinc- 
ing experimental demonstration of STIRAP was achieved by Bergmann and co- 
workers in studies of Na2 (Gaubatz et al., 1990). A beam of sodium molecules 
crossed two spatially displaced but partially overlapping CW laser beams. When 

FIG. 15. Experimental setup for the Ne experiment. (From K. Bergmann, H. Theuer, and B. W. 
Shore. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 
1998;70:1003-1025.) 
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the molecules interacted first with the Stokes laser (counterintuitive ordering), com- 
plete population transfer was observed from the initial level (v = 0, J = 5) to the 
final level (v = 5, J -- 5) of the molecules in their electronic ground state X 1 Eg+ 

via an intermediate level (v -- 7, J -- 6) ofthe excited electronic state A 1E u. The 
time required for a molecule to traverse the two laser beams was about 200 ns. 
Although this interaction time was much longer than the excited-state lifetime 
(,~ 15 ns), efficient population transfer was achieved because STIRAP does not 
populate the excited state appreciably. Because the interaction time was relatively 
long and because the sodium dimers have relatively strong transition moments, 
only moderate laser intensities were needed to induce large pulse areas. Typical 
intensities in the range of 100 W/cm 2 were sufficient to produce adiabatic passage. 
This radiation was provided by CW lasers having of the order of 100 mW power, 
with radiation mildly focused to a spot diameter of a few hundred micrometers 
into the molecular beam. 

2. Metastable Neon Atoms 

STIRAP has been studied in detail in metastable neon in a similar crossed-beam 
geometry (Rubahn et al., 1991; Martin et al., 1996; Lindinger et al., 1997; Theuer 
and Bergmann, 1998). In the experiment by Theuer and Bergmann (1998), the 
population was transferred from state 2p53s3po to state 2p53s3p2 via the inter- 
mediate state 2p53p 3 P1. In the experiment, a beam of Ne* atoms emerged from a 
discharge source (see Fig. 15). A preparation laser depleted the population of the 
3p2 metastable level by optical pumping. Excitation of the 3p2 level to the 3D 2 level 
resulted in spontaneous emission to the short-lived levels of the 2p53s configura- 
tion, followed by decay to the ground state. After passing through a collimating 
slit, the atoms crossed the STIRAP zone, composed of the Stokes and pump lasers, 
with their axes suitably displaced. In the STIRAP region, the population of the 3P 0 
state was transferred to the other metastable level 3/~ If the population transfer was 
incomplete, some transient population would reside in the intermediate level and 
VUV fluorescence (photon energy 16.7 eV) would be observed at the channeltron 
detector D 1. Downstream from the STIRAP zone a probe laser excited atoms in 
the 3P2 level and the subsequent VUV radiation was monitored by a channeltron 
detector D2, with almost no background signal. The pump and Stokes intensities 
used in the experiment, typically a few W/cm 2, were provided by CW radiation, 
focused into the atomic beam by cylindrical lenses. 

Figure 16 displays typical evidence for STIRAP. The upper frame shows laser- 
induced fluorescence from the final state 3P 2 (monitored by detector D2) as a 
function of the pump laser frequency, while the Stokes laser frequency is held 
fixed slightly off-resonance. The signal shows a broad feature, widened by strong 
saturation to exceed the natural linewidth by an order of magnitude. At a specific 
pump detuning, the two-photon resonance condition is met and coherent population 



COHERENT MANIPULATION OF ATOMS AND MOLECULES 105 

FIG. 16. Laser-induced fluorescence from the final state 3p2 (upper flame) and fluorescence from the 
intermediate state 3P1 in the Ne* experiment plotted against the pump laser frequency, while the Stokes 
laser frequency, tuned slightly off-resonance, remains unchanged. (From K. Bergmann, H. Theuer, and 
B. W. Shore. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. 
Phys. 1998;70:1003-1025.) 

transfer occurs. Then very little (if any) transient population will reside in the 
intermediate state 3P1 and the fluorescence from there (monitored by detector 
D 1) will disappear, as shown in Fig. 16b. Thus, efficient population transfer is 
accompanied by a pronounced dark resonance. Indeed, although the typical time 
required for passage of atoms across the laser beams was more than 20 times longer 
than the radiative lifetime (~20 ns) of the intermediate state, no more than 0.5% 
of the population was detected in this state at the center of the dark resonance 
(i.e., at two-photon resonance). 

Figure 17 displays another characteristic signature for STIRAP. This figure 
shows the transfer efficiency plotted versus the spatial displacement between the 
pump and Stokes laser beams, i.e., versus the pulse delay from the viewpoint of the 
Ne* atoms. Positive displacement (on the left-hand side) corresponds to counter- 
intuitive pulse ordering (Stokes before pump) and negative displacement (on the 
right-hand side) to intuitive ordering (pump before Stokes). When the Stokes beam 
was shifted too far upstream (far left in the figure), it was excluded from the inter- 
action because there was no overlap with the pump pulse; in this case about 25% of 
the population was optically pumped into the target state because the pump laser 
excited the atoms to the intermediate state from which they decayed radiatively. 
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FIG. 17. Transfer efficiency versus displacement between pump and Stokes pulses in Ne* ex- 
periment. The broad plateau, showing nearly complete population transfer for counterintuitive pulse 
sequence, is a typical STIRAP signature, as contrasted with the low efficiency for intuitively or- 
dered pulses. The dots are experimental data and the solid curve shows numeric simulation. (From 
K. Bergmann, H. Theuer, and B. W. Shore. Coherent population transfer among quantum states of 
atoms and molecules. Rev. Mod. Phys. 1998;70:1003-1025.) 

As the Stokes beam was shifted toward the pump beam, while still preceding it, the 
transfer efficiency increased dramatically and reached almost unity. When the axes 
of the two lasers coincided, the transfer efficiency dropped to about 25%. Virtually 
no transfer was observed when the Stokes beam was moved farther downstream 
so that the Ne* atoms encountered the pump laser first (intuitive pulse ordering). 
In this configuration the atoms were transferred to the intermediate state by the 
pump laser and reached the final state by spontaneous emission from there; toward 
the end of the interaction they were exposed to the Stokes laser only and were 
thus lost from state lP3 by optical pumping and subsequent spontaneous emission 
of VUV radiation in a two-step radiative-decay cascade to the neon ground state. 
The broad plateau for counterintuitive pulse ordering is a characteristic feature of 
STIRAP and indicates the robustness of the population transfer. 

In the previously discussed setups the propagation direction of pump and Stokes 
fields was chosen parallel. This is not necessary, however, as was demonstrated 
experimentally again using Ne* atoms (Theuer et  al., 1999). Here circularly (a) 
polarized Stokes radiation couples the 3P2 +, 3p1 transition and a linear (Jr) po- 
larized pump laser the 3P1 +, 3P0 transition. As will be shown in Fig. 36, pump 
and Stokes are at 90 ~ with respect to each other and both intersect the beam of 
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metastable Ne* at right angles to minimize the effect of Doppler shifts. They are 
properly displaced in order to guarantee a counterintuitive coupling in the frame 
of the moving atoms. After careful preparation of the initial state by depopulation 
optical pumping, a two-photon resonance width of 6 MHz (FWHM) was measured, 
which is clearly below the single-photon value. This type of coupling using a-rr  
polarizations and orthogonal propagation directions is of particular importance for 
the realization of a variable coherent atomic beam splitter, which will be discussed 
in Section VI. 

B. EXPERIMENTAL DEMONSTRATIONS WITH PULSED LASERS 

1. General Considerations for Pulsed Lasers 

A very interesting and important application of STIRAP is the selective excitation 
of high-lying vibrational levels in molecules. In most molecules the first electroni- 
cally excited states have energies more than 4 eV above the ground state. Therefore 
a Raman-type linkage from the vibrational ground level to a high vibrational level 
requires ultraviolet lasers. Strong ultraviolet radiation is most readily provided 
by frequency-conversion techniques involving high-intensity pulsed lasers. Fur- 
thermore, since the molecular transition dipole moments are usually considerably 
smaller than for atoms, the adiabaticity condition is difficult to satisfy with CW 
lasers. Sufficiently strong light intensity, and hence large enough couplings, can be 
delivered only by pulsed lasers. Pulsed lasers, however, often have inferior coher- 
ence properties, e.g., they suffer from phase fluctuations and frequency chirping; 
both of these effects increase the pulse bandwidth. 

As follows from the adiabatic condition (59), the required laser energy increases 
quadratically with the pulse bandwidth. For conventional nanosecond lasers that are 
not specially designed to yield nearly transform-limited pulses, the ratio Aco/A 0.)TL 

is typically bigger than 10. According to the above estimate, the intensity needed 
for STIRAP has to be increased by a factor of 100 with respect to transform-limited 
pulses. While in principle it is possible to obtain higher intensities by focusing the 
laser beam, this would be detrimental for most applications, where large volumes 
of the molecular jet have to be excited, e.g., in reactive scattering experiments. 
Therefore, it is very difficult to satisfy the adiabaticity criterion for laser pulses 
whose bandwidth clearly exceeds the transform-limited bandwidth. 

In short-pulse implementations of STIRAR one should also account for the 
rapidly increasing laser energy required to ensure adiabatic evolution, as pre- 
scribed by condition (58). Thus, if a pulse energy of 1 mJ were sufficient to ensure 
adiabatic evolution for a 1-ns laser pulse, then the same degree of adiabaticity 
would require energy of 1 J for a 1-ps laser pulse, even if the bandwidth of the 
latter is transform limited. Still, this does not mean that long-pulse or CW lasers 
offer the best possibilities to implement STIRAP. Indeed, the product fl0 T, which 
is proportional to the square root of the pulse energy times the pulse duration T, 
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is typically largest for tunable laser sources of intermediate pulse duration, i.e., 
nanosecond lasers. Conventional tunable picosecond and femtosecond lasers typ- 
ically cannot compensate for the shorter pulse duration by an adequate increase in 
pulse energy. High peak intensity leads to detrimental multiphoton couplings and 
ionization. On the other hand, CW lasers may provide longer interaction times, 
but suffer for the weak intensities available. 

2. Nitrous Oxide Molecules  

STIRAP has been successfully demonstrated with nanosecond pulses in NO 
molecules (Schiemann et al., 1993; Kuhn et al., 1998), where highly efficient 
and selective population transfer has been achieved in the electronic ground state 
f romtheX 2H1/2(v = 0, J = �89 state to the X 2H1/2(v - 6, J = �89 
state via the intermediate state A 2 E(v 1 = 0, J = ~). The NO molecule provides 
an example of complications that may arise due to hyperfine structure. What seems 
to be a three-level system is actually a system of 18 sublevels (see Fig. 18). Be- 
cause  14N160 has a nuclear spin o f / =  1, each of the three levels is split into a pair 

1 3 of sublevels with F = ~ and F = ~, which in turn possess magnetic sublevels. 
For linearly polarized light, and when the pump and Stokes polarizations are par- 
allel, the 18-state system decomposes into two independent three-state systems 

3 3 3 m3 (one with F - ~, m F -- ~ and another with F - ~, m F -- ~) and two six-state 
1 1 systems for mF -- ~ and mF = --~. Because the hyperfine splittings of the ini- 

tial and final levels (214 MHz) is large enough to be resolved experimentally, the 
complexity of the system can be further reduced. Thus, despite the complications, 
a nearly complete transfer has been achieved, as shown in Fig. 19. 

F=3/2 

F= 1t2 

/ (" (" / - 3 / 2 - 1 t 2  112 312 

j'-1/2 
-3/2 -1/2 1/2 3/2 

X2I'[i/2 

v '=6 
j '=  1/2 

FIG. 18. Linkage scheme in the NO experiment. With hyperfine levels included, the seemingly three- 
level system becomes an 18-level system, because each of the three levels is split into two hyperfine 
levels with F = �89 and F = 3, which in turn have magnetic sublevels. The splitting of the excited 
hyperfine components of 15 MHz is too small to be resolved with pulsed lasers of a few nanoseconds 
duration and is not shown. 
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FIG. 19. Experimental demonstration of STIRAP in NO molecules versus the pulse delay. (From 
S. Schiemann, A. Kuhn, S. Steuerwald, and K. Bergmann. Efficient coherent population transfer in NO 
molecules using pulsed lasers. Phys. Rev. Lett. 1993;71:3637-3640.) 

3. Sulfur Dioxide Molecules 

The population transfer achieved in SO 2 molecules (Halfmann and Bergmann, 
1996) is an example of STIRAP in a polyatomic molecule. The enormously in- 
creased density of levels, as compared to atoms or diatomic molecules, results in 
much smaller transition dipole moments. Nevertheless, efficient population trans- 
fer becomes possible with adequate laser power, when the level density in the final 
state is not too high. Figures 20 and 21 show examples of population transfer from 
the rotational state 3o3 of the vibrational ground state (0,0,0) to the same rotational 
level of the (9,1,0) overtone in the electronic ground state X 1A 1 via the vibrational 
level (1,1,0) of the excited electronic state C ~ B2. The wavelengths were 227 nm for 
the pump and 300 nm for the Stokes lasers (Halfmann and Bergmann, 1996), with 
pulse durations of 2.7 ns for the pump and 3.1 ns for the Stokes pulse. Typical laser 
intensities were 10 MW/cm 2, yielding Rabi frequencies of about 10 l~ s -1. The 
population in the target state was probed by laser-induced fluorescence. The lower 
trace in Fig. 20 displays a signal of the probe laser-induced fluorescence from the 
final state (magnified 10 times) in the case when only the pump pulse was present; 
then the final state was populated by spontaneous emission from the intermediate 
state. When the Stokes pulse was turned on and applied before the pump pulse 
(with an appropriate overlap between them) the final-state population increased by 
more than two orders of magnitude. When the delay between the pump and Stokes 
pulses was varied, the typical plateau region of complete population transfer for 
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FIG. 20. Experimental demonstration of STIRAP in SO2 molecules: fluorescence versus two-photon 
detuning. The inset shows the level linkage. (From T. Halfmann and K. Bergmann. Coherent population 
transfer and dark resonances in SO2. J Chem. Phys. 1996; 104:7068-7072.) 

120 

100 

~ 8o 
�9 , , , , t  

N 6o 

~ 40 

i . i . I ' I . 

o 
o 
o 

J' 
-8 -6 

I , I ' I , 

�9 Experiment 
0 Numerical Simulation 

0 I i I , I , I I I 

-4 -2 0 2 4 

Pulse Delay (ns) 

FIG. 21. Experimental demonstration of STIRAP in SO2 molecules: efficiency versus pulse delay 
(right plot). (From T. Halfmann and K. Bergmann. Coherent population transfer and dark resonances 
in SO2. J Chem. Phys. 1996;104:7068-7072.) 
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negative pulse delay was observed, as shown in Fig. 21. For positive pulse delay 
(pump before Stokes), i.e., the case of SEE a transfer efficiency of about 25% was 
observed, as one expects from rate equation calculations. 

4. STIRAP in a Ladder System: Rubidium Atoms 

STIRAP has been successfully implemented to produce samples ofultracold highly 
excited rubidium atoms by using the ladder transition 5S1/2 ~ 5P3/2 --+ 5D5/2 
(Stiptitz et al., 1997). The Rb atoms in their ground state 5S1/2 were initially laser 
cooled to less than 500 #K and trapped in a magnetooptical trap with a diameter of 
7 mm. Then the excitation was performed by illuminating the trapped sample with 
laser pulses from two injection-locked high-power (100-mW) diode lasers tuned 
near resonance with the 5S1/2(F = 3) ~ 5P3/2(F' = 4) and 5P3/2(F' = 4) --+ 
5Ds/z(F' -- 5) transitions at 780 nm and 776 nm, respectively. The pulses were 
generated by acustooptic modulators and the delay was controlled electronically. 
The pulses had nearly Gaussian shapes and were linearly polarized in the same 
direction. The laser pulse durations of 33 ns (FWHM) were short compared to 
the lifetime of the target 5D5/2 state (241 ns), but longer than the lifetime of 
the intermediate state 5P3/2 (27 ns). Transfer efficiencies exceeding 90% have 
been achieved for counterintuitively ordered pulses (the 5 P3/2 ~ 5 D5/2 transition 
driven first) with peak laser intensities about 10 W/cm 2 (corresponding to peak 
Rabi frequencies about 2 x 108 s-l). There are no principal limitations to use 
STIRAP for efficient excitation of even higher-lying (Rydberg) states in this and 
other atoms. 

C. STIRAP WITH DEGENERATE OR NEARLY DEGENERATE STATES 

A problem that often arises when implementing STIRAP in real atoms and 
molecules is the existence of multiple intermediate and final states. These states 
may be present due to fine and/or hyperfine structure, Zeeman sublevels, or closely 
spaced rovibrational levels in polyatomic molecules. A multistate system has mul- 
tiple eigenenergies, which may present a very complicated picture when plotted 
in time. For example, narrow avoided crossings between the eigenenergies may 
appear; if such avoided crossings involve the eigenstate that provides the adiabatic 
linkage for population transfer, then the adiabatic path will be blocked and STIRAP 
may fail. 

A detailed numerical, analytical, and experimental investigation of this prob- 
lem has been presented in a series of papers on STIRAP in metastable neon atoms 
(Shore et al., 1995; Martin et al., 1995, 1996). It has been concluded and demon- 
strated that the presence of closely spaced levels near the intermediate and final 
state may pose a problem and even be detrimental for STIRAP. 

The level scheme in the neon experiment (Martin et al., 1996), shown in Fig. 22, 
involves states with J - - 0 ,  1, and 2, and thus there are 1 4- 3 4- 5 - -9  magnetic 
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FIG. 22. Linkage patterns in Ne* for various choices of pump and Stokes polarizations with respect 
to the direction of the magnetic field B. 

sublevels that may be coupled by the pump and Stokes lasers. A uniform magnetic 
field B can be used to remove the Zeeman degeneracy in the intermediate and 
final levels. On the other hand, the optical selection rules allow control of the 
number of levels participating in the process by an appropriate choice of the laser 
polarizations with respect to the direction of the uniform magnetic field, which sets 
the quantization axis. Four particular cases are shown in Fig. 22. When the pump 
and Stokes fields are linearly polarized along the direction of B, the selection rule 
AM = 0 applies. Then only the three M = 0 sublevels (one in each of the initial, 
intermediate and final level) are coupled by the laser fields, as shown in Fig. 22a. 
When only the pump polarization is parallel to B, while the Stokes polarization is 
perpendicular to B, four states are coupled, as seen in Fig. 22b. By contrast, when 
the Stokes polarization is parallel to B and the pump polarization is perpendicular 
to B, five states are coupled, as illustrated in Fig. 22c. Finally, in the most general 
case when the pump and the Stokes are polarized in arbitrary directions, all nine 
magnetic sublevels are coupled by the laser fields, as seen in Fig. 22d. 

Figure 23 shows the behavior of the final-state population for a set of incre- 
mentally increasing values of the magnetic field B. The pump laser polarization 
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FIG. 23. Population transfer in Ne* versus magnetic field strength for the polarization choice in 
Fig. 22c. The Stokes laser frequency is held fixed on resonance, while the pump frequency is varied. 
(From J. Martin, B. W. Shore, and K. Bergmann. Coherent population transfer in multilevel systems 
with magnetic sublevels. III. Algebraic analysis. Phys. Rev. A 1996;54:1556-1569.) 

is perpendicular to the magnetic field, while the Stokes polarization is parallel 
(Martin et al., 1996); the ensuing linkage pattern is that in Fig. 24c and involves 
five states. The Stokes frequency is tuned to resonance with the Bohr frequency 
of the degenerate (B = 0) 3P2 +-~ 3P1 transition, while the pump laser frequency is 
scanned across the resonance. For small magnetic field, a single peak in the target- 
state population is observed near resonance (Ap = 0), because the M - + 1 and 
M = - 1  sublevels are too close to be resolved. For large magnetic field, the Zee- 
man splitting increases and a symmetric two-peaked structure emerges, indicating 
populations of the M = 4-1 and M = -  1 sublevels (depending in which sub- 
level is on two-photon resonance). A significant drop in the transfer efficiency is 
observed at intermediate magnetic field strengths. This drop was identified (Martin 
et al., 1996) as due to lack of adiabatic connectivity between the initial and final 
states, i.e., the adiabatic path between them was blocked because of coupling to 
neighboring adiabatic states. Figure 23 also demonstrates the possibility of ori- 
enting the atomic angular momentum simply by tuning a laser frequency to the 
respective two-photon resonance. 

The success of STIRAP at zero and large magnetic field and its failure at some 
intermediate values can be understood by examining the evolution of the energies 
of the adiabatic states, shown in Fig. 24. With five coupled states we also have five 
dressed eigenstates and five adiabatic energies. For B - 0, the pattern looks similar 
to the one for three states. Because the pump and Stokes laser frequencies are tuned 
to the respective one-photon resonances, the five eigenenergies are degenerate at 
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FIG. 24. Time evolution of the eigenenergies in Ne* for different magnetic fields. The circles mark 
avoided crossings of the eigenenergies, which block the adiabatic path (thick curves) and impede 
population transfer. (From J. Martin, B. W. Shore, and K. Bergmann. Coherent population transfer in 
multilevel systems with magnetic sublevels. III. Algebraic analysis. Phys. Rev. A 1996;54:1556-1569.) 

early and late times, as seen in Fig. 24a. As in the case of three states, we have a 
zero adiabatic energy at all times, which is the adiabatic path linking state 7Zl to 
state 7z3. Thus STIRAP is possible, as verified in Fig. 23. 

When the magnetic field is nonzero, the Zeemen splittings remove the 
M degeneracy. Two-photon resonance can be established between the initial state 
~1 and only one of the final states. As a consequence, the eigenenergies are no 
longer degenerate at early and late times. Therefore, at early times we have a 
triple degeneracy, which is lifted as soon as the Stokes pulse arrives, and a double 
degeneracy of states, separated from the former ones by the detuning from the 
two-photon resonance, i.e., by the Zeeman splitting. The triplet is associated with 
the three bare states that are resonantly coupled by the laser field, while the doublet 
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is associated with the other two bare states. These latter states also show an Autlor- 
Townes splitting, and, since at early times their energy is separated from that of 
the other three states, a crossing of the states occur, provided the Rabi frequency 
exceeds the Zeeman detuning. 

One can show that a coupling between states, related to the crossing energy 
levels, is induced by the pump laser. When the Zeeman splitting is small, this 
crossing occurs while the pump laser is still weak and the system, while following 
the zero-energy path, passes (diabatically) through this crossing (Fig. 24b). At 
intermediate times, the pump laser induces interaction between the states and 
forces the energy of the transfer path to deviate from zero. At later times, the 
transfer path does not connect to the state with zero energy when the Stokes laser 
is turned off, as is needed for successful completion of the transfer. Therefore the 
adiabatic transfer path is blocked and coherent population transfer is not possible. 

With increasing magnetic field strength, leading to larger Zeeman splitting, 
the curve crossing with the zero-energy path occurs later, when the pump Rabi 
frequency is already large (Fig. 24c). Then the avoided crossing is sufficiently 
broad and does not impede the population transfer. Although a transient deviation 
from zero energy is observed (meaning that some population will transiently 
reside in the intermediate states and may be lost by radiative decay), the transfer 
path connects to the zero-energy eigenvalue as the Stokes laser is turned off; 
population transfer is again possible. At even larger Zeeman splitting, the avoided 
crossing is barely noticeable and a (nearly) zero-energy transfer path is again 
established (Fig. 24d). Moreover, when the Zeeman splitting is larger than the Rabi 

tO0 6 7 

thi -300 2 3 
~ 0 1 Magnet ic  Field (G) 

2 

FIG. 25. Population transfer in Ne* versus magnetic field strength for the polarization choice in 
Fig. 22c. Unlike Fig. 23, here the Stokes laser frequency is held fixed off resonance (As = 200 MHz), 
while the pump frequency is varied. (From J. Martin, B. W. Shore, and K. Bergmann. Coherent pop- 
ulation transfer in multilevel systems with magnetic sublevels. III. Algebraic analysis. Phys. Rev. A 
1996;54:1556-1569.) 
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FIG. 26. Top: linkage patterns in Ne* for various choices of pump and Stokes polarizations with 
respect to the direction of the magnetic field B. Bottom: population transfer in Ne* versus magnetic field 
strength. (From J. Martin, B. W. Shore, and K. Bergmann. Coherent population transfer in multilevel 
systems with magnetic sublevels. III. Algebraic analysis. Phys. Rev. A 1996;54:1556-1569.) 

frequencies, the relevant bare states can again be considered a (nearly) isolated 
three-state system. 

Detuning of the Stokes laser from the one-photon resonance may eliminate the 
connectivity problem recognized in Fig. 24b. Figure 25 shows the fluorescence 
signal from the 3p2 state for the same polarizations as in Fig. 23. Again, the fig- 
ure shows traces for incrementally increasing magnetic field as the pump laser 
frequency is scanned across resonance. However, unlike Fig. 23, the Stokes laser 
frequency is held fixed offresonance by 200 Mhz. This detuning prevents the cross- 
ing at early times (Fig. 24b) from appearing and ensures high transfer efficiency 
for all magnetic field values. 

Finally, Fig. 26 shows an example from Martin et  al. (1996) in which population 
transfer is possible for small Rabi frequencies but fails at higher laser power. The 
reason is again the blocking of the adiabatic path and can be cured, again, by 
detuning the lasers off their single-photon resonances. Thus, while in three-state 
systems STIRAP gets more robust and efficient as the Rabi frequency increases, 
in multistate systems this is not garanteed in general. 

In conclusion, coherent population transfer in multilevel systems depends on the 
availability of an adiabatic path that connects the initial and final states with only 
a small deviation from the zero eigenvalue at intermediate times when both laser 
fields are nonzero. Whether this is possible or not depends on the level structure and 
coupling scheme. In most cases, an analysis like the one shown in Fig. 24 is needed 
in order to understand the details of the transfer process and to make an appropri- 
ate choice of Rabi frequencies and detunings in order to control the crossing of 
dressed-state eigenvalues. In many cases, the connectivity problems can be avoided 
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if the laser frequencies are tuned sufficiently far from any one-photon resonance 
with an intermediate state. Moreover, for efficient population transfer the two- 
photon linewidth should not exceed the intermediate level separation, if the laser 
frequencies are close to one-photon resonance. An important conclusion, predicted 
theoretically and confirmed experimentally, is that one-photon resonances should 
be avoided (while the two-photon resonance is still essential) when more than three 
states are involved. Although the laser-atom coupling is strongest for one-photon 
resonance, this resonance may lead to blocking of the adiabatic connection and at 
least to non-negligible transient population in the decaying intermediate states. 

Finally, we point out that some other aspects of the influence of multiple nearly 
degenerate final states in STIRAP have been explored theoretically (Band and 
Magnes, 1994; Kobrak and Rice, 1998b). 

V. STIRAP-Like Population Transfer in Multistate Chains 

The simplest extensions of the three-state coherent excitation chain are those deal- 
ing with multistate chainwise excitation, i.e., linkages of the type 

1/r 1 ~ lp2 ~ 1/t 3 <---~...  <----~ lpN 

in which each state is connected to at most two other states (see Fig. 27). For steady- 
amplitude fields, analytic solutions to the Schr6dinger equation are available in a 
variety of cases (cf. Shore, 1990, chap. 15). The ordering of the energy levels 
is not important: the linkage pattern may appear as a simple ladder, or as some 
bent chain such as has the appearance of the letter N for four states or, for five 
states, the letter M or W. Chainwise ladder excitation is of considerable interest 
particularly for producing dissociation or ionization, whereas bent chains have 
interesting applications described in this section and in Section VI. 

FIG. 27. Linkage pattern for chain-STIRAP (serial multi-A system) and equivalent parallel multi-A 
system, obtained by diagonalization of the subsystem comprising the intermediate states in the original 
chainwise system. 
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The extension of STIRAP to multistate chains has drawn considerable attention 
(Shore et aL, 1991; Marte et aL, 1991; Smith, 1992; Oreg et aL, 1992; Pillet 
et aL, 1993; Valentin et aL, 1994; Goldner et aL, 1994a,b; Malinovsky and Tannor, 
1997; Theuer and Bergmann, 1998; Vitanov, 1998a, Vitanov et aL, 1998; Nakajima 
1999). Chain-STIRAP has proved to be a viable technique of great potential, 
particularly for momentum transfer in atom optics (Section VI). In this section we 
will describe the basic features and problems of chain STIRAP and will provide a 
few illustrations. 

The RWA Hamiltonian ofa multistate chain is a tridiagonal matrix which has the 
diabatic energies (the detunings) on its diagonal, and the laser-induced couplings 
as off-diagonal elements, 

H =  h 
2 

m 

0 ~1,2 0 -'- 0 0 

~1,2 2A2 ~2,3 "'" 0 0 

0 ~2,3 2A3 ... 0 0 
. . . . �9 . 

. . . . .  

0 0 0 " "  2AN-1 ~N-1,N 

0 0 0 "'" ~N-1,N 0 

(69) 

The zeros in the first and last diagonal elements indicate that the initial state 
and the final state of the chain are on ( N -  1)-photon resonance, a condition 
that generalizes the two-photon resonance in three-state STIRAP, whereas the 
intermediate states may be off-resonance in general. It has been discovered that 
such multistate chains behave differently when they involve odd and even numbers 
of states. 

A. RESONANTLY DRIVEN CHAINS WITH ODD NUMBER OF STATES 

The key for STIRAP-like population transfer in multistate chainwise connected 
systems is the existence of a multilevel dark state, which generalizes the usual dark 
state (44b)of three-state A systems and links adiabatically the initial state ~1 to 
the final state ~N of the chain. Such a multilevel dark state exists only when the 
multistate chain comprises an odd number of states (N = 2n + 1). It also requires 
that all lasers are on resonance with the corresponding transitions or only the even 
states in the chain are detuned from resonance (Shore et al., 1991; Marte et al., 

1991; Smith, 1992). Such a chain can be viewed as a sequence of serially connected 
A systems, each of which is on two-photon resonance. 

The Hamiltonian describing such a multistate chain has a zero eigenvalue. 
The multilevel dark state ~0(t) is the corresponding zero-eigenvalue eigenstate 
and it is a time-dependent coherent superposition of the odd states in the chain 



COHERENT MANIPULATION OF ATOMS AND MOLECULES 119 

1/r 1, l / r3,- . . ,  1/r2n+l. For example, the Hamiltonian of a five-state chain is given by 

0 ~1,2 0 0 0 

H h ~"21' 2 2A ~'~2,3 0 0 
-- -- 0 ~'~2,3 0 ~"~3,4 0 . (70) 

2 0 0 ~'23, 4 2A ~'24, 5 
0 0 0 ~"24, 5 0 

States O l and 1/r 3 are on two-photon resonance, and so are states l/Y 3 and grs. 
The even states in the chain ~P2 and lp4 may be off the respective single-photon 
resonances by the same detuning A. The multilevel dark state of this system reads 
(Morris and Shore, 1983; Hioe and Carroll, 1988; Shore et al., 1991; Marte et al., 
1991; Smith, 1992; Milner and Prior, 1998) 

1 
~ o ( t ) -  ./vt)'i"t" [f22,3(t)f24,5(t)~l- f21,e(t)f24,5(t)O3 -t- f21,2(t)f23,4(t)~5], (71) 

where N'(t) is a normalization factor. 
A particularly suitable system for multistate STIRAP is the chainwise tran- 

sition formed by the magnetic sublevels of a degenerate two-level system with 
excited-level angular momentum Je = Jg or J g -  1, driven by two sequential 
pulses with opposite circular polarizations. For example, if the system is prepared 
initially in the Mg = -Jg ground-state sublevel (e.g., by optical pumping), then a 
STIRAP-like transfer to the M e = Jg sublevel can be achieved by applying a pulse 
of a -  polarization (the Stokes) before a pulse of cv + polarization (the pump), i.e., 
in the counterintuitive ordering. 

In the five-state example, the Rabi frequencies f21,2(t) and ~3,4(t) will follow 
the time dependencef+(t) of the cv + pulse [and the difference in their peak values 
is determined by the respective Clebsch-Gordan coefficients (cf. Shore, 1990, 
chap. 19.1)], while the Rabi frequencies ~2,3(t) and f24,5(t) will follow the time 
dependencef_(t) of the ~-pulse.  Then the dark state (71) takes the form 

1 0 0 0 0 
- (I)0(t) ./~F(t ) [~"27,3 ~'~04,5 f 2 ( t ) ~ l -  al,2~'~4,5f-(t)f+(t)~3 -~- ~'~1,2~'~3,4 

(72) 

Hence, if the ~ -  pulse precedes the a+ pulse (counterintuitive pulse ordering), 
state ~0(t) is equal to ~1 (M = -Jg) at early times and to ~5 (M = +Jg) at 
late times, i.e., it provides an adiabatic connection between the initial state ~1 
and the last state ~5 of the chain. As in STIRAP, the sublevels of the excited 
level (~2 and 1/f 4 in this example) remain unpopulated throughout the transfer 
if the interaction is adiabatic; however, the intermediate odd states in the chain 
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(~3 here)--the sublevels of the ground state--do acquire some transient popula- 
tions. In this particular system these transient intermediate-state populations do 
not pose a problem because these sublevels do not decay and there are no pop- 
ulation losses. Indeed, multistate STIRAP in such chainwise systems has been 
demonstrated experimentally by several groups (Pillet et al., 1993; Valentin et al., 

1994; Goldner et al., 1994a; Goldner et al., 1994b; Theuer and Bergmann 1998). 
Sections VI and XI discuss some applications of STIRAP in multistate chains. 

B. RESONANTLY DRIVEN CHAINS WITH EVEN NUMBER OF STATES 

The chains with an even number of states (N= 2n) behave very differently in 
the resonant case (when all intermediate-state detunings vanish, A2 -- A3 "- . . . .  

AN-1 = 0) compared with the chains with an odd number of states. For even-N 
systems we have det H (__)N/2 2 2 -- ~-21,2~'23,4... ~ 2  1, N ~ 0, which means that the 
Hamiltonian does not have a zero eigenvalue, in contrast to the case of odd N. 
More important, H(t) does not possess any adiabatic state that provides an adia- 
batic connection between the initial state ~p~ and the final state 1/s N of the chain. 
Consequently, even when such a system is driven adiabatically by counterintu- 
itively ordered resonant pulses, a STIRAP-like population transfer between the 
initial and final states of the chain cannot occur. Instead, the final-state population 
exhibits Rabi-like oscillations as the pulse intensities increase (Oreg et al., 1992; 
Vitanov, 1998a; Band and Julienne, 199 lb). These oscillations occur because at 
early times the initial state is equal to a superposition of adiabatic states (rather than 
to a single adiabatic state as in STIRAP) and so is the final state at late times; hence 
interference between the different paths from the initial state to the final state takes 
place. 

For example, in a resonantly driven four-state chain the four eigenvalues are 
+e+ and +e_,  where 

(73) 

and ~"22 2 2 - lap 4- S22 4- f2 S, where ~i  is the coupling between the two intermediate 
states. The initial state ~p 1 cannot be identified with a single adiabatic state at - ~ ,  
but is rather given by a superposition of the two adiabatic states corresponding 
to the smallest eigenenergies - e _  and e_. The same applies to the final state ~4 
at + ~ :  

~1 -- ~1 [~_e_(--CXD) 4- ~e_(--C~)] ,  

1 
~4 - ~ [ * - ~ _ ( + ~ )  + *~_(+~)]. 

(74a) 

(74b) 
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If the system starts its evolution in state ~p 1 initially, then the adiabatic solution for 
the final populations of the bare states is (Vitanov 1998a) 

P l ( O O )  ' ~  COS 2 t~ COS 2 6 ) ,  (75a) 

P2(oo) ,~ 0, (75b) 

P3(ec) ~ sin 2 0 cos 2 6), (75c) 

P4(eo) ~ sin 2 6). (75d) 

Here tan t ~ -  limt__,+~[S2p(t)/S2i(t)] and 6)= f-~x~ e_(t)dt. Hence, as we ap- 
proach the adiabatic limit, P4(t) oscillates rather than tend to unity. Note that 

. . t--+-k-oo,.,., 
P3(cxz) - 0 if the pump pulse S2p(t) vanishes before S2i(t) [~p(t)/f2i(t) ---+ ul, 
while Pl(CX~)=0 if the pump pulse ~p(t) vanishes after ~2i(t)[~p(t)/ 
ai(t)'-~+Y + ~]. 

We also point out that if the pulse f2i(t), coupling the intermediate states, is 
much stronger than the pump and Stokes pulses at all times, then 0 ~ 0. Hence, 
although not being of STIRAP-type, the excitation process in an on-resonance 
four-state system involving a strong intermediate pulse (Malinovsky and Tannor, 
1997), is quite interesting by itself because it demonstrates how the population can 
flip between states 7t 1 and ~p4, bypassing the intermediate states ~2 and 7t 3 despite 
the fact that the latter states are on resonance with the corresponding lasers. 

C. THE OFF-RESONANCE CASE 

When the intermediate states are off resonance while the initial state and the final 
state of the chain are still on ( N -  1)-photon resonance, chains with odd and 
even number of states behave quite similarly. In both cases a STIRAP-like transfer 
is only possible if there exists an adiabatic path--adiabatic transfer state ~ v ( t ) - -  
linking the initial and final states of the chain. This depends on the laser parameters, 
particularly on the intermediate detunings. 

Let us consider the case when all intermediate detunings are nonzero, 
Ak =/= 0 (k = 2, 3 . . . . .  N -  1), and all couplings are pulse shaped. Let us also 
assume that the Stokes pulse S2N,N_ 1 -- fls, coupling the last transition, precedes 
the pump pulse S21,2 - tip, coupling the first transition. By setting S2p = 0 and 
S2s = 0 in Eq. (69), we find that there are two eigenvalues of H(t) which vanish 
as t --+ +co  [although they are nonzero at finite times because det H(t) r 0 in 
general]. The other eigenvalues tend to the (nonzero) detunings A k and the cor- 
responding adiabatic states tend to the respective bare intermediate states Ok. At 
+oo, each of the two adiabatic states, corresponding to the vanishing eigenvalues, 
is equal to either state ~ 1, or state 1//N, or  a superposition of ~ 1 and 1/t N. Obviously, 
if an AT state exists, its eigenvalue should be one of these two eigenvalues. Hence, 
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of particular interest are the asymptotic behaviors of the two vanishing eigenval- 
ues and the corresponding adiabatic states at early and late times. We note here 
that only one eigenvalue vanishes when f2p --+ 0 and f2s -r 0, which happens at 
early times, or when ~p --+ 0 and f2s -r 0, which happens at late times. Hence, at 
early times (t --+ - c ~ )  as soon as the Stokes pulse f2s arrives, one of the initially 
degenerate eigenvalues, e 7 (the "large" one), departs from zero, while the other, 
e 7 (the "small" one), remains zero until the pump pulse f2p arrives later. 

A similar scenario takes place at late times when first one eigenvalue vanishes 
with the disappearance of the Stokes pulse, and then the other eigenvalue vanishes 
with the pump pulse. It can be shown that at early times (t --+ - ~ ) ,  the two 
vanishing adiabatic energies behave as (Vitanov 1998a) 

~)(3 ,N-2)  ~) (2 ,N-2)  
6 s  ~ _ 2 - 2 479(2,N_2) ~2p, 8 l , ~  - -  , (76) 479(2,N-1) ~2s 

and at late times (t --+ + ~ )  the two vanishing adiabatic energies behave as 

~)(3 ,N-2)  ~) (3 ,N-1)  
6,s + ~ m 2 2 479(3,N_1) ~s 8t  "~ -- . (77) , 479(2,N_ 1) ~2p 

Here 79 (j,k) denotes the determinant of the matrix obtained from H by keeping its 
columns from jth to kth and its rows from jth to kth, 

7)(J,k) _ 

1 A j  ~'-2j,j+ 1 0 . . .  0 
1 1 
~"~j , j+l  A j + I  ~ ~ '2 jwl , j+  2 . .  �9 0 

1 
0 ~ ~ '2 j+ l , j+  2 A j +  2 . . .  0 

�9 ~ o o �9 

0 0 0 . . .  Ak 

(78) 

It is easy to verify that the adiabatic eigenstates corresponding to ej- and e~- tend 
to state 7t 1, while those corresponding to e 7 and e + tend to state ON. Hence, the AT 
state ~ r ,  if it exists, must have an eigenvalue that coincides with e s as t ~ - ~  
and with e + as t --+ +c~. The energies e s and e + do not necessarily correspond to 
the same eigenvalue and it may happen that e s is linked to e~- rather than e+; then 
an AT state does not exist. In any case, since the eigenvalues do not cross, the upper 
(the lower) of the two eigenvalues at - c ~  is connected to the upper (the lower) 
of the two eigenvalues at +e~. Because [ei-I >> lesl and le~-I >> I e+ I, the linkage 
is determined by the signs of the "large" eigenvalues e 7 and e~-. If they have the 
same signs, they will be both above (or below) e 7 and e ) and hence, the desired 
linkages e 7 ~ e;- and e 7 ~ e ) will take place. If e / a n d  e~- have opposite signs, 
they cannot be connected because such an eigenvalue would cross the one linking 
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e 7 and e +. Thus, from this analysis and Eqs. (76) and (77), we conclude that the 
condition for existence of an AT state is 

~)(2,N-2)~)(3,N-1) > 0. (79) 

The signs of the D's have to be determined at the early (or late) times when the 
Rabi frequencies are much smaller than the detunings (note that each of the D's 
has the same sign at early and late times). The above condition (79) remains valid 
also when one or more intermediate detunings are equal to zero (Vitanov, 1998a). 

If all intermediate couplings are pulse shaped (i.e., vanish as t ~ -t-oc), 
we have ~)(2,N-2) ~ A z A 3  . . .  AN_Z ' ~)(3,N-1) ~ A 3 A 4  . .  " A N _ I  ' and condition 
(79) reduces to 

A 2 A N _  1 > 0. (80 )  

Below we provide examples for existence and nonexistence of an AT state (and 
hence, of STIRAP-like transfer) in the cases of N - 4  and 5 states. 

�9 In  a four-state chain, an AT state exists when the cumulative detunings of the 
two intermediate states have the same sign, A2 A3 > 0, whereas it does not 
exist if AzA3 ~ 0. 

2 �9 In the five-state case, condition (79) reads (AzA3 - ~2,3)(A3A4 -- f23,4) > 
0. Thus if all intermediate detunings are nonzero, an AT state exists only if 
A 2 A  4 > 0. If A 2 - -  0, AT state exists only for A 3 A  4 < 0. If A 4 - - 0 ,  AT state 
exists for A z A  3 < 0. If A3 --0, an AT state always exists regardless of A 2 

and A4, which agrees with the result in Section V.A. If A 2 -"  A 4 = 0, an AT 
state also exists regardless of A3. 

Figure 28 displays examples of successful and unsuccessful adiabatic popula- 
tion transfer in four-state (top frames) and five-state (bottom frames) chains. In 
the on-resonant case (left frames), the final-state population approaches unity for 
N-- 5, while it oscillates for N = 4. The middle frames show examples for which 
the AT condition (80) is satisfied; consequently, the transfer efficiency approaches 
unity for both N - - 4  and N =  5. The right frames show examples when the AT 
condition (80) is not satisfied; then population transfer fails for both N =  4 and 
N--5.  

We point out that while condition (79) provides adiabatic connection between 
the two end states of the multistate chain, the AT state has in general nonzero 
components from all states involved, including from the decaying excited states. 
The even-state components (which correspond to the decaying excited states in the 
linkage pattern in Fig. 27) vanish only when the odd detunings are zero; then the AT 
state is a dark state (Section V.A). In the general case, beyond the particular case of 
chainwise transitions between magnetic sublevels of degenerate two-level systems, 



124 N. V. Vitanov et al. 

1.0 
r ~  

~0.5 
o 

I I I I  

' ' ' . i , , , , I , 

1 . 0  ~ . . . . . . . .  

" ~  N - 5  
,~0.5 4=0 
r 43=0 

A 4 - ' 0  

O , , , , i , , , , l , 

0 10 20 

i i i i i i i ! i I ! i I | i i i 

N = 4  

| ' , , ' I i , , , I , 

_ _  

N = 5  

�9 " 42 = 4~ o 

A 3 = 4f~ 0 
A 4 = 4~ '~  0 

I . . . .  i , i i i I i i 

0 10 20 

~0 T ~20T 

, , , | I i , , , I | m 

N = 4  

, , , , | . . . .  ! , , 

N - 5  
4 2 = 4f~ 0 
A 3 = 4 ~  0 . 

A 4 "-" ._.4~'~0 = 

. . . .  I , , i i I i i 

0 10 20 

~oT 

FIG. 28. Examples of success and failure of adiabatic population transfer in four-state (top frames) 
and five-state (bottom frames) chains. In each frame, we show the numerically calculated final-state 
population (thick solid curve), the initial-state population (thin solid curve), and the total population 
in the intermediate states (dashed curve). The dimensionless product ~20 T is proportional to the pulse 
area and as it increases, adiabaticity improves. The pump and Stokes Rabi frequencies are given 
by f2p = f20 exp[-(t - r ) 2 / T 2 ] ,  ~2 s = ~ 0  exp[-(t + "t ')2/T2],  with r = 0.5T, and all intermediate- 
pulse Rabi frequencies are equal to f20 exp[-(t/2T)2]. The two left frames are for the on-resonance 
case, when excitation leads to STIRAP-like transfer for N = 5 states but to Rabi-like oscillations for 
N - 4 .  The middle frames show examples of successful multistate STIRAP for both N= 4 and N--5, 
whereas the right frames show examples of failure of multistate STIRAP. 

the transiently populated intermediate states can decay radiatively during the trans- 
fer; then it is important to reduce their populations. (Malinovsky and Tannor, 1997) 
suggested that these transient populations can be suppressed when the pulses cou- 

pling the intermediate transitions are much stronger than the pulses driving the first 

(pump) and the last (Stokes) transitions. They proposed a pulse sequence, named 

s traddle  STIRAP, in which all intermediate pulses arrive simultaneously with the 
Stokes pulse and vanish with the pump pulse, being much stronger than the pump 

and the Stokes at all t imes (Malinovsky and Tannor, 1997; Sola et al., 1999). 

D .  O P T I M I Z A T I O N  OF M U L T I S T A T E  S T I R A P "  D R E S S E D - S T A T E  P I C T U R E  

A dressed-state approach (Vitanov et al., 1998) provides a particularly clear picture 

ofmult is tate  STIRAP, valid for both odd and even number  of  states. It is most  useful 

when the pulses (or the pulse) driving the intermediate transitions arrive before 
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and vanish after the pulses that drive the first (the pump) and the last (the Stokes) 
transitions, as in Malinovsky and Tannor (1997), and are nearly constant during the 
time when the pump and the Stokes lasers are present. Then, before the arrival of the 
pump and Stokes pulses, the N -  2 intermediate states are coupled into a dressed 
subsystem, as shown in Fig. 27. By changing the parameters of the dressing pulses 
(intensities and frequencies), one can manipulate the properties of this dressed 
subsystem and thus control the population transfer. By tuning the pump and Stokes 
lasers to one of the dressed eigenstates, ~k, the multistate dynamics is essentially 
reduced to a system of three strongly coupled states: ~1 ~+ ~k +-~ ON; this paves 
the road for an efficient STIRAP-like population transfer from state ~p 1 to state ON. 
Furthermore, if the dressing pulses are constant, at least during the time when the 
pump and Stokes pulses are present, then the couplings between the dressed states 
vanish. Also, if the dressing pulses are strong, the splittings between the dressed 
energies are large. This makes the multi-A system resemble the single-A system 
in STIRAP and therefore place little population in the intermediate states. 

The dressed picture also displays the difference between odd and even number 
of states in the on-resonance case (all detunings in the original chain equal to zero), 
when, as we noted above, odd-N chains have a zero eigenvalue and a corresponding 
trapped state, while even-N chains do not have such an eigenvalue, nor a trapped 
state. For odd-N chains, one of the dressed states is always on resonance with the 
pump and Stokes lasers. In contrast, for even-N chains, the pump and Stokes lasers 
are tuned in the middle between two adjacent dressed eigenvalues and the ensuing 
interference between different adiabatic paths leads to Rabi-like oscillations. Thus, 
while the on-resonance choice provides the best results for odd-N chains, the only 
possibility to achieve STIRAP-like population transfer in an even-N chain is to 
choose nonzero intermediate-state detunings and ensure that their values fall within 
an AT region. 

Figure 29 shows the final-state population in four- and five-state systems against 
the cumulative detunings from the intermediate states. In the four-state case, high 
transfer efficiency (the white zones) is achieved for sufficiently adiabatic evolution 
only if A2 A3 > 0, as discussed above. Near the dressed-state resonances (shown 
by hyperbolas) the transfer efficiency is high even when the evolution is not very 
adiabatic elsewhere (top left flame). As the pulse areas increase (top right frame), 
the two regions where A2 A3 > 0 (first and third quadrants) get filled with white 
(unity transfer efficiency), while no high transfer is possible in the A 2 A 3 < 0 re- 
gions (second and fourth quadrants). In the five-state case there are three AT regions 
in the A 2 / k 4  plane (A 2 - -  A 3 is assumed in order to display a two-dimensional plot), 

2 defined by the AT condition (A 2 - ~--~22,3)( A z / k 4  - ~'~3,4) > 0. In each AT region, 
there is an intermediate-dressed-state resonance, shown by a thick curve. As in the 
four-state case, only the AT regions get filled with white as the adiabaticity im- 
proves (bottom right frame). Again near the dressed-state resonances the transfer 
efficiency is high even for poor adiabaticity elsewhere (bottom left frame). 
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FIG. 29. Numerically calculated transfer efficiency for chain STIRAP. Upper frames: four-state 
system versus the two intermediate-state detunings A 2 and A3. Lower frames: five-state system 
versus the three intermediate-state detunings A 2 = A 3 and A4. In all frames, we have taken ~p - 
f20 exp[-( t  - r)2/T2],  ~s = f20 exp[-( t  + r)2/T2], with r = 0.5T, and all intermediate Rabi fre- 
quencies constant and equal to 3920. In the left frames, f20 T = 20, while in the fight frames, f20 T -- 160. 
The solid curves show the dressed-state resonances and the dashed curves separate the regions where 
adiabatic transfer state does or does not exist. (From Vitanov, 1998.) 

VI. Adiabatic Momentum Transfer 

Coherent population transfer between atomic states is always accompanied by 
transfer of photon momenta to the atoms. Momentum transfer is the basis of atom 
optics, particularly in the design of its key elements--atom mirrors and beam 
splitters. An atomic beam splitter separates the single-atom wavefunction into a 
macroscopic superposition state corresponding to two center-of-mass wave packets 
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propagating in different spatial directions. An atomic mirror, on the other hand, 
deflects these wave packets so that the matter waves traveling along two paths of 
an interferometer can be brought together to interfere. This interference will be 
observed only if these scattering processes are coherent. Because STIRAP enables 
efficient, robust, and dissipation-free coherent population and momentum transfer, 
it has been quickly recognized that it is a perfect tool for building practically "ideal" 
atomic mirrors and beam splitters (Marte et al., 1991). 

A. COHERENT MATTER-WAVE MANIPULATION 

1. Atomic Mirrors 

A particularly suitable system for coherent momentum transfer is the chainwise 
transition formed between the magnetic sublevels of two degenerate levels with 
total angular momentum Jg ofthe ground level and Je = Jg or Jg - 1 ofthe excited 
level. An example for such a chain in the case when Jg = Je -- 2 is shown in Fig. 30. 
When such a system is prepared initially in one of the chain-end ground sublevels, 
e.g., in M -- - J g ,  and is driven adiabatically by two counterintuitively ordered 
sequential laser pulses with opposite circular polarizations, then, as discussed in 
Section V, complete population transfer occurs between the two ends of the chain, 
i.e., from sublevel M = - J g  to sublevel M -- Jg. In the general case, the chain 
couples Jg + 1 ground sublevels and Jg excited sublevels. Thus, for Jg = 1 +-~ 
Je = 0 and Jg = 1 ,+ Je --- 1 transitions, the a + and a -  laser fields couple three 
sublevels: two ground sublevels M = - 1  and M -- + 1 and one excited sublevel 
M =  0. If the two laser beams propagate in opposite directions, each atom will 
receive, during its journey from the M = - 1  sublevel to the M =  1 sublevel, a 
total momentum of 2hk in the direction of the a + beam: a momentum o f h k  from 
absorbing a photon from the a + beam, and another hk in the same direction due to 

FIG. 30. Linkage pattern between the Zeeman sublevels in the 3p2 -3D 2 transition in Ne* driven 
by a pair of counterpropagating and displaced a + and a-  laser beams. 
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recoil from the stimulated emission of a photon into the o -  beam. As a result, the 
atom is deflected in a single well-defined direction, determined by two a + photon 
momenta. 

An example in the case when Jg = Je = 2, demonstrated in a recent experi- 
ment (Theuer and Bergmann, 1998), is shown in Fig. 31. A beam of metastable 
neon atoms, prepared by optical pumping in the M =  2 magnetic sublevel of the 
3P2 metastable level, crosses two slightly displaced circularly polarized CW laser 
beams. The two beams are ordered counterintuitively, so the atoms encounter the 

+ beam (the Stokes) first and then the a -  beam (the pump). In the adiabatic limit, 
the population is completely transferred to the M = - 2  sublevel of the 3P2 level, 
without residing at any time in the M = - 1  and M = 1 sublevels of the decaying 
excited level 3D 2. Because the two laser beams propagated in opposite directions, 
each atom received a total momentum of 4hk in the direction of the a -  beam during 
its journey from the M =  2 sublevel to the M = - 2  sublevel: 2 h k  momentum due 

FIG. 31. Experimental setup for the Ne* atomic mirror. (From K. Bergmann, H. Theuer, and B. W. 
Shore. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 
1998;70:1003-1025.) 
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FIG. 32. Experimental results showing deflection of a beam of 2~ atoms due to transfer of eight 
photon momenta after double adiabatic passage from the M - 2  sublevel to M -- -2  and then back 
to M--2. The narrower, undeflected original distribution is observed due to the presence of 22Ne 
isotope atoms which are insensitive to the light. (From H. Theuer and K. Bergmann. Atomic beam 
deflection by coherent momentum transfer and the dependence on weak magnetic fields. Eur. Phys. J. 
D 1998;2:279-289.) 

to absorption of  two photons from the a -  beam (which transfer their momenta to 
the atom), and another momentum 2h k in the same direction due to recoil from the 
stimulated emission of  two photons into the a + beam. The experimental results in 
Fig. 32 correspond to a double passage from the M =  2 sublevel to the M = - 2  
sublevel and then back to the M = 2 sublevel (by using a second interaction zone 
with a reversed ordering of  the a + and a -  beams), resulting in the transfer of  eight 
photon momenta. 

The attraction of  using STIRAP for atomic interferometry is based on several 
features. First, it provides nearly 100% population transfer to a single final state, 
corresponding to transferring a fixed momentum 2hk. Thus there is no splitting of  
the incident wave packet into a superposition corresponding to many momentum 
peaks +hk,  i 2 h k ,  -t-3hk, etc., as occurs for deflection of  a beam of  two-state atoms 
by a standing light wave. Second, since the process is adiabatic, it is insensitive to 
changes in the laser properties (intensity and frequency) and the interaction time 
(i.e., atomic velocity for crossed-beam experiments, or pulse width for pulsed 
experiments); this is in contrast to transfer by yr pulses, which is very sensitive 
to pulse area and resonance tuning (and, hence, to the laser parameters and the 
interaction time). Moreover, although the interaction is resonant, the deflection 
process is unaffected by spontaneous decay, because the excited state is never 
populated during the transfer. One can therefore avoid the common approach of  
eliminating spontaneous decay by detuning the laser far off resonance to reduce 
the excited-state population, at the expense of  reducing the effective laser-atom 



130 N. V. Vitanov et al. 

coupling. Finally, using chainwise transitions between degenerate sublevels has the 
advantage that it requires only a single laser, because the a -  wave can be derived 
by reflecting the a + laser light. Having the two laser fields derived from the same 
laser is very convenient because the two-photon resonance condition, which is 
crucial for STIRAP, is automatically fulfilled (provided, of course, that there are 
no residual magnetic fields) and it is immune to laser frequency fluctuations. 

STIRAP-based atomic mirrors are superior also to those based on the sponta- 
neous emission force. In the latter, an atom absorbs a photon from a traveling-wave 
laser beam and then emits it spontaneously. Because the momenta from the ab- 
sorbed photons are in the direction of the laser beam, while the momenta of the 
spontaneously emitted photons are distributed randomly (thus averaging to zero), 
the absorption-emission of N photons will result in a net momentum of Nfik  in 
the laser-beam direction. However, the dissipative nature of the emission process 
leads to a wide distribution of deflection angles. Moreover, it does not preserve 
any coherence, which is essential in an atom interferometer. STIRAP-based atom 
mirrors and beam splitters cure these drawbacks. 

Coherent momentum transfer by adiabatic passage in similar chains of Zeeman 
sublevels has been demonstrated in a number of other experiments. Pillet et al. 
(Pillet et aL, 1993; Valentin et al., 1994) and Goldner et al. (1994a,b) have re- 
ported momentum transfer of 8ilk, with about 50% efficiency, resulting from the 
single-pass adiabatic passage between the MF = --4 and MF -- 4 Zeeman sub- 
levels in the hyperfine transition Fg = 4 ~ Fe = 4 of the cesium D2 line. Lawall 
and Prentiss (1994) have demonstrated momentum transfer of 4ilk with 90% effi- 
ciency in the 23 S1 ~ 23P0 transition of He* with circularly polarized lasers, after 
double adiabatic passage (M = - 1 ~ M = 1 ~ M = - 1) between the ground- 
state sublevels. They demonstrated momentum transfer of 6fik with 60% efficiency 
after a triple pass with linearly polarized lasers. 

2. Atomic Beam Splitters 

STIRAP can be used not only to transfer population and momentum completely 
from one state to another in a robust fashion, free of loss or incoherence, but 
also to create coherent superpositions of atomic states. In momentum space, this 
corresponds to splitting of the initial momentum distribution into two or more 
momenta distributions. The most obvious approach to achieve this objective is, 
starting with population in state ~ 1, to interrupt abruptly the time evolution of the 
dark state (44b) at a certain intermediate time, when it is the desired superposition 
of the initial state ~1 and the final state aP3 (Marte et al., 1991; Weitz et al., 
1994a,b), before it has evolved into state ~ 3 as in STIRAP. Then only a fraction of 
the total population is transferred to ~3 and the composition of the superposition 
depends on the ratio between the pump and Stokes Rabi frequencies at the turn- 
off time. This fractional STIRAP scheme has been demonstrated experimentally 
(Weitz et aL, 1994a). 
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A smooth-pulse realization of this scheme that avoids sudden interruption of the 
pulses has been proposed for chains between degenerate sublevels (Vitanov et al., 
1999). In this scheme, starting from the M = - 1 sublevel, a coherent superposition 
between states M -- - 1 and M = 1 is created by applying first a ~ -  polarized pulse 
(Stokes), followed by a slightly delayed pulse which is elliptically polarized in the 
same plane as the ~ -  pulse. Since elliptical polarization can be represented as a 
sum of ~ -  and ~+ polarizations, the elliptically polarized pulse couples both the 
pump and Stokes transitions. As a result, the pulses create a superposition of the 
M -- - 1  and M = 1 sublevels whose composition is controlled by the ellipticity 
of the latter pulse. 

Another possible realization of an atomic beam splitter (Lawall and Prentiss, 
1994), suitable for Jg = 1 ~ Je - 0 transitions, starts with a coherent superpo- 
sition of the M = - 1  and M - - 0  sublevels. A pair of counterpropagating ~ -  and 

+ pulses transfers the population from M = - 1 to the M = 1 state, which results 
in 2hk momentum deflection with respect to the momentum of the M =  0 sublevel, 
which is unaffected by the laser fields. 

3. Atomic Interferometers 

Weitz et al. (1994a, 1994b) have built the first atomic interferometer based 
on STIRAE by using the transition between the two cesium hyperfine ground 
states (6S1/2, F = 3, ME -- 0) and (6S1/2, F = 4, MF -- 0) via the excited state 
(6P1/2, F = 3 or 4, MF -- 1). This atom interferometer had the Bord6 four-rr/2 
geometry (Bord~, 1989; Riehle et al., 1991) and involved four successive atomic 
beam splitters. Each of the beam splitters used two a +-polarized counterpropagat- 
ing laser pulses and was based on interrupted STIRAP. Two 40-MHz accoustooptic 
modulators generated the pulse shapes for adiabatic following. A coherent super- 
position of two states of different momenta was created by turning the intensities of 
both pulses to zero in the middle of the transfer. The experiment achieved multiple- 
pass coherent transfer of more than 140 photon momenta with 95% efficiency per 
exchanged photon pair. 

The transition used in the interferometer is insensitive to any magnetic field, 
which is essential for precision interferometry. Moreover, the ~ + - ~  + configura- 
tion (the same helicity for the two pulses) increased the interferometer contrast 
because atoms that were not transfered adiabatically were optically pumped into 
the F = 4, ME -- 4 and F = 3, MF "- 3 states. Furthermore, using the cesium D1 
line (involving the 6P1/2 state) increased the transfer efficiency in comparison 
with using the cesium D2 line (involving the 6P3/2 state) (Goldner et al., 1994a,b), 
because the excited-state hyperfine splitting of the 6P1/2 state is 5.8 times larger 
and thus off-resonant excitation is significantly lower. 

In the experiment (Weitz et al., 1994a,b), a cesium atomic beam, slowed by a 
chirped laser beam, loaded a magnetooptic trap. Then the trapping magnetic field 
was shut off and the atoms were further cooled to 4 /xK in polarization-gradient 
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FIG. 33. Interference fringes for an atomic interferometer based on adiabatic passage. The dots are 
experimental data and the curve is a fit by a cosine function with a Gaussian envelope. (Reprinted 
with permission from M. Weitz, B. C. Young, and S. Chu. Atomic interferometer based on adiabatic 
population transfer. Phys. Rev. Lett. 1994;73:2563-2566.) 

optical molasses. The atoms were then launched in a vertical ballistic trajectory at 
2.3 m/s in a moving molasses. The molasses then was shut off. On their way up, the 
atoms were optically pumped into the F = 4, M = 0 sublevel and entered a magnet- 
ically shielded region with a homogeneous 100-mG magnetic bias field oriented 
parallel to the Raman beams. While the atoms were in the shielded region, a series of 
adiabatic pulses of the Raman beams were applied, which constituted the interfer- 
ometer. The pulse sequence was designed to leave the coherently transferred atoms 
in the F = 3, M = 0 sublevel. As the atoms dropped back, a laser beam first removed 
the residual F = 4 population and then the F -- 3, M--  0 population was transferred 
to F = 4, M = 0 by a microwave rr pulse and measured by recording the fluores- 
cence induced by a probe laser. Figure 33 shows the observed interference fringes. 

Burnett and co-workers (Featonby et al., 1996, 1998; Morigi et al., 1996, Godun 
et  al., 1999; Webb et  al., 1999) have also demonstrated coherent momentum trans- 
fer in trapped and laser-cooled cesium atoms, both with laser beams having cir- 
cular/circular (a + a - )  and with others having circular/linear (a+Jr) polarizations. 
They have built a separated-path Ramsey atom interferometer (Featonby et al., 

1998) in which the closed loop constituting the Mach-Zehnder-type interferome- 
ter was produced by manipulating the atomic internal and external states separately, 
which provided greater flexibility. This interferometer used a sequence of ground- 
state microwave interactions and optical adiabatic transfer pulses. The microwaves 
were used to create a superposition of the ground hyperfine levels, and the adiabatic 
transfer then selectively manipulated the momentum of the F = 4 component of 
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this superposition. The scheme started with the application of a 7r/2 microwave 
pulse to create, starting from the F - -  3, M = 0 sublevel, an equal superposition of 
the F - -  3, M = 0 and F - -  4, M = 0 sublevels. At the end, a second Jr/2 pulse was 
applied in order to induce Ramsey fringes (which were observed by scanning the 
phase of the latter 7r/2 pulse). Between the microwave pulses, the momentum of 
the F = 4 component was manipulated by multistate STIRAP, using orthogonally 
propagating light pulses of linear fir) and right circular (or +) polarization. The 
laser fields were resonant with the D1 6S1/2, F -- 4 ~ 6P1/2, F'  -- 4 transition in 
cesium, and thus only the atoms in the F = 4, M - - 0  sublevel were subjected to 
adiabatic transfer. Since the M = 0 ~ M' -- 0 transition is forbidden, a sequence 
of partly overlapping 7v and ~ + laser pulses transferred the population from F - -  4, 
M - - 0  to F = 4, M =  4 in an eight-photon transition. Because of the orthogonal 
~+Tr geometry, the net momentum transferred to the atom was 4~/-2hk, rather than 
8hk as with ~ +~-  geometry. Once the M = 4 was reached, the STIRAP was re- 
versed in time and the population returned to M = 0. Thus the first STIRAP was 
used to split the paths and the second reestablished the spatial overlap between 
the components of the superposition, F = 3, M = 0 and F - - 4 ,  M = 0. Although 
the net momentum transfer of such a process is zero, a small displacement was 
produced because of the finite momentum of the atom during the interaction. This 
atom interferometer was used to develop a method for measuring the temperature 
of an atomic ensemble (Featonby et al., 1998) and a method for measuring the 
Berry phase (Webb et al., 1999). 

Incidentally, an interesting multiple-beam atomic interferometer not using adi- 
abatic transfer has been demonstrated: a beam of cesium atoms has been split into 
five spatially distinct beams (separated by two-photon momenta), corresponding 
to the magnetic sublevels M = - 4 ,  - 2 ,  0, 2, 4, and then recombined (Weitz et al., 
1996). 

B. COHERENT MANIPULATION OF LASER-COOLED AND TRAPPED ATOMS 

The STIRAP technique has been successfully applied in laser cooling experi- 
ments to coherently manipulate the atomic wave packets resulting from subrecoil 
laser cooling by velocity-selective coherent population trapping (VSCPT) (Aspect 
et al., 1988, 1989; Kasevich and Chu, 1991; 1992; Kasevich et al., 1991; Lawall 
et al., 1994, 1995, 1996; Chu, 1998; Cohen-Tannoudji, 1998; Phillips, 1998). The 
momentum distribution of atoms cooled by VSCPT has two peaks, at + h k  and 
- h k ,  both with widths smaller than the photon recoil momentum hk. Esslinger 
et al. (1996) have used adiabatic passage to coherently transfer rubidium atoms 
cooled by VSCPT into a single momentum state, still with a subrecoil momen- 
tum spread. Kulin et al. (1997) have demonstrated adiabatic transfer of metastable 
helium atoms into a single wave packet or into two coherent wave packets, while 
retaining the subrecoil momentum dispersion of the initial wave packets. They have 
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achieved nearly 100% transfer efficiency in one and two dimensions, and 75% in 
three dimensions, while being able to choose at will the momentum direction and 
the internal state of the atoms. The three-dimensional manipulation is particularly 
important because it can be used to produce an ultraslow, spin-polarized atomic 
beam with subrecoil momentum spread in all directions. 

The wave packet manipulation uses the fact that the atomic state after VSCPT 
the dark state--has the same structure as the laser field. Hence a slow, adiabatic 
change in the laser field induces a corresponding change of the trapping state. If 
the evolution is adiabatic, the atoms remain decoupled from the laser fields during 
the transfer process and hence are immune to spontaneous emission. The final state 
may be chosen at will, and in particular, if at the end of such a change a single laser 
beam remains, the ensuing atomic state will consist of a single wave packet. Hence, 
this manipulation can be seen as inverted fractional STIRAP (Section VI.A.2). 

It is obvious that for such a wave packet manipulation, the coherence of both 
the two components of the initial momentum distribution and the adiabatic transfer 
are crucial. Hence, this operation can be also used as a proof of the coherence of 
the two momentum peaks at +hk  and - h k  (Esslinger et aL, 1996). 

C. MEASUREMENT OF WEAK MAGNETIC FIELDS WITH LARMOR 
VELOCITY FILTER 

The potential of STIRAP for inducing atomic beam deflection by coherent momen- 
tum transfer has been used to create a technique (called a Larmor velocityfilter) for 
measuring very small magnetic fields along the axis of the atomic beam (Theuer 
and Bergmann, 1998). The scheme, which was demonstrated with metastable neon 
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FIG. 34. Variation of the flux of deflected Ne* atoms in the Larmor velocity filter with the magnetic 
field strength. (From H. Theuer and K. Bergmann. Atomic beam deflection by coherent momentum 
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atoms, consisted of two STIRAP zones. In the first zone, atoms were prepared in 
the M = 2 sublevel of the 3P 2 metastable state and transferred to the M--  - 2  sub- 
level. They were transferred back to the initial M -  2 sublevel in the second zone 
provided they remained in the M -- - 2  state along the path between the two zones 
(cf. Fig. 31). The magnetic field in the region between the two transfer zones 
caused Larmor precession, thereby mixing the magnetic sublevels and affecting 
the momentum transfer. The resulting narrow-peaked pattern, an example of which 
is shown in Fig. 34, permitted measurement of weak magnetic fields. 

VII. Branched-Chain Excitation 

A. BRANCHED LINKAGE PATTERNS 

Just as the admission of a third energy state offers a wealth of new options for 
excitation in comparison to a two-state system, so too does the presence of a 
fourth (or fifth) state. The simplest cases are those in which the additional state 
merely links onto the end of the three-state chain, thereby forming a four-state 
chain, as discussed in Section V. 

The four-state atom also offers interesting opportunities for competing and 
interfering paths. If the terminal level of the chain is the initial level, then the four 
states form a closed loop. The relative phases of the four Rabi frequencies then have 
special significance: they determine whether there is constructive or destructive 
interference and whether there are population nodes on some of the states. 

Another possibility is that three of the states are linked, by as many as three 
separate pulsed fields, to a single state. The relative energies may be such that the 
linkage pattern appears as the letter Y (i.e., two of the levels are highly excited, 
perhaps dissociating or photoionizing) or as a tripod (i.e., a single state, connected 
to all the others, lies highest). 

The variety of linkage patterns admits a variety of uses for pulsed coherent 
excitation. In either the Y or the tripod configuration, one might wish to consider 
a three-state main chain, to which the fourth state provides a branch. The effects 
of branches, weak or strong, on a main chain have been discussed not only for 
steady fields (Shore, 1990, chap. 21) but also for pulsed excitation (Kobrak and 
Rice, 1998a,b,c). 

As with three-state excitation, mathematical analysis of four-state behavior is 
greatly facilitated by the use of dressed states (adiabatic states, if the fields are 
pulsed). These have been presented and utilized by several groups (Unanyan et al., 
1998a, 1999; Kobrak and Rice, 1998a,b,c). Notably, these configurations have 
two null-eigenvalue states instead of the single one obtained with the three-state 
system. The occurrence of this degeneracy has some interesting consequences, as 
will be noted below. 

In the remainder of this section we consider the tripod configuration explicitly. 
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B. THE TRIPOD LINKAGE 

1. Concept 

In the tripod version of STIRAP, proposed by Unanyan et al. (1998a, 1999) and 
demonstrated by Theuer et al. (1999), the usual three-state STIRAP system is 
supplied with an additional state ~4, coupled to the intermediate state lp2 by a 
third, control laser with Rabi frequency f2c(t). Such a tripod STIRAP scheme 
has two, rather than one, zero-energy dark states. Because they are degenerate, 
transitions between them take place even in the adiabatic limit. Time evolution will 
therefore eventually lead to the creation of a coherent superposition of states, rather 
to a population transfer to a single state. The composition of this superposition 
depends on, and therefore can be controlled by, the ordering of the pulses, by the 
time delay between the pump and Stokes pulses, and by the strength of the control 
pulse. 

2. The Tripod Linkage 

The RWA Hamiltonian describing an on-resonance tripod system has the form 

0 ~2p(t) 0 0 
H(t)--  h ~2Po(t ) 0 f2s(t) f2c(t) 

n~(t )  o o ' 
o ~c(t) o o 

(81) 

where the real-valued functions of time f2p(t), S2s(t), and f2c(t) are the Rabi 
frequencies of the pump, Stokes, and control pulses, respectively. It is easy to 
verify that the Hamiltonian (81) has the following eigenvalues, two of which are 
degenerate, 

1 ~ ( t ) ,  (82)  E l ( t )  --  62(t)  --  0, 63(t)  = - -64( t )  --  g~ 

where ~2 =-V/f22p + f2s 2 + f2c 2. The corresponding eigenvectors (the adiabatic 

states) are expressible in terms of two time-dependent angles O(t) and q)(t), 
defined as 

tan O(t) ~p(t) ~c(t) 
- tan ~p(t) - ~ .  (83) 

v/~2(t) + g22c(t) ' g'ls(t) 

The angle O(t) is the mixing angle used in standard STIRAP (where g2c = 0), and 
~0(t) is an additional mixing angle related to the additional pulse. The adiabatic 
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states corresponding to the two null-valued eigenenergies are (Unanyan et al., 
1998a) 

~ l ( t )  = 7tl cos t~(t) - 1/r 3 sin t~(t) cos go(t) - 1/r 4 sin tg(t) sin go(t), 

�9 2(t) - -  if, r3 sin go(t) - 1/r 4 COS go(t), 

(84a) 

(84b) 

while the remaining adiabatic states are 

1 ~3(t) -- ~[fftl  sin O(t) + 1/r 2 q- 1/r 3 COS b~(t)COS go(t) 

+7r4 COS O(t) sin go(t)], 

�9 4(t) -- ~2 [grl sin O ( t ) -  1/r 2 q-  1/r 3 COS O(t) cosgo(t) 

+gr4 COS O(t) sin go(t)]. 

(84c) 

(84d) 

When the f2c(t) pulse is absent, one has the usual three-state atomic system and 
the adiabatic states turn into the adiabatic states (44) for STIRAE However, the 
occurrence of two degenerate null-eigenvalue states here adds complications, and 
flexibility, that is not present with three-state STIRAP. 

The systems of interest for the present discussion are those for which the atomic 
states 7r 1, ~P 3, and 7t4 are stable states. Spontaneous emission occurs, if at all, only 
from state gr2. The two degenerate adiabatic states ~ l ( t )  and ~2(t) receive no 
contribution from state 7r2. They are therefore immune to loss of coherence and 
population that may occur due to spontaneous emission from 7tz--these are dark 
or trapped states--and hence there is no difficulty in considering long pulses, as 
needed to ensure adiabatic evolution. 

We note that because the zero-eigenvalue adiabatic states ~ l ( t )  and ~2(t) are 
degenerate, any linear superposition of them will also be a zero-eigenvalue eigen- 
state of the Hamiltonian (81), and the choice of the two orthogonal zero-eigenvalue 
eigenstates of (81) is merely a matter of convenience. Furthermore, we point out 
that there is an obvious symmetry in the linkage of the three states ~ 1, 7t 3, and ~4. 
Our choice of the definitions of the angles t~(t) and go(t) and the dark states ~ l ( t )  
and ~2(t) is determined by the special role of state ~1 as the initial state. 

3. Adiabatic Evolution 

Nonadiabatic transitions between any pair of adiabatic states ~m and ~n are sup- 
pressed if the nonadiabatic coupling between these states is small compared to the 
difference between their energies (Messiah, 1962; Crisp, 1973; Shore, 1990); i.e., 

](+m(t)l~n(t))[ << ]em --enl .  
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If the adiabatic energies em and en are nondegenerate, this condition can always 
be satisfied for sufficiently large pulse areas, because the nonadiabatic couplings 
[(+m I~, )[ are proportional to 0 or ~b, which are in turn proportional to the inverse 
pulse width 1 / T, while the eigenenergy splittings [era - 8nl are proportional to the 
maximum Rabi frequencies. Therefore, for large pulse areas the adiabatic states 
~3 and (I) 4 a r e  decoupled from the two dark states ~1 and (I) 2 and from each other. 
Then, unless states ~3 and (I) 4 a r e  populated initially, the population dynamics is 
confined within the Hilbert subspace of the two nondecaying dark states, which 
allows us to realize coherent processes on time scales exceeding the lifetime of the 
excited state ~P2. 

Because the two dark states ~1 and (I) 2 a r e  degenerate (el = 82 = 0), the adia- 
batic condition cannot be satisfied for the ~1 ~ (I)2 transition and hence transitions 
between ~1 and ~2 always occur, unless the nonadiabatic coupling between them 
vanishes identically (e.g., for constant fields). It is these transitions that lead to 
the controlled creation of a coherent superposition of states. The nonadiabatic 
coupling between the two trapped states is 

(+l(t)l~2(t)) = ~b(t) sin O(t). 

If initially f2p = 0 but one (or both) of the couplings f2s and f2c is nonzero, we 
have 0 = 0, meaning that 7Zl = ~1. Thus the system starts initially in state ~1, 
and if the laser pulses have large enough pulse areas to prevent transitions to the 
other adiabatic states ~3 and ~4, the system will end in a superposition of states 
~'1 and ~2, 

( i ) l ( _ O Q )  ~-c~ ~(t)  +c~ ~l(+cx~)cosot - ~2(+cx~) since. (85) 

Here the mixing angle ot is the "area" of the nonadiabatic coupling, 

oe - 4)(0 sin O(t) dt .  (86) 

Because O(t) and ~o(t) depend on the relative strengths of the pulses and their 
relative delays [see Eqs. (83)], the mixing angle oe of the created superposition 
(85) of the dark states (I) 1 and q~2 also depends on, and therefore can be controlled 
by, these laser parameters. 

According to Eqs. (84a), (84b), and (83), the asymptotic correspondence be- 
tween the adiabatic states and the bare states at 4-ec, and hence the bare-state com- 
position of the created superposition (85), can be controlled by suitably choosing 
the pulse ordering. We provide four particular examples below. 

�9 If the pulses are ordered so that the Stokes pulse starts before and ends after 
the pump pulse, while the control pulse is delayed with respect to both of 
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FIG. 35. Various possible orderings for the pump (P), Stokes (S), and control (C) laser pulses in 
tripod-STIRAP (top), and the corresponding population evolutions (bottom), where the numbers on 
the curves label the respective states. 

them (Fig. 35, col. 1) (Unanyan et al., 1998a), the following asymptotic 
relations apply: O(-c~z) = O(+c~) = 0, ~o(-cx~) = 0, qg(+cx~) = re/2. Then 

--~4 ~-o~ (I)2(t) +c~ ~3- 

Hence, as follows from Eq. (85), the system, which by assumption starts in 
the bare state ~p 1, will end in a superposition of states ~ l  and 7t3, 

q/('-t-OO) - -  ~1COSOt --  ~r 3 sinol. (87) 

�9 Alternatively, one can arrange the three pulses to arrive in the order- 
ing Stokes-control-pump (Fig. 35, col. 2) (Theuer et al., 1999). In this 
case, the following asymptotic relations apply: O( -c~)  = 0, O(+c~) = zr/2, 
qg(-oo) = 0, ~0(+oo) = rr/2. Therefore 

7zl g-o~ ~l(t) +~ -l~r4, 

_l/r 4 ~-c~ ~2(t) +~  ~3- 

Hence the system, starting from the bare state ~p 1, will end in a superposition 
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of states ~p 3 and ~p4, 

q/(-~'-O0) "-- - -~3 sinc~ - ~P4 cos c~. (88) 

�9 A third possibility is to arrange the three pulses in the ordering control- 
Stokes-pump (Fig. 35, col. 3) (Theuer et al., 1999). Then the following 
asymptotic relations apply: O(-c~z) = 0, O(+c~) = re/2, qg(-c~) = n/2 ,  
qg(+c~) = 0. Therefore 

aPl g-~ ~ l ( t )  +c~ _ lp3, 

lp 3 ~oe ~2(t) +~ - lP4.  

Hence the system, starting from the bare state 7t 1, will end in a superposition 
of states ap 3 and 7z4, but with reversed populations compared to the previous 
case (88), 

�9 (+c~) = - ~ 3  cosc~ + gr4 sina. (89) 

�9 Finally, if the pulses are ordered so that the Stokes and control pulses coin- 
cide in time and precede the pump pulse (Fig. 35, col. 4) (Unanyan et al., 

1998a), the following asymptotic relations apply: O ( - c ~ ) =  0, O ( + c ~ ) =  
7r/2, qg ( -oo )  = qg(+c~) = n / 4 .  Then 

lPl <-~ ~ l ( t )  +c~ _ ~2(1 / j  3 -'l'- lP4), 

1 ~-~ + % 1  "~(1]/'3 -- r (I)2(t) ~(1//'3 -- ~r4). 

Because in this case ~o(t) is constant (equal to n/4),  we have ~b(t) = 0 and 
thus the diabatic mixing angle is zero, ct = 0. Hence the system, starting in 
state 7r 1, will remain at all times in the dark state ~l ( t )  and will end in an 
equal superposition of states 7z3 and 7z4, 

kIJ(--]-(X))- ~2 ('l/r3 --]-- 1//4). (90) 

It is important to note that the analysis above will also apply when there is 
one-photon detuning A from state ~2, as long as any pair of states 7t 1, 7t3, and 
lp4  a r e  on two-photon resonance. For nonzero A, the two dark states (I) 1 and (I) 2 

remain eigenstates of the Hamiltonian, but the other eigenstates @3 and (I) 4 are 
different. This change has no effect on the results, which rely on adiabatic evolution 
to maintain the state vector as a combination of the dark states r and @2. 
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The relative phase in each of the created superpositions can be altered by chang- 
ing the relative phases of the laser fields. On the other hand, once a superposition 
is created, its parameters can be measured independently by the Newton-Young 
method using Stern-Gerlach analyzers (Newton and Young, 1968) or by coupling 
the superposition states to a third, excited state and measuring the subsequent flu- 
orescence for different ratios of laser intensities and different relative laser phases 
(Vitanov et al., 2000; Vitanov, 2000). 

In conclusion, branched-chain excitation, such as the tripod scheme described 
in this section, provides more freedom in manipulating the internal quantum state 
of atoms and molecules. In more complex systems, one can use the decomposition 
method of Morris and Shore (1983) to identify possible trapped (dark) states and 
devise excitation schemes that confine the dynamics within the trapped subspace. 

C. EXPERIMENTAL DEMONSTRATION 

The first experimental implementation of the tripod scheme was achieved in a beam 
of metastable neon atoms crossing three suitably arranged laser beams at right an- 
gles. The level scheme for this experiment is shown in Fig. 36a. The initially pop- 
ulated state 2p53s 3P0(M = 0)(state ~1) is coupled by a 7r-polarized pump laser 
field (Rabi frequency f2p) to an intermediate state 2p53p 3pI(M = 0)(state ~2), 
which in turn is coupled via ~+ (f2s) and or- (~c) laser fields to two final mag- 
netic sublevels of level 2p53s 3p2, M = - 1  (state ~3) and M = +1 (state lP4). 
The sequence of interaction with the three laser beams is controlled by the spatial 
displacement of their axes. The ~ + and or- beams propagate in opposite directions, 
while the axis of the 7r polarized beam is at right angles to the others (see Fig. 36b). 

In the experiment, the beam of metastable neon atoms emerged from a liquid- 
nitrogen-cooled cold cathode discharge. The mean longitudinal velocity was 
600 m/s with FWHM of 200 m/s. The metastable states 2p53s 3P 0 and 2p53s 3P 2 

were populated with an efficiency of the order of 10 -4. The on-axis beam intensity 
was increased by a factor of 27 by two-dimensional transverse polarization gradient 

FIG. 36. Linkage pattern in tripod STIRAP (left) and laser beam geometry (right). (From H. Theuer, 
R. G. Unanyan, C. Habscheid, K. Klein, and K. Bergmann. Novel laser controlled variable matter wave 
beamsplitter. Opt. Express 1999;4:77-83.) 
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laser cooling. Next, the atoms in state 3p2 were transferred to state 3p0 by optical 
pumping. An excitation laser at 588 nm drove the transition to the excited level 3p1, 
which has a lifetime of 18 ns. The atomic beam was highly collimated (1:47000) 
by two collimation slits, which is equivalent to a transverse velocity component of 
4- 1.3 cm/s (0.4 recoil velocities). The magnetic field was reduced to less than 1/~T 
in the relevant region using the Larmor velocity filter setup (Section VI.C). The 
transverse atomic beam profile was monitored farther downstream with a chan- 
neltron behind a 25-1zm slit driven perpendicularly to the atomic beam axis by a 
stepper motor. 

Three independent continuous single-mode dye lasers (Coherent 699) were used 
in this experiment. The cooling laser operated at 640 nm. The optical pumping 
laser and the Stokes beams were provided by the same dye laser (588 nm). The third 
laser generated the 616-nm radiation needed for the pump 3p0 ~ 3P1 transition. 
The Stokes laser passed through a ~./4 waveplate, interacted with the atomic beam 
and was back-reflected by a cats-eye retroreflector with an integrated ~./4 retarder 
plate (Theuer et al., 1999). The translation of the cats-eye parallel to the atomic 
beam axis allowed precise adjustment of the spatial displacement of the two Stokes 
lasers. 

The laser beams were arranged in such a way that the atoms encountered the 
pump laser last, while the timing of the Stokes and control laser beams was varied 
by displacing their axes. Hence, it was possible to create with this setup vari- 
ous superpositions of the magnetic sublevels M = -1  (state 7t3) and M = + 1 
(state lp4 ) of state 2p53s 3 P2, as described by Eqs. (88)-(90). Furthermore, since 
the a + and or- beams propagated in opposite directions, the momentum transfer 
to the M -- + 1 and M -- - 1 states had opposite signs, resulting in coherent beam 
splitting. 

Figure 37 shows examples of atomic beam profiles recorded for different dis- 
placements of the Stokes and control laser beams. Two maxima separated by 
(122 4- 2) #m are observable. This separation corresponds to a difference in trans- 
verse momentum in the direction of Stokes propagation of 2hks. The momentum 
which was accumulated by an atom during the transfer process was h(kp 4- ks). 
Since the beam was collimated by slits and was detected behind a narrow slit, which 
was parallel to the Jr-polarized beam, only the component of the momentum par- 
allel to the Stokes beam axis was observed. The data in Fig. 37 demonstrate that 
the splitting ratio could be smoothly controlled by the displacement of the Stokes 
and control laser beams. When the axes of the two beams coincided, a 50:50 beam 
splitting was observed, as predicted by Eq. (90). When the a + (Stokes) beam pre- 
cedes the cr- (control) beam, the population was transferred predominantly to the 
M--  + 1 sublevel (state ~4), in agreement with Eq. (88). When the ~ - b e a m  pre- 
ceded the o- + beam, the population was transferred predominantly to the M = -1  
sublevel (state 7t3), in agreement with Eq. (89). 

We note in conclusion that the robustness and relative simplicity of the tripod 
scheme can be beneficial for various fields in atomic and molecular physics utilizing 
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FIG. 37. M o m e n t u m  dis t r ibut ion in the expe r imen t  o f  Theue r  et al. (1999).  

coherent superpositions of states, for instance, in quantum information [see, e.g., 
Williams and Clearwater (1997) and Steane (1998)]. 

VIII. Population Transfer via a Continuum 
of Intermediate States 

Until the widespread use of lasers in atomic and molecular physics, the photo- 
ionization continuum was regarded as an incoherent terminus of probability flow, 
lacking any possibility for participating in a coherent process. Ionization was 
treated by means of rate equations, typically using the "Fermi golden rule" ap- 
proximation (Messiah, 1962) to calculate ionization rates. Contemporary physics 
no longer views continuum as an irreversible drain of population. Laser inter- 
actions with a continuum have been found to exhibit coherent features, such as 
Rabi-like oscillations (Frishman and Shapiro, 1996), nearly complete population 
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transfer into a continuum (i.e., photoionization or photodissociation) (Vardi and 
Shapiro, 1996) or from a continuum (i.e., photorecombination or photoassociation) 
(Vardi et al., 1997, 1999; Javanainen and Mackie, 1999; Mackie and Javanainen, 
2000). Continuum coherence is essential in autoionization (Fano, 1961; Fano and 
Cooper, 1968), where it leads to a resonance in photoionization cross section 
plotted versus frequency; this is caused by destructive interference between two 
ionization channels, which can lead to complete suppression of photoionization at 
a specific wavelength. Laser-induced continuum structure (LICS) (Knight, 1984; 
Knight et aL, 1990; Halfmann et al., 1998; Yatsenko et al., 1999a) is another 
coherence phenomenon, closely related to autoionization, where a strong laser 
field embeds a discrete state in an otherwise fiat, structureless photoionization 
continuum; this laser-induced resonance can be detected by a second, probe laser 
field. 

A few years ago it was suggested (Carroll and Hioe, 1992, 1993) that a con- 
tinuum can serve as an intermediary for population transfer between two discrete 
states in an atom or a molecule by using a sequence of two delayed partially overlap- 
ping laser pulses, ordered in the STIRAP fashion: with the Stokes pulse, coupling 
the initially unpopulated state ~2 to the continuum, preceding the pump pulse, 
coupling the initial state ~Pl to the continuum. This intriguing scheme--which has 
yet to be demonstrated experimentallymcan be seen as a variant of STIRAP in 
which the discrete intermediate state is replaced by a continuum of states. The 
advantage of this scheme for population transfer would be its flexibility because a 
continuum offers a continuous range of possible combinations to match the pump 
and Stokes laser frequencies to the two-photon resonance between the initial state 
and the target state. The Carroll-Hioe analytic model (Carroll and Hioe, 1992, 
1993), which involves an infinite quasicontinuum of equidistant discrete states, 
equally strongly coupled to the two bound states, suggests that complete popula- 
tion transfer is possible, the ionization being completely suppressed. The physical 
reason for this unexpected conclusion is closely related to LICS created in the 
continuum by the Stokes laser. Another reason supporting this scheme is that, as 
in a discrete three-state A system, there exists a trapped (dark) statewa coherent 
superposition of the two bound stateswthat is immune to ionization. Nakajima 
et al. (1994) later demonstrated, however, that the completeness of the population 
transfer in the Carroll-Hioe model derives from the very stringent restrictions of 
the model which cannot be met in a realistic physical system with a real contin- 
uum, in particular with a nonzero Fano parameter (Fano, 1961; Knight, 1990) and 
Stark shifts. It has subsequently been recognized that although complete population 
transfer is unrealistic, significant partial transfer may still be feasible (Carroll and 
Hioe, 1995, 1996; Yatsenko et al., 1997; Paspalakis et al., 1997, 1998; Vitanov and 
Stenholm, 1997c). It has also been suggested that STIRAP-like process can take 
place via an autoionizing state (Nakajima and Lambropoulos, 1996; Paspalakis 
and Knight, 1998). 
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Below, we describe the problems in transferring population via a continuum 
and point out a few possible solutions. 

A. LASER-INDUCED CONTINUUM STRUCTURE 

1. LICS Equations 

The problem of two bound states coupled by two laser fields via a common con- 
tinuum has been studied by a number of authors in the context of laser-induced 
continuum structure (LICS) (Knight et al., 1990, and references therein). The 
most general expression of the wave function of such a system must be written as 
a superposition of the two bound states and the continuum with time-dependent 
coefficients (Knight et al., 1990). By substituting this expansion in the Schr6dinger 
equation and taking the Fourier transforms of the resulting differential equations 
for the probability amplitudes, one can eliminate the continuum adiabatically by 
substituting the adiabatic solution for its amplitudes in the other two equations. The 
summation over continuum states leads to a real part and an imaginary part repre- 
senting a decay (via a pole) into the continuum (ionization or dissociation) and a 
coupling between the two bound states (via the principal value part). As a result of 
this elimination the wave function can be written as qJ(t) = Cl(t)~rl -Jr- C2(t)~2, 
where the probability amplitudes C = [C1, C2] r satisfy the coupled equations 

ih --d C - HC (91) 
dt 

where 

I 1. 1 s 1 S1 - ~lrl ~.~1-'2( q -+- i) 
Iq -- h . (92) 

V/ s |- 1 1-'Pl-'2(q + i) $2 - ~t 1-'2 + 3 - 2  

We shall assume that the system is initially in state ~ ,  C1 (-oo) -- 1, C2(-cx~) - 0, 
and the quantities of interest are the populations of the discrete states Pk(t ) - -  
[Ck(t)[Z(k = 1, 2) and the ionization probability P i ( t ) =  1 - P l ( t ) -  Pz(t), par- 
ticularly their values after the excitation (t ~ +c~). 

The Hamiltonian matrix appearing here is that of two-photon excitation, but with 
a significant twist: the sum over intermediate states includes a continuum, and the 
consequent matrix elements therefore have both real and imaginary parts. On the 
diagonal, the elements appear as dynamic Stark shifts Sn and photoionization loss 
rates Fn. The off-diagonal elements are here parameterized by means of the Fano 
parameter q, the ratio of real to imaginary parts of the two-photon Rabi frequency 
(Fano, 1961; Knight et al., 1990; Yatsenko et al., 1997). As with auto ionization, 
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the Fano parameter governs the (asymmetric) shape of the curve of ionization 
versus frequency [as embodied in the static two-photon detuning 3 = (E2 - El)~ 
h + cos - cop]. It also plays an important role in the context of population transfer 
(Nakajima et al., 1994). 

The Stark shifts and the ionization rates receive contributions from both of the 
fields, 

f'n -- + r n, Sn = Sn p + S s, (n = 1, 2). 

The superscript labelsp and s refer to the pump and Stokes lasers, respectively. The 
ionization widths and the Stark shifts are proportional to the laser fields intensities 
Ip(t) and Is(t), 

rJn(t) = SJnb(t), Sin (t) = Sin b(O,  

with (n - 1, 2; j =p ,  s), where the parameters G j and S j depend on the particular 
atomic states and the laser frequencies. 

With the exception of the Fano parameter, which is a dimensionless constant 
determined by the atomic structure, all variables involved in Eq. (91) can be con- 
trolled externally by the laser intensities and are generally time dependent. 

2. Coherent  and Incoherent  Channels 

The pump pulse applied on the ~pl-continuum transition and the Stokes pulse 
applied on the 7r2-continuum transition (the solid arrows in Fig. 38a) form a two- 
photon Raman transition which enables coherent population transfer between states 
~1 and ~2. But the pulses also have other effects: the pump pulse applied on the 
~p2-continuum transition as well as the Stokes pulse applied on the grl-continuum 
transition (the dashed arrows in Fig. 38a) cause irreversible ionization with rates 
1-'~(t) and F~(t). These two incoherent ionization channels turn out to be the main 
problem for population transfer. One of these channels may be eliminated by 
choosing a sufficiently small laser frequency, as for the Stokes laser in Fig. 38a, 
which cannot connect state ~Pl to the continuum and hence F~ = 0. However, at 
least one of the incoherent channels is always present, as is l"~(t) in Fig. 38a which 
prevents complete population transfer. 

3. Fano Profile 

The Fano profile emerges in a configuration similar to that in Fig. 38a, when the 
Stokes laser is strong (dressing laser) and its frequency is held fixed, while the pump 
laser is weak (probe laser) and its frequency is scanned across the two-photon 
resonance region. When plotted as a function of the probe-laser frequency co, 
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FIG. 38. Linkage patterns for bound states 1/r 1 and 1/r 2 coupled via a common continuum. (a) Two 
bound states coupled via a continuum. The solid arrow depict the ionization channels induced by the 
pump and Stokes lasers that form a Raman-type linkage. The dashed arrows show the irreversible 
(incoherent) ionization channels. (b) Same as (a) but with a third, compensatory laser (thick gray 
arrow), embedding a third auxiliary state q3 and used to suppress incoherent ionization from state lP2 
by a Fano-type resonance. (c) Three bound states coupled via a continuum (tripod-continuum scheme). 

the photoionization probability Pi(x) exhibits an asymmetric dependencemthe 
famous Fano profile. It is described by (Fano, 1961; Fano and Cooper, 1968) as 

P i ( x ) -  pb 4- pa (x 4- q)2 
x 2 4 - 1  

(93) 

where pb is a background ionization, P/~ is a scaling parameter for the resonance, 
and the dimensionless variable x --- (w  - c o o ) / F  is the detuning from the resonance 
frequency o9o of the probe frequency co in units of the ionization width F. As Eq. (93) 
shows, the Fano parameter q establishes the profile of the resonance. When q = 0, 
the photo ionization cross section is a symmetric, inverted-bell-shaped function 
of x and has a minimum at x = 0, i.e., at c o -  co0, a frequency at which there is 
destructive interference between two photo ionization channels. For nonzero q, 
the Fano profile (93) is asymmetric, with a minimum p/rain _ pb at x - - -  q, 
and maximum p/max __ pb + P~(1 + q2) a t x - -  1/q. Far from resonance, we have 
Pi ~ - Pi b + P~'. The Fano parameter q can be determined from experimental 
data by measuring the values of the ionization cross section at its minimum, its 
maximum, and far from resonance and taking the ratio 

p ? a x  Pirnin 

pi c~ _ pl min 
= 1 4 - q  2. 

Alternatively, one can measure the distance between the minimum and the maxi- 
mum, which is q 4- 1/q. 
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At the trapping frequency O)trap = 090 - -  q F, the ionization is suppressed. In the 
absence of background, pb = 0, the ionization probability there is zero, Pi = 0 ,  

and the material will be completely transparent. 
Equation (93) is derived using perturbation theory and assuming strong dress- 

ing (Stokes) laser and weak probe (pump) laser, and that both lasers have constant 
amplitudes. When the probe laser gets stronger, the distinction between dressing 
and probing becomes inaccurate because the probe field itself begins to affect the 
continuum. Also, when the two laser fields are pulse shaped, the Fano formula (93) 
becomes inaccurate. A detailed theoretical and experimental study of the behavior 
of LICS for pulsed lasers, both for coincident and delayed pulses, has been carried 
out by Halfmann et al. (1998), Yatsenko et al. (1999a) and Kylstra et al. (1998). 

Figure 39 shows a typical LICS profile, observed experimentally in metastable 
helium. 

FIG. 39. Observation of laser-induced continuum structure in helium. The observed (almost 70%) 
reduction in the far-off-resonance ionization signal results from the coherence of the interaction. (From 
T. Halfmann, L. P. Yatsenko, M. Shapiro, B. W. Shore, and K. Bergmann. Population trapping and 
laser-induced continuum structure in helium: Experiment and theory. Phys. Rev. A 1998;58:R46-R49.) 
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4. Population Trapping: Dark and Bright States 

Coherent excitation in a Raman configuration--with a continuum as well as with 
a discrete intermediate state--leads to the phenomenon of population trapping. 
Population trapping occurs when the imaginary part of one of the eigenvalues of 
the Hamiltonian vanishes; then the corresponding eigenstate is not coupled to the 
continuum--it is a nondecaying (trapped, dark) state. The trapping condition reads 
(Knight et al., 1990) 

1 s( t ) ]  + S l ( t )  - & ( t ) .  60 - gq [ r P ( t ) -  F 2 (94) 

Population trapping is most easily revealed in the basis of the dark and bright 
states, which are defined as 

~d(t) = fftl COS O(t) - -  1/,r 2 sin O ( t ) ,  

~b(t) --- ~ 1  sin O(t) + 1/r 2 COS O(t), 

( 9 5 a )  

(95b) 

with 

tanO(t) - F~(t) (96) 

The reason for the names "bright" and "dark" is that, as follows from Eq. (91), the 
total ionization rate is 

d j 
d---t Pi - F~ P1 + FzPP2 + r p + r~Pb. (97) 

Hence, in the absence of incoherent ionization (F~ -- F p -- 0), the rate of change 
of the ionized population is proportional to the population in the bright state OPb(t). 
Therefore only the population in the bright state is exposed to ionization, whereas 
the ionization cannot occur from the dark state. If transitions between the dark and 
bright states are negligible, the population residing initially in the dark state remains 
trapped there. For constant laser field amplitudes (then the coupling between the 
dark and bright states vanishes), with the system starting in state grl, the trapped 
population is 

PI + P2 = Pd = rf 

Hence, for r l p << F~, i.e., strong Stokes (dressing) laser and weak pump (probe) 
laser, almost all population is trapped, provided the trapping condition (94) is 



150 N.V. Vitanov et al. 

satisfied. For 1-'1 p - I'~, half of the population is trapped, and for I "p >> F~, the 
entire population can be ionized. 

For pulsed lasers, there is some time-dependent nonzero coupling between 
the dark and bright states. However, if the evolution can be made adiabatic, this 
coupling can be reduced to negligible values. In this case, while the population 
of the dark state ~d remains nearly constant, its composition changes in time and 
the populations of the bare states ~r 1 and ~2 change accordingly; this ultimately 
enables population transfer between them. 

When the trappingcondition (94) is satisfied and when incoherent ionization 
is negligible, the dark and bright states are adiabatic states, i.e., eigenstates of the 
Hamiltonian in Eq. (91). When the trapping condition is not satisfied, the dark 
and bright states are no longer adiabatic states, i.e., adiabatic evolution does not 
guarantee staying in the dark state. Then the equations for the amplitudes of the 
dark and bright states B - [Bd, Bb] r read 

where 

and 

d 
h -~ B -- - i  HbB 

H b - h  I _  
D sin 2 0 

1 gD sin20 + it9 

1D sin20 - i 0  )]  2 
1 D COS2b 9 -- g(q + i)(F f + F'~ 

D(t) -- ~ + S 2 ( t ) -  S l ( t ) -  1 ~q [ F ~ ( t ) -  F~(t)] 

is the deviation from the trapping condition. Here 0 is the usual nonadiabatic 
coupling, which can be overcome by making the evolution sufficiently adiabatic. 
However, the deviation D from the trapping condition introduces an additional 
coupling between the dark and bright states, which does not vanish in the adiabatic 
limit and which drives some population from the dark state into the bright state, 
where it is subjected to ionization. 

B. POPULATION TRANSFER VIA A CONTINUUM 

1. Population Transfer in the Ideal Case 

Let us assume that the trapping condition (94) is satisfied exactly, i.e., D = 0, and 
that there is no incoherent ionization, F~ = F p -- 0. Then, if the evolution is made 
adiabatic, the transitions between the dark and bright states will be suppressed 
completely. 

If, as in STIRAP, the Stokes pulse precedes the pump, then the mixing angle 
O(t) will change from 0 = 0 initially to 0 -- re/2 at the end; hence the dark state 
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~d(t) will coincide with the initial state 1/t 1 before the interaction and with state 
-~P2 after it, i.e., ~Pl ~-~ ~d(t) +~ -- 7t2. Therefore complete population transfer 
is possible (in principle) if the evolution is adiabatic, if the trapping condition (94) 
is maintained, and if there is no incoherent ionization; then no population is lost 
from the dark state. 

In contrast, if the pump pulse precedes the Stokes, then 0 = 7r/2 initially and 
t~ = 0 at the end; hence now the bright state ~b coincides with the initial state 1/t 1 

before the interaction and with state ~P2 after it, ~Pl /-~ ~b(t) +~ 7t2. In this case, 
adiabatic evolution leads to maximal ionization, rather than to population transfer 
to state 7t2, because no population resides in the dark state and thus all population 
is exposed to ionization. 

In reality, neither the trapping condition (94) can be satisfied exactly for pulsed 
excitation, nor can incoherent ionization be eliminated completely. As a result, 
complete population transfer is ruled out. Various authors have proposed, how- 
ever, schemes that reduce the negative effects of the deviation from the trapping 
condition and the incoherent ionization; we summarize them below. 

2. Satisfying the Trapping Condition 

Ifq = 0 and there are no Stark shifts, the trapping condition (94) is satisfied on two- 
photon resonance, 8 = 0. For q ~ 0 and for nonzero Stark shifts, which is the case in 
real atoms, the trapping condition (94) becomes time dependent in the general case 
of time-dependent ionization rates, as for pulse-shaped laser fields. For delayed 
pump and Stokes pulses, the trapping condition can be satisfied exactly only if the 
demning 8 is made time dependent and matches exactly the time dependence of the 
RHS of Eq. (94). This can be achieved, at least in principle, by using chirped laser 
pulses with a carefully tailored time-dependent frequency (chirp) (Paspalakis et al., 
1997; Vitanov and Stenholm, 1997c). Another possibility to enforce the trapping 
condition on the effective detuning is to make use of controlled Stark shifts induced 
by a pair of auxiliary far-off-resonant laser pulses with suitable intensities (whose 
frequencies are small enough not to influence the system otherwise) (Carroll and 
Hioe, 1995; Yatsenko et al., 1997), which show up as additional time-dependent 
terms in the two-photon detuning 8. 

If the trapping condition (94) is not satisfied exactly, the nonzero D-coupling 
causes transitions from the dark state to the bright state with subsequent ionization 
losses. These losses can be reduced by suitably tuning the laser frequencies slightly 
off two-photon resonance (i.e., for nonzero demning 8) to a value that minimizes D. 
We also point out that it is easier to fulfill the trapping condition (94) approximately 
when the Fano parameter q is small; then the F terms have a less detrimental effect. 
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3. Suppressing Incoherent Ionization 

The main difficulty in achieving efficient population transfer is related to the inco- 
herent ionization channels (Yatsenko et al., 1997; Vitanov and Stenholm, 1997c), 
of which at least one is always present; these lead to inevitable irreversible pop- 
ulation losses. It has been suggested (Carroll and Hioe, 1996; Yatsenko et al., 
1997) that these losses can be reduced (although not eliminated) by choosing an 
appropriate region in the continuum where the incoherent-ionization probability 
is minimal. 

Unanyan et al. (1998b) have proposed another approach to suppress incoherent 
ionization from state gr2. It makes use of a Fano-type resonance induced by an 
additional, strong compensatory laser which embeds a third, highly lying bound 
state gr3 into the region in the continuum where the incoherent ionization takes 
place. This laser, depicted by a thick gray arrow in Fig. 38b, forms with the 
incoherent channel F2 p a nearly resonant Raman transition between states lP2 and 
~3. It is assumed that the compensatory laser does not affect the system otherwise 
and, particularly, that its frequency is small enough so that it cannot ionize states grl 
and ~P2 directly, i.e., F~ ~ F~ ~ 0. Also, if state ~3 is close enough to the ionization 
threshold, ionization from ~P3 by the pump and Stokes lasers can be ignored because 
these lasers point deeply into the continuum where the probability for ionization 
is small (F~ ~ F~ ~ 0). The Hamiltonian describing the interaction between the 
bound states reads 

H =  h m 
2 

V /  m 2A,  - i r f  - rfr (q12 + i )  o 

-v/rfr~(q12 + i) -ir  - i r ~  -v/r~r~(q23 + i) , 

0 ~ p c -- I" 2 1-'3(q23 + i) 2A32 -- iF~ 

where A12(t ) = 612 n t- S l ( t ) -  S2(t)and A32(t) = 632 + S3( t ) -  S2(t), with612 and 
632 being the static detunings for the ~Pl ~ gr2 and gr2 ~ gr3 transitions, respec- 
tively. Here qjk is the Fano parameter characterizing the two-photon transition 
between states ~pj. and grk, while I'k(t) and Sk(t) are the total ionization rate and 
the total Stark shift for state grk. 

The additional laser creates a new structure in the continuum in the region where 
the incoherent ionization from state gr2 takes place. The idea is to suppress the 
incoherent ionization channel F p by tuning the parameters of the compensatory 
laser pulse near a Fano-type minimum in the ionization probability. For this to 
occur, the ionization width F~ should be sufficiently larger than I "p. Then 12A32 - / 

iI'~l >> ]~l-'Pl-'~(q23 + i)l and, hence, state 7r3 can be eliminated adiabatically. 
The effective two-state LICS system has a new modified two-photon detuning 6 
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and incoherent-ionization width }, of  state lP2, 

1 c P )2 
_ 1 -- A12 -'t- 82 -- S1 5q,2(rf - r~)  - Re 4 r 3 r 2  (q23 + i  

1 c t~32 n t- s 3 - ~il-' 3 

1 c ) 2  
1 4 I-'31-'~(q23 + i 

y - -  2 F ~ + I m  1 c" 
~32 + 83 -- ~il-' 3 

(98a) 

(98b) 

By appropriately choosing the parameters of  the compensatory  laser, one can make 

both y and 6 vanish; this cancellation takes place when 

1 1 
t~21 = S 1 - S 2 -~- 5q~2( r (  ~ - r ~ ) -  iq23F p, 

1 c 
~32 = - $ 3  - ~q23I-'3 �9 

(99a) 

(99b) 

Condition (99b) ensures that the incoherent ionization is suppressed, whereas 

Eq. (99a) is the new trapping condition. Then, as discussed above, the efficiency 

of  the populat ion transfer from state 7g to lp2 can approach unity for the counter- 

intuitive pulse order in the adiabatic limit. 
This idea for Fano-type suppression of  incoherent ionization is illustrated in 

Fig. 40, where the populations of  the two bound states ~1 and l/r 2 and the ionization 

1 , . 0  . . . .  1- - t  . . . .  l " i  . . . . .  I " w  .... I ..... I ...... ~ ...... I ..... t ...... I ..... i ....... t ....... I ........ 

. . . . . . . . .  P i o l l  

0.8 ............... i\ 
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i 
O 
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Detuning 832 (units of l/T) 

FIG. 40. Numerically calculated populations of the initial state lpl and the final state ~2 and the 
ionization against the two-photon detuning ~32 between the target state 7t2 and the auxiliary state 7t3. 
The arrow on the RHS shows P2 in the absence of compensatory laser. (From R. G. Unanyan, N. V. 
Vitanov, and S. Stenholm. Suppression of incoherent ionization in population transfer via continuum. 
P h y s .  R e v .  A 1998;57:462-466.) 
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probability are plotted versus the detuning 332 , i.e., versus the frequency of  the 
compensatory laser. At a certain value of  332 the population of  the target state ~P2 
reaches 0.69, which is considerably higher than the value 0.26 in the absence of  a 
compensatory laser. The P2 curve, as well as the ionization curve, are reminiscent 
of  the Fano profile of  Fig. 39. 

In Fig. 41, the target-state population P2 is plotted versus the peak ionization 

rate 1"0 of  the three lasers in four cases. The transfer efficiency to state ~2 is lowest 
when there is no compensation of  incoherent ionization and the trapping condition 

(94) is not fulfilled (curve 1). Satisfying the trapping condition alone, still without 
incoherent-ionization reduction, increases the transfer efficiency (curve 2). When 
the incoherent ionization is (partly) suppressed by a compensatory laser, without 
satisfying the trapping condition ~ = 0, the transfer efficiency increases further 

(curve 3). Finally, when the incoherent ionization is (partly) suppressed and the 
trapping condition 3 = 0 is satisfied, the transfer efficiency is highest and can 
exceed 0.8 in this example. If  both the 8 = 0 and y = 0 conditions were satisfied 
exactly, the transfer efficiency could approach unity. 
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FIG. 41. Numerical calculated population of the target state ~P2 against the peak ionization rate F0 
of the three lasers. The four curves correspond to the following cases: (1) no compensatory laser and 
312 = 0; (2) the condition 3 = 0 is satisfied, but the condition y = 0 is not; (3) the condition y = 0 
is satisfied approximately, but the condition 8 = 0 is not satisfied; (4) the condition 6 = 0 is satisfied 
exactly, and the condition y = 0 is satisfied approximately. (From R. G. Unanyan, N. V. Vitanov, and 
S. Stenholm. Suppression of incoherent ionization in population transfer via continuum. Phys. Rev. A 
1998;57:462-466.) 
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C. TRIPOD COUPLING VIA A CONTINUUM 

Recently, the two-state LICS scheme has been extended to a tripod-continuum 
scheme involving three discrete states coupled to each other by two-photon pro- 
cesses via a common continuum (Unanyan et al., 2000a). All three lasers are tuned 
approximately in the same region of the continuum, as shown in Fig. 38c. This 
scheme may also be seen as an extension of the discrete-state tripod scheme dis- 
cussed in Section VII. The Hamiltonian describing the tripod-continuum system 
is given by 

I _  2A13 - iF1 

1 ~/I" 11-'2(ql 2 -~ i) 

~/1-'l 1-'3(q13 n t- i) 

-x/F1F2(q12 + i) 

2A23 -- i1-'2 

-~/F2F3(q23 + i) 

-~/F1F3(q13 + i) 7 

-~/1-'2F3(q23 + i)J  , 

- i F 3  

where A13(t ) --313 --1- S l ( t ) -  S3(t)andA23(t)= 323 + S2(t) -  S3 (t), with 313 and 
323 being the static detunings for the 7rl ~ ~3 and gr2 ~ lp3 transitions, respec- 
tively, qjk are the Fano parameters, and Fk(t) and Sk(t) are the total ionization rate 
and the total Stark shift for state 7rk. 

Unlike the two-state Raman coupling via a continuum, there are two trapping 
conditions for the tripod-continuum system (Unanyan 2000a), 

(t)]  + 1 A13(t) -- ~ql3[lP3(t) - 1-'1 ~(q12 - q23)l-'2(t), 

1 1 A23(t) -- ~q23[F3(t) - 1-'2(t)] + ~(q12 - q13)l-'2(t). 

(100a) 

(100b) 

If these conditions are satisfied, there are two dark states, as for the discrete-state 
tripod system (Section VII). Likewise, the presence of two dark states provides 
greater flexibility in performing coherent population transfer between the bound 
states, compared to the two-state scheme. Moreover, for large and constant F2, the 
trapping conditions (100) can be satisfied approximately at the (constant) detunings 

1 A 13 -- ~(q12 - q23)F2 and A23 -- 2(q12 - ql3)F2; hence, it may be easierto satisfy 
the two trapping conditions (100) for the tripod-continuum system than the single- 
trapping condition (94) in the two-state-via-continuum scheme. 

In the case when one of the discrete states is strongly coupled to the continuum, 
for example ~P3, it can be eliminated adiabatically. Then the population dynamics 
reduces to an effective two-state LICS problem, involving the other two states grl 
and ~P2, described by Eqs. (91), but with modified parameters. In particular, the 
effective Fano parameter is (Unanyan, 2000a) 

q12 -- q13 -- q23 
q = . (101) 

q13q23 
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Thus, using an auxiliary third laser embedding a third state into the continuum 
provides the possibility to customize the parameters of a given two-state LICS 
system. 

IX. Extensions and Applications of STIRAP 

A. CONTROL OF CHEMICAL REACTIONS 

The remarkable properties of STIRAP have already had applications in many 
diverse areas. The first implementation of STIRAP has been in a crossed-beam 
reactive scattering experiment (Dittmann et al., 1992). It allowed investigation of 
the effect of vibrational excitation on the cross section for the chemiluminescent 
channel in the process Na2(v) + C1 --+ NaC1 + Na* in crossed particle beams. It 
was found that the cross sections increased by about 0.75% per vibrational level 
in the range 3 _~ v _~ 19. 

Another example is the detailed study of the reaction Naz(v", j") + H --+ 
NaH(v', j ') + Na, where the angular distribution and the population distribution 
have been determined for the product molecule Nail for a range of selectively popu- 
lated levels v" of the reagent molecule Na2 (Pesl, 1999). STIRAP has been used also 
to investigate the dependence of the dissociative attachment process Naz(v",j") + 
e- --+ Na + Na- (with electron energies < 1 eV) on the vibrational excitation 
by exciting efficiently and very selectively the Na2 molecules to a specific 
vibrationally excited level (Ktilz et aL, 1993, 1995, 1996; Ekers et al., 1999a,b; 
Keil et al., 1999; Kaufmann et al., 2001). The vibrational excitation to v"--  12 
has increased the state-dependent dissociative attachment rate by more than three 
orders of magnitude. 

B. HYPER-RAMAN STIRAP (STIHRAP) 

The application of standard STIRAP to molecules, using two single-photon transi- 
tions (pump and Stokes), is often impeded by the fact that most molecules require 
ultraviolet or even vacuum ultraviolet (VUV) pump photons to reach the first elec- 
tronically excited states. For the Stokes pulse, which connects the excited electronic 
state to a high vibrational level of the ground electronic state, optical wavelengths 
are usually sufficient. It is difficult to provide VUV pulses with adequate power 
and coherence properties. It is natural to consider achieving the pump excitation 
(and possibly also the Stokes excitation) by a two-photon transition. The corre- 
sponding (2 + 1) and (2 + 2) versions of STIRAP have been named hyper-Raman 
STIRAP (Yatsenko et al., 1998; Gu6rin and Jauslin, 1998; Gu&in et al., 1998, 
1999). Although these extensions seem obvious, they turn out to be nontrivial. 

The main obstacle in hyper-Raman STIRAP are the dynamic Stark shifts in- 
duced by the two-photon coupling. These Stark shifts, which are proportional to the 
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laser intensities, modify the Bohr frequencies of the pump and Stokes transitions 
and destroy the multiphoton resonance between the initial and final states, which is 
crucial for the existence of the dark state. It has been found, both numerically and 
analytically, that high transfer efficiency in such a scheme can still be achieved by 
a suitable choice of static detunings of the carrier frequencies of the two pulses, 
which suppress the detrimental effect of the Stark shifts; these detuning ranges 
have been estimated analytically (Gu6rin et al., 1998). It is interesting to note that, 
unlike the purely adiabatic evolution in STIRAP, successful population transfer 
in hyper-Raman STIRAP occurs as a result of a combination of adiabatic and 
diabatic time evolution, as in SCRAP (see below). Moreover, unlike STIRAP, the 
intermediate state does acquire some transient population; again, it can be reduced 
by suitable static detunings. 

It should be pointed out that the Stark shifts are also nonzero in traditional 
STIRAR but they are usually negligible compared to the one-photon on-resonance 
couplings (given by the Autler-Townes splittings). In (2 + 1) STIRAP the fun- 
damental field (COp) is very strong and the related Stark shift is usually not small 
compared to the two-photon coupling (2COp). 

C. STARK-CHIRPED RAPID ADIABATIC PASSAGE 

An interesting alternative of STIHRAP for electronic excitation of molecules 
is the technique of Stark-chirped rapid adiabatic passage (SCRAP), introduced 
(Yatsenko et al., 1999b) and demonstrated (Rickes et al., 2000) recently for two- 
state systems. Like STIRAP, it makes use of two delayed and partially overlapping 
laser pulses, but unlike STIRAP, here one of the pulses is far off resonance and 
its objective is to induce dynamic Stark shifts in the coupled levels. This time- 
dependent Stark shift, combined with an appropriate detuning and a time delay 
of the pump laser, leads to an effective level crossing and adiabatic population 
transfer between the two states of the pump transition. 

Using laser-induced Stark shifts to modify the transition frequency appears the 
easiest method to induce a level-crossing transition with laser pulses of nanosecond 
duration. Techniques for producing frequency-swept pulses are not well developed 
for nanosecond pulses. Nanosecond laser systems are used for many applications 
because they provide a very good combination of sufficiently high intensity (and 
hence large interaction strength) as well as long interaction time. The successful 
implementation of adiabatic evolution of laser-matter interaction relies on a com- 
bination of both parameters. Laser frequency chirping by active phase modulation, 
although possible in principle, is difficult for nanosecond laser pulses because 
it requires driving modulators at gigahertz frequencies. On the other hand, the 
spectral bandwidth of nanosecond pulses is too small for successful application of 
the techniques based on spatial dispersion that are well developed for femtosecond 
pulses. 
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1. Theory 

Figure 42 illustrates the idea of SCRAP. One of the pulsesmthe pump pulse--is 
slightly detuned off resonance with the transition frequency and moderately strong; 
it serves to drive the population from the ground to the excited state. The other 
pulse--the Stark pulse--is far off resonant and strong; it is used merely to modify 
the atomic transition frequency by inducing Stark shifts in the energies of the two 
states. Because the Stark shifts Sl(t) and S2(t) of the ground and excited states are 
generally different (usually IS2(t)l >> [Sl(t)l) and each of them is proportional to 
the intensity of the Stark pulse, the transition frequency will experience a net Stark 
shift S(t) -- S2(t) - Sl(t). 

By choosing an appropriate detuning for the pump pulse, it is always possible 
to create two diabatic level crossings in the wings of the Stark pulse: one crossing 

FIG. 42. Time evolution of the Rabi frequencies (top frames), the level energies (middle frames), 
and the populations (bottom frames) in a two-state system driven by a pump pulse f2p and a Stark- 
shifting pulse ~s. Left-hand frames: simultaneous pump and Stark pulses. Right-hand frames: pump 
pulse before Stark pulse (SCRAP method). 
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during the growth and another during the decline of the Stark pulse. For successful 
population transfer, the evolution must be adiabatic at one, and only one, of these 
crossings. This asymmetry can only occur if the pump and Stark pulses are not 
applied simultaneously. Rather, the pump pulse must be strong at one and only one 
of the crossings. 

It proves appropriate to set the time delay between the two pulses so that the 
maximum of the pump pulse occurs at one of the crossings in order to optimize 
the adiabatic passage there. It is also appropriate that the pump pulse width be 
smaller than both the Stark pulse width and the delay between the pulses, in order to 
suppress adiabatic passage at the other crossing. In this adiabatic-diabatic scenario 
the system will follow the path shown in the middle right frame in Fig. 42: the state 
vector will adiabatically follow the lower adiabatic state through the first crossing, 
while during the second crossing it will follow the diabatic state ~2 (rather than 
an adiabatic state) and remain there till the end of the interaction. The net result 
is complete population transfer from state 1/r 1 to state lCr 2. It should be appreciated 
that the adiabatic and diabatic intervals can occur in either ordering: the pump 
pulse may either precede or follow the Stark pulse. 

The SCRAP technique resembles the early experiment by Loy (1974), who used 
adiabatic quasistatic pulses of about 5 ms duration to induce Stark shifts. However, 
he induced two sequential population transfers per pulse--excitation for the leading 
edge and deexcitation for the trailing edge of each pulse as in the left column of 
Fig. 42--resulting in no net population transfer. In contrast, the time delay between 
the pump and Stark pulses in SCRAP ensures that population transfer takes place 
at just one of the crossings, thus leading to overall population transfer. 

It should be obvious from the above description that complete population trans- 
fer will only occur within finite ranges of values of the various interaction parame- 
ters. For example, in order that there be level crossings, the static detuning A0 must 
be smaller than the maximum Stark shift So and must have the same sign as So. 
Also, the pump pulse should be strong enough to ensure adiabatic passage at one of 
the crossings, but weak enough to prevent adiabatic passage at the other. For Gaus- 
sian pulse shapes, f2(t) - f20 exp ( - t2 /T  2) and S ( t )  - So exp[-( t  - r)2/T2], the 
latter requirements lead to the conditions (Rickes et  al., 2000) 

1 << A0r < < e x p \ r 2  . (102) 

These conditions set upper and lower limits on the peak pump Rabi frequency f20 
and the static detuning A0. 

The SCRAP technique benefits from the fact that strong fixed-frequency long- 
wavelength pulsed laser radiation, suitable for Stark-shifting the levels, is often 
available because it is used to generate (by frequency conversion) the visible or 
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ultraviolet radiation needed for the pump interaction. Moreover, its pulse width is 
longer than the pump pulse width, which is beneficial for SCRAP. 

As with simple adiabatic passage, the SCRAP technique can produce population 
transfer in an ensemble of atoms having a distribution of Doppler shifts. The peak 
value of the Stark shift sets the maximum detuning that can be accessed; in turn, 
this sets the range of Doppler shifts for which population transfer can be produced. 

2. Experimental  Demonstration 

The first experimental demonstration of SCRAP was achieved in metastable helium 
(Rickes et al., 2000). The initial state ls2s 3S1 was coupled to the target state ls2s 3S1 
by a tw0-photon transition induced by a 855-nm pump laser pulse with a pulse 
duration of 3 ns (half-width at 1/e of intensity), as shown in Fig. 43 (left). The Stark 
shift was induced by a 1064-nm laser pulse with a pulse duration of 4.6 ns, delayed 
by 7 ns with respect to the pump pulse. Both laser pulses were mildly focused into 
the atomic beam. Nearly complete population transfer was observed with typical 
intensities of 20-30 MW/cm 2 for the pump pulse and 200-500 MW/cm 2 for the 
Stark pulse. 

As an example, Fig. 43 (right) displays the transfer efficiency plotted versus the 
static two-photon detuning A0 = o912 - 2Wp. Nearly complete population transfer 
was observed within a certain detuning range, as predicted by analytical estimates. 
For large positive detuning, the adiabatic condition at the first crossing is violated 
and the transfer efficiency decreases. For small positive detunings (near A0 = 0), 

FIG. 43. Left-hand plot: simplified energy-level diagram of helium atom used in the demonstration of 
SCRAP. Right-hand plot: population transfer efficiency versus the static two-photon detuning A0. (From 
T. Rickes, L. P. Yatsenko, S. Steuerwald, T. Halfmann, B. W. Shore, N. V. Vitanov, and K. Bergmann. 
Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced Stark shift. 
J. Chem. Phys. 2000;113:534-546.) 
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the diabatic condition at the second crossing is violated and the transfer efficiency 
decreases. For A0 < 0 and for very large positive A0, there are no level crossings 
at all and little population is transferred to the excited state. 

An interesting extension of SCRAPupotentially very important for 
molecules--is the application of two sequential SCRAP processes. For example, 
the first SCRAP can transfer the population from the electronic ground state to 
an electronically excited state via a two-photon excitation. The second SCRAP 
then transfers the population to a target state in the electronic ground state, e.g., a 
highly vibrationally excited state. The second step can take place via a one-photon 
process [(2 + 1) SCRAP] or by a two-photon process [(2 + 2) SCRAP]. It is easily 
seen that only one Stark-shifting laser is needed in the (2 + 1) SCRAP scheme. 
The (2 + 2) SCRAP can be realized even without a separate Stark pulse because 
the Stokes pulse can induce Stark shifts for the pump transition, and the pump 
pulse can induce the Stark shift for the Stokes transition (Rickes et al., 2000). 

D. ADIABATIC PASSAGE BY LIGHT-INDUCED POTENTIALS (APLIP) 

Recently, Garraway and Suominen (1998) (see also Kalush and Band, 2000, and 
Sola et al., 2000) have suggested, on the basis of numerical calculations for sodium 
dimers, that the STIRAP ideas of counterintuitively ordered laser pulses and adia- 
batic evolution can be applied to the transfer of a wave packet from one molecular 
potential to the displaced ground vibrational state of another. This processutermed 
adiabatic passage by light-induced potentials (APLIP)--seemingly violates the 
Frank-Condon principle because the overlap between the initial and final wave- 
functions is very small (the two wave packets were displaced at a distance seven 
times larger than their widths). There is, however, no such violation because the 
time scale of the process is close to, but longer than, the vibrational time scale. 
APLIP shares many features with STIRAP, such as high efficiency and insensitivity 
to pulse parameters. However, in contrast to STIRAP, the two-photon resonance 
condition in APLIP cannot be satisfied (except at a certain time), and the main 
mechanism for the transfer of the wave packet is through a "valley" which emerges 
in the time-dependence of the light-induced potential, as shown in Fig. 44 (left). 
Figure 44 (right) shows how the wave packet gradually disappears from the ground- 
state potential (lower plot) and appears in the excited-state one (upper plot). While 
the original proposal assumed transitions between the lowest vibrational states 
(v = v ' =  v " =  0), recent calculations (Rodriguez et al., 2000) extended APLIP to 
excited vibrational states. 

E. PHOTOASSOCIATIVE STIRAP AS A SOURCE FOR COLD MOLECULES 

With the experimental realization of Bose-Einstein condensation of weakly inter- 
acting atoms, the physics of cold gases has become a topic of increasing interest. 
While the formation of condensates of atomic gases is by now an established 
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FIG. 44. Left: APLIP potential. The population flows through the "valley" in this potential. Right: 
time evolution of the ground-state (lower plot) and excited-state (upper plot) populations. (Reprinted 
with permission from B. M. Garraway and K.-A. Suominen. Adiabatic passage by light-induced po- 
tentials in molecules. Phys. Rev. Lett. 1998;80:932-935.) 

technique in many laboratories, the generation of the molecular counterpart is still 
an open problem. Standard cooling techniques cannot be applied to molecules 
due to the lack of closed two-level transitions and the many rovibrational degrees 
of freedom. Instead, it has been suggested to produce molecular condensates by 
photoassociation of a condensate of atoms. An essential limitation of this process, 
however, is the fast stimulated dissociation of the molecular condensate into atoms 
in noncondensate states (Goral et al., 2000). Due to their state selectivity and direc- 
tionality, adiabatic transfer techniques such as STIRAP may be used to overcome 
this problem of"rogue dissociation." Numerical simulations based on a two-mode 
model, which does not include rogue dissociation, have shown that STIRAP can 
be used to induce coherent two-color photoassociation of an atomic Bose-Einstein 
condensate in free-bound-bound transitions and convert it to a molecular on short 
time scales (Javanainen and Mackie, 1998, 1999; Mackie and Javanainen 1999; 
Mackie et al., 2000). It was predicted that Bose stimulation can enhance the atomic 
free-bound dipole matrix element to the extent enabling photoassociative STIRAP. 

X. Propagation Phenomena 

The preceding sections of this chapter all treated the dynamics of atoms exposed to 
prescribed fields, emphasizing the transfer of population. As noted in Section II.B, 
populations Pn(t) can be regarded as the diagonal elements of a density matrix. The 
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off-diagonal elements describe another important property of coherent excitation, 
the induced dipole moments. The density of dipole moments, whether intrinsic 
or induced, provides the polarization field P for use in the Maxwell equations for 
the fields (cf. Shore, 1990; chap. 12). More specifically, the acceleration (second 
time derivative) of the dipole moments contributes to the radiation field. As a 
pulse of radiation passes by an atom, it induces a dipole moment that modifies the 
original field, and subsequent atoms along the propagation path will experience this 
modified field. In this section we discuss some aspects of a self-consistent treatment 
of atoms responding to a pulsed field, and traveling waves being modified by such 
atomic response. 

The importance of the induced polarization field depends on the number density 
of atoms, A/', the length of the propagation path (measured as the product of 
the absorption coefficient and the physical distance), and on the strength of the 
induced dipole moment. For a two-state atom the quantity relevant for coherent 
propagation modification is the expectation value of instantaneous dipole moment 
d12C1 (t)Cz(t)*, where dij is the transition dipole moment. This same quantity alters 
the pump field in a Raman process; the Stokes field is affected by dz3Cz(t)C3(t)*. 
(These expressions provide slowly varying dipole moments, for use with the RWA 
and carrier frequency co.) 

When the atomic density is low and the path length is short, one can disregard 
any action of the atoms on the field. But Raman adiabatic passage has some very 
interesting effects for beam propagation. For example, STIRAP can be employed 
to make an otherwise optically thick ensemble of three-level atoms transparent to 
a pair of pump and Stokes pulses. This phenomenon, called electromagnetically 
induced transparency (EIT) (Boller et al., 1991; Harris, 1997; Marangos, 1998), 
has a number of important applications ranging from communication to laser 
design and nonlinear optical processes (Harris et al., 1990). EIT does not require 
careful control of pulse shapes or areas. Therefore it is qualitatively different 
from self-induced transparency and other soliton-like phenomena (cf. Allen and 
Eberly, 1975), which will not be discussed here. 

A. ELECTROMAGNETICALLY INDUCED TRANSPARENCY (EIT) 

1. Complete Decoupling of  Light and Matter 

As is customary when simplifying the description of propagation effects, we con- 
sider an infinite medium through which pass pulses of radiation that travel in the z 
direction and that are uniform in the transverse x, y plane. We assume that the atoms 
are distributed uniformly, and that their properties are described by a state vector 
qJ(z, t) and probability amplitudes Cn(z, t). For further simplicity we assume that 
the atoms are stationary (i.e., no Doppler shifts) and that both the pump and the 
Stokes carriers are resonant with their respective Bohr frequencies. This assump- 
tion allows us to remove from each field a rapidly varying carrier exp (ikjz - cojt) 
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and to treat the probability amplitudes and the Rabi frequencies ~"~j (2, t) as slowly 
varying functions of the coordinates z and t (cf. Shore, 1990, sect. 12.4). The res- 
onance assumption permits us to choose the Rabi frequencies to be real valued; in 
general, it is not possible to separate phase and amplitude so clearly. 

The evolution of the atoms is described by the three-state Schrbdinger equation 
for the amplitudes Cn(z, t), n = 1, 2, 3. The needed RWA Hamiltonian is given 
by Eq. (40), with Ap = As=0.  Because the decay of the polarization plays an 
important role for the propagation of the fields, even if it is negligible for each 
individual atom, a decay out of the excited state ,P2 with rate F is included. This 
can be done by adding in Eq. (40) an imaginary term ih F/2 to the energy of the 
excited state. The propagation of the slowly varying Rabi-frequencies is described 
by one-dimensional first-order wave equations, 

O 1 0 )  Otp 
-~z + -c-~ f2p(Z, t) = imFCz(z,2 t)C~(z, t), (103) 

0 1 0 )  Ors 
-~z + -c-~ f2s(Z, t) = i -~ FC2(z, t)C~(z, t), (104) 

where the effect of the atoms on the fields is parameterized by the resonant 
absorption coefficients 

copN'ldl2[ 2 COs./V'ld32 [ 2 
c~, = . ( 1 0 5 )  

C~p = 2eoch F ' 2~och F 

An important property of the adiabatic dark state of the atomic system is the ab- 
sence of a dipole moment for either ofthe two transition C2C~ - C2C~ -- 0. Atoms 
in that state therefore have no effect on the fields, i.e., light and matter are exactly 
decoupled. Typically, all atoms are initially in the ground state rather than in the 
dark state. The question is how to transfer atoms from the ground state into the dark 
state. This is best done by adiabatic passage. If all atoms start in the ground state 
~1, approximate decoupling of the pulses requires (1) the instantaneous dark state 
be connected asymptotically to ~1, and (2) deviations from the dark state are small. 

The first requirement can be fulfilled by a counterintuitive pulse ordering. 
The second condition is more involved. Satisfying the adiabaticity criterion of 
Section IV is not sufficient, because the fields interact with many atoms dur- 
ing propagation. The range of validity of the approximation can be estimated by 
considering the atomic eigenstates in lowest order of nonadiabatic corrections 
(cf. Section III.A.8). 

IC21 ~ 
1 

[Cll ~ ~s ~p -~-, If31 ~ ---~-, (106) 
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where f2 = r + S22. Although S2T >> 1 is a sufficient condition to allow ne- 

glect ofnonadiabatic corrections for individual atoms, one recognizes, by integrat- 
ing the field equations (103) and (104) in steady state, that laser pulses propagate 
freely over a distance L only if 

~2 T ~'~2 T 
>> c~sL tan 0 and >> Otp L cot O, (107) 

F 1-" 

where 0 is the mixing angle defined in Eq. (45). If condition (107) is fulfilled, the 
interaction of the pulses with the otherwise optically thick medium (oiL >> 1) is 
completely eliminated. 

It is worth noting that the adiabaticity condition (107) implies that the spec- 
tral width A~o ,~ T -1 over which undisturbed propagation is possible is inversely 
proportional to the density-length product % L or otpL (Lukin et al., 1997). 

2. Elimination of Absorption; Slow Light 

It is possible to achieve transparency, i.e., an elimination of the absorptive part of 
the interaction, for even smaller intensities than those required by condition (107). 
However, the light-induced modification of the refractive effects remains. Since 
nonadiabatic corrections are relevant here, they need to be taken into account in 
an approximate way. For this it is convenient to work in the basis of dark ~d and 
bright states ~b, 

io  zt,] Ecos o,z ,, sin 
�9 b(z, t) = sin t~(Z, t)  COS t~(Z, lp 2 . ( 1 0 8 )  

The probability amplitudes in this basis, C(t) - [Cd, Cb, C2] v, obey a Schr6dinger 
equation with a Hamiltonian, 

I O ib 0 1 1 (-'t = h - i b  0 ~f2 , 
1 i 0 ~2 -~F 

that is equivalent to a three-state system driven by two pulsed "fields," of strength 
b and f2. Under adiabatic conditions b is small and can be treated perturbatively. 
Solving the Schr6dinger equation to leading order of ~ = [0/s'2[, one finds" 

2i.  
C d  ' -  1 -n t- O ( r l )  , C b = O(r ] ) ,  C2 - t~ --}- O(r /2) ,  -d 
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or, after transformation back to the bare atomic basis, 

2 i .  
C1 -- cos b q C2 -- - -  b q C 3 - - sin O. (109) 

f2 

An important special case is that of  a strong and approximately constant Stokes 
field, as shown in Fig. 45, i.e., [f2s[ >> [f2p[ and 

= ~ ~ (110) f12 f l "  

Substitution of  (109) and (110) into the propagation equations (103) and (104) 

yields, in lowest order of  r/, 

0 1 0 )  
-~Z +- --U g -~ ~'~ p (Z, t) -- O, 

-~z + -c -~ as(Z, t) = O, 

(111) 

(112) 

with 

c olpFc 
vg = 1 + ng and ng = ~2----- ~ .  (113) 

Thus the pump pulse propagates without changing form (form stable) at a reduced 
group velocity Vg, while the strong Stokes fields remains unaffected by the inter- 
action (see Fig. 45). It is important to note that the only effect o f  the medium is a 

1.2 
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time [arb. units] 

FIG. 45. Slow light propagation: Amplitudes of pump (x 100) and Stokes fields as function of time 
in a co-moving frame for ngz/C --  0 (a), 5 (b), 10 (c), and 30 (d). Weak pump field propagates with 
reduced group velocity. Arbitrary space and time units with c = 1. 
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temporal delay of the pump pulse. No energy is lost by absorption or spontaneous 
emission. At the leading edge of the pump pulse the atoms absorb photons from this 
pulse and transfer them into the Stokes field (which is much stronger and therefore 
effectively unchanged) by Raman adiabatic passage. The process is reversed at the 
tail of the pump pulse, i.e., all energy is returned to it. 

In typical optical materials such as glass, the group index ng is of the order 
of unity. In a dense medium (large Up) with EIT the alteration of the propagation 
velocity can be quite substantial, however. Hau et al. (1999) observed a reduction 
of the group velocity to 17 m/s in a Bose condensate of Na atoms, corresponding 
to a group index of the order of 107. Similarly small values where obtained in a 
buffer-gas cell of hot Rb (Kash et al., 1999) and Cs atoms (Budker et al., 1999). 

One easily verifies that the group-velocity reduction has little effect in the 
strong-field limit of Eq. (107). In this case the delay time ra = L / v g  - L / c  -- 

n g L / c ,  i.e., the time delay by which the Stokes pulse in the medium lags behind a 
corresponding pulse in vacuum, is much smaller than the pulse duration T. 

The maximum group delay is limited by the finite lifetime of the dark state and 
higher-order nonadiabatic corrections. The latter lead to a maximum ratio of delay 
time to pulse length (Harris and Hau, 1999), 

rd I = x/~pL. (114) 
T max 

The slowing down of light has a number of important applications. When a pulse 
enters a medium with a smaller group velocity, it becomes spatially compressed 
by the ratio of group velocity to the speed of light outside the medium. Thus, 
information contained in long pulses can be compressed to a small spatial volume. 
A reduction of the group velocity leads to an enhanced interaction time, important 
for efficient nonlinear optical processes (Harris and Hau, 1999; Hemmer et al., 

1995; Lukin and Imamoglu, 2000). When the light velocity matches the speed of 
sound, a new type of Brillouin scattering is possible (Matsko et al., 2001). The 
enhancement of the field gradient, associated with the spatial pulse compression, 
can lead to very large pondermotive forces on atoms (Harris, 2000) with potential 
applications for atom optics and cooling. 

B. ADIABATONS 

It was shown by Grobe et al. (1994) that the equations of nonlinear propagation 
[(103), (104)] are adiabatically integrable for fields of comparable strength and 
within the adiabatic approximationmof arbitrary shape. To see this, we adopt 
the method of Fleischhauer and Manka (1996) and transform the field equations 
for ~2p and ~2s in propagation equations for the total Rabi frequency ~2 and the 
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nonadiabatic coupling 3 assuming equal coupling strength Crp = a~ = c~: 

0 

7z 

1 0 )  a , 
+ - f2(z ,  t )  --  i F C 2 C  b, (115) 

+ - 3(z, t) - i - r - -  
c - ~  2 Ot f2 " 

(116) 

The transformation of both the atomic states and the fields leads to three dressed 
states coupled to two new "fields," characterized by f2 and 3. Under adiabatic 
conditions 131 << s2, so a weak-field approximation is justified. Substituting the 
lowest-order adiabatic solutions (109) into these equations, one finds that the total 
Rabi frequency fulfills the free-space equation 

0 1 0 )  
~zz + -cO-t f2(z, t) ~ O. 

No photons are lost by absorption and there is only a coherent transfer from one 
field into the other. 

At the same time, 3 obeys the equation 

0 

7z 
+ - b ( z , t )  - - ~ F - -  . 

c Ot 

This equation is exactly integrable (Grobe et al., 1994). The corresponding so- 
lutions, called ad iaba tons ,  are particularly simple if f2 is approximately constant 
over the time interval of interest. In that case the pump and Stokes pulses have 
complementary envelopes and b propagates without changing form, at the group 
velocity Vg given in Eq. (113). The quasi-form-invariant propagation of an adia- 
baton is shown in Fig. 46. First experimental evidence of adiabaton propagation 
was reported by Kasapi et al. (1995) in Pb vapor. Adiabatons in more complicated 
configurations, such as double-lambda systems and double pairs of pulses, were 
studied by Cerboneschi and Arimondo (1995). 

C. MATCHED PULSES 

An interesting feature of the interaction of bichromatic fields with three-level 
systems was noted by Harris (1993): the dark state corresponding to a pair of 
pulses with identical envelope ( m a t c h e d  pu l se s ) ,  i.e., f2p(Z, t ) =  f 2 p f ( Z ,  t)  and 
f2s(Z, t )  = f2s f ( z ,  t) ,  is time independent. After an appropriate preparation of the 
medium, matched pulses will remain exactly decoupled from the interaction for 
all times. 
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FIG. 46. Propagation of  adiabatons. Shown are amplitudes of  Pump and Stokes fields as function 
of  time in a co-moving frame for ngz/C = 0 (a), 25 (b), 50 (c), and 100 (d) from numerical solution of  
propagation equations (Fleischhauer and Manka, 1996). Arbitrary space and time units with c = 1. 

If a pair of matched pulses is applied to an atomic ensemble in the ground 
state, they will prepare the atoms by a STIRAP process (Harris and Luo, 1995): 
during the first few single-photon absorption lengths, the front end of the pump 
pulse experiences a small loss. In this way a counterintuitive pulse ordering is 
established. This provides asymptotic connectivity of the dark state to the initial 
state of the atoms. The leading end of this slightly deformed pair of pulses will 
then prepare all atoms in the pathway via STIRAP and the pulses can propagate 
unaffected through the rest of the medium (Harris, 1994; Eberly et al., 1994). 

Apart from the preparation at the front end, matched pulses are stable solutions 
of the propagation problem. They should therefore be formed whenever pulses of 
arbitrary shape are applied to optically thick three-level media. In fact, it has been 
shown (Harris, 1993) that pairs of pulses with a strong CW carrier, 

e-imp(t-z/c) ~p(Z, t) = [1 + f ( z ,  t)]~p 

S2s(z, t) = [1 + g(z, t)]S2se -imp(t-z/c), 

(117a) 

(117b) 

tend to adjust their amplitude modulations f(z, t) and g(z, t) in the course of 
propagation: 

f ( z ,  t) 
g(z, t) 

z - - +  OO 

= 1 .  

Fast fluctuations o f f  and g lead to a nonadiabatic coupling of the dark state, 
established by the CW components, to other states and will be absorbed. Thus 
pulses of identical envelope are formed. This phenomenon ofpulse matching also 
causes a correlation of quantum fluctuations in both fields (Fleischhauer, 1994; 
Jain, 1994; Agarwal, 1993). 
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The tendency to generate pulses with identical envelopes is not restricted to 
fields with a strong CW carrier. The adiabaton solutions are approximately stable 
over many single-photon absorption lengths. However, as shown by Fleischhauer 
and Manka (1996), they eventually decay to matched pulses after sufficiently long 
propagation distances. 

D. COHERENCE TRANSFER BETWEEN MATTER AND LIGHT 

It was shown in Section A that a strong and constant Stokes field leads to a slowing 
down of the propagation velocity of the pump pulse, while the shape and photon 
flux of the pump remained unaffected. The coherent information of the pump pulse 
is temporarily stored in the medium (in contrast to its energy, which is mostly 
transferred back and forth to the Stokes field). However, the maximum delay time 
is rather limited [see Eq. (114)]. It was shown recently (Fleischhauer et al., 2000) 
that this limit can be overcome. In fact it is possible to control the propagation 
velocity of the pump pulse, to bring it to a full stop, and to reaccelerate it on 
demand. This behavior is associated with the existence of quasi-particles called 
dark-state polari tons that are a mixture of atomic and field components, 

F(z ,  t) - cos 0(t)~"2p(Z, t) - sin O(t) ~/-~I" C3(z, t)C~(z,  t). 

The angle 0 (not to be confused with the mixing angle 0 used earlier) is defined 
by 

tan O(z, t) = 
f2s(Z, t) 

The dark-state polariton obeys the simple propagation equation 

+ c cos 20(z, t)-~z F(z ,  t) = O. (118) 

If f2s (and hence 0) is approximately uniform in z, Eq. (118) describes a form- 
invariant propagation of the quasi-particle with propagation velocity 

v(t) = c cos 20(t). 

When O(t) is adiabatically rotated from 0 to n/2 by externally controlling the am- 
plitude of the Stokes field f~s, an initially pure electromagnetic polariton (F - ~2p) 

is transformed into a pure atomic polarization ( F -  V~--~C3C~) .  At the same 
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FIG. 47. Top: Amplitude of pump field as a function of time in arbitrary units at medium entrance 
z = 0 (dotted line) and for z = 1000 (full line). Bottom: The same for the Stokes field. Distance is 
measured in units of absorption length c~; 1 - Ors 1 and peak values are f2s = ~p --- 10I-'. 
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FIG. 48. Stopping and reaccelerating a dark-state polariton. Rabi frequency of control (Stokes) field 
and mixing angle are shown in (a). Coherent amplitude of dark-state polariton F is plotted in (b), and 

the amplitudes of pump field f2p and atomic coherence [C3C~[ are shown in (c) and (d), respectively. 
Space and time have arbitrary units, with c = 1. (From M. Fleischhauer and M. D. Lukin. Dark-state 
polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 2000;84:5094-5097.) 
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time, the propagation velocity is changed from the vacuum speed of light to zero. 
The pump pulse is thus "stopped," which means that its coherent information is 
transferred to collective atomic states. During the transfer process the spectrum of 
the electric field component is narrowed. As a consequence, the limitation (114) 
does not apply. The atomic polarization can be extracted by reversing the transfer 
process, i.e., rotating 0 back from n/2 to 0 and re-creating the pump pulse. The 
deceleration, storage, and reacceleration of a polariton is illustrated in Fig. 48. 
First experimental demonstrations of light stopping have recently been reported 
(Phillips et  al., 2001; Liu et al., 2001). Figure 49 shows the observed light pulse 
storage in Rb vapor from Phillips et al. (2001). 

I . . . . .  1 . . . .  I J J J I . . . . .  = 
% 

. . . . . . . . . .  ;s 
..." . . . . .  "~1 I 

................... �9 "" '.~. . . . . . . . . .  i ............................................................................... 

/ I  =- . . . . .  / . . . .  ~ I I J J I . . . . .  - 

::3 ........ i / 
. . . . . . . . .  "-t i 

"e~ . . . . . . . . . . . . . . . . . . . . .  ./. .............................................................................. 

._~ b) ~= 100 IlS 

E 

.~_ 

r  

I C  . . . . .  1 . . . .  I I I I i,..I . . . . .  .= i 
............ . i  / 

...... �9 \.1 / 
.......................... "~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ../ .............................. 

) A 'c = 200 gs 

-100 -50 0 50 100 150 200 250 

time (gs) 

FIG. 49. Light pulse storage in 87Rb cell. Shown above the data in each graph are calculated values 
of control field (dashed line) and input signal (dotted). (Reprinted with permission from D. E Phillips, 
A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin. Storage of light in atomic vapor. Phys. 
Rev. Lett. 2001;86"783-786.) 
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XI. Applications of STIRAP in Quantum Optics 
and Quantum Information 

The growing interest in quantum information science in recent years, and the 
resulting need for methods that allow controlled and coherent manipulation of 
quantum states, has led to another field of applications of STIRAP. An important 
new aspect here is the possibility for coherent control not only of quantum states 
of atomic and molecular systems, but also of quantum states of the radiation field. 

In all aspects of quantum information, decoherence (e.g., the loss of coherence 
through uncontrolled random variations of state vector phases) must be avoided. 
Here STIRAP, by utilizing radiatively dark states, has definite advantages. 

A. SINGLE-ATOM CAVITY QUANTUM ELECTRODYNAMICS 

The potential usefulness of STIRAP in studies of cavity quantum electrodynamics 
(QED) was first pointed out by Parkins et al. (1993, 1995, 1999). They proposed to 
use STIRAP to create coherent superpositions of photon-number states by strongly 
coupling an atom to the field within a cavity of volume V. The quantized field of the 
single-mode resonator provided the Stokes field. Within the RWA, the interaction 
coupled only triplets of bare eigenstates of the combined atom-field system, viz., 
~ +1  = [Ol, n + 1) 0 n n ' 2 ~ 1~2, n ), and ~3 ~ lip 3' n), where n denotes the number 
of photons in the mode. The appropriate Hamiltonian is that given in Eq. (40) with 
the Rabi frequency of the pump field replaced by the vacuum Rabifrequency (in 
cavity volume V), 

~vac -- d12/Ttx//ho)12/26o V, (119) 

the coupling strength between the atom and the resonator mode. The system has 
an infinite set of adiabatic dark states, 

�9 ~) --= ~r~ +1 cOSOn(t)-  ~r; sinOn(t), n = 0 , 1 , 2  . . . . .  

where the mixing angles 0n are defined as 

tanOn(t) = 
'~vac 

f2p(t) 

Of particular interest is the case n = 1. Adiabatic rotation of the dark state 
maps an atomic excitation (17t3, n = 0)) onto an excitation of the resonator 
mode ([7rl, n = 1)), and vice versa, in a decoherence-free fashion. Because the 
RMS Rabi frequency f2 - v/f22acn + f22 is equal to f2vac~/-ff in the asymptotic 
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limit On --+ n / 2 ,  the adiabatic condition in the presence of decay takes the form 
(Fleischhauer and Manka 1996) 

2 
~vacn T >> 1, 

F 

where F is the decay rate of the excited state qz2. 
The transfer time T is usually limited by the finite decoherence time of the field 

state, e.g., due to cavity losses. If tc denotes the photon loss rate of the resonator 
mode, the decoherence time of a photon number state In) is of the order 1/(nx). 
Thus adiabaticity requires a strong-coupling regime of the cavity 

~2va c >> tC F, (120) 

a condition which is technically very challenging to satisfy. 
Despite these difficulties in the practical realization, adiabatic transfer between 

atomic and resonator excitations is interesting because of a number of potential 
applications. For example, successive interactions of atoms with the cavity system 
can be used to create arbitrary coherent superpositions of photon number states 
(Parkins et al., 1993). This idea can be extended to two degenerate cavity modes 
of orthogonal polarizations (Lange and Kimble, 2000). 

Furthermore, as first suggested by Law and Eberly (1996, 1998) and Law 
and Kimble (1997), it is possible to generate a single-photon wave packet, with 
an envelope determined by 01(t), in the output of the resonator. Single-photon 
wave packets on demand are important for quantum information processing uti- 
lizing photons as information carriers. A first step toward an experimental re- 
alization of such a "photon pistol" was recently reported by Hennrich et al. 

(2000). Here individual atoms prepared in state 7t3 were dropped from a magneto- 
optical trap (MOT) and fell through a resonator setup as shown in Fig. 50. Raman 
adiabatic passage induced by a counterintuitive coupling to the resonator field 
and a subsequent pump laser beam led to stimulated emission into the resonator 
mode. 

The process of transferring excitation from atoms to a field mode is reversible 
and allows the opposite process of mapping cavity-mode fields onto atomic ground- 
state coherences. This mapping provides a possibility for measuring cavity fields 
(Parkins et al., 1995). The atomic angular momentum state can be measured 
by the Newton-Young method (Newton and Young, 1968) with a finite num- 
ber of magnetic dipole measurements using Stern-Gerlach analyzers. Alterna- 
tively, the parameters of the atomic superposition can be measured by coupling 
this degenerate atomic state to an excited state by an elliptically polarized laser 
pulse and measuring the subsequent fluorescence (Vitanov et al., 2000; Vitanov, 
2000). 
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FIG. 50. First evidence of vacuum stimulated Raman scattering into cavity mode via STIRAP. 
Top: Experimental setup. Bottom: Number of counted photons as function of pump detuning for 
different probe detunings. Maximum at Ap -- Ac proves two-photon nature of the stimulated pro- 
cess. (Reprinted with permission from M. Hennrich, T. Legero, A. Kuhn, and G. Rempe. Vacuum- 
stimulated Raman scattering based on adiabatic passage in high-finesse optical cavity. Phys. Rev. Lett. 
2000;85:4872-4875.) 

B. QUANTUM LOGIC GATES BASED ON CAVITY QED 

Quantum information processing requires the coherent manipulation of  elemen- 
tary units, called quantum bits (qubits), which are equivalent to spin-�89 systems. 
Besides performing arbitrary rotations within the two-dimensional Hilbert space 
of  individual qubits,/-//, one must be able to perform operations, known as elemen- 
tary quantum gates, between arbitrary pairs of  them. It was shown by Pellizzari 
et al. (1995) that the required two-bit gate can be implemented in a cavity system 
by employing STIRAP to transfer quantum states between different atoms. The 
quantum states of  two qubits i and j, stored in two different atoms, are first mapped 
to four different internal states of  a single atom. The required gate operation in the 
2 x 2-dimensional Hilbert space H / |  Hj of the ith andjth qubits can then be per- 
formed by simply applying the appropriate laser pulses to the second atom. Finally, 
the qubits are transferred back to the original atoms, where they will generally be 
in an entangled state, i.e., in a quantum state which cannot be factorized. 

To illustrate the essence of  the qubit transfer from one atom to another via the 
resonator field, we consider two three-level atoms A and B. The 2 -+ 3 transitions 
of  both atoms are coupled to the same quantized mode of  the resonator. Assume 
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that atom A is initially in a coherent superposition of states 1 and 3 with amplitudes 
c~ and/3, i.e., lp A - -  O/lp A + fl lp~ k. Atom B is assumed to be in state 3, for simplicity, 
and there are no photons in the cavity. Under these conditions the dynamics of the 
total system involves only the state 

,0 __ I~', ~ ,  0), (121) 

where I . . . .  0) denotes the photon vacuum. ~0 is an exact eigenstate of the in- 
teraction with zero eigenvalue. In addition there is a resonant, chainwise-coupled 
system of five states: 

~pA ~/fA ]/fB 0)~vac I ~ , ~ ' , 0 ) <  ' I ~ . . . . .  , , Io~ o~' 1) 

8vac) I~ A, ~ ,  o ) < ~  I~ A, ~B, 0). (122) 

The Hamiltonian of this system has the adiabatic dark state (i.e., a state without 
component of state r 

,~_ M1 [~A(t)~va~l~pA '3 ~pS, 0) 

-~,~r162 I ~r ~ ,  1)-+- ~p~r I ~, ~ , lp B3 , 0)] , (123) 

with .A/I being a normalization constant. Any superposition of the zero-eigenvalue 
states ~0 and r is also a dark state. In particular, if at t ~ - c~ ,  the pump field 

B A __ 0 ,  but that of atom B is nonzero, i.e., flap -r 0, then of atom A vanishes, i.e., flap 
the initial statevector of the system is a superposition of dark states, 

�9 (t = - ~ ) -  (,~1~ A) -4- ~ I ~ ) ) I ~ ) 1 o )  

-- ,~ I~ A, 1/fB'3 o) + ~ 1 ~ ,  ~ ,  o) 

= ~ * 0 ' ( - ~ )  + t ~*~ 

(124a) 

B A rotates the superposition Adiabatic reduction of flp to zero while increasing flp 
of dark states to 

-- ,~ I ~ '  , ~B , 0 ) +  ~ I ~ ' ,  ~3,0)  

= 10~')(~10 B) + ~10~')1 �9 

(124b) 

As a result, the qubit state of atom A is mapped onto atom B--an  example of state 
swapp ing .  Implementation of an actual quantum gate requires a slightly more 
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complicated system, in which atom B has two degenerate states "4-"  in each 
energy level 1,2, and 3. The two A systems are coupled by pump and Stokes fields 
in a parallel way. This allows a mapping of the qubit states of atoms A and B onto 
the four states 1/,t14- and ~P3+ of atom B. After this transfer the two-bit operations 
can be performed by manipulating atom B alone. 

As can be seen from Eq. (123), the single-photon state of the cavity mode is 
excited during the transfer process. To avoid decoherence, the transfer time Tneeds 
to be short compared to the decay time of the cavity. On the other hand, the transfer 
must be sufficiently slow to guarantee adiabaticity. Both requirements can only be 
fulfilled in a strongly coupled regime (120). 

C. QUANTUM NETWORKING 

An important aspect of quantum information processing is the ability to transmit 
the wavefunction of qubits over mesoscopic or macroscopic distances. A scheme 
for an ideal quantum-state transfer between atoms at spatially separated nodes 
of a network was proposed by Cirac et al. (1997), using a Raman transfer of 
quantum states from an atom to a resonator Stokes field, which is coupled to 
a transmission line such as an optical fiber. Unlike the case described in the 
previous subsection, this scheme requires that the two single-photon frequen- 
cies be far off resonance, so that the excited state can be adiabatically elimi- 
nated. The Raman process generates, in the fiber, a photon wave packet that 
is directed to a second, strongly coupling resonator containing another atom. 
When the pump field of the first resonator generates time-symmetric photon 
pulses, a retarded and time-reversed Stokes field in the second resonator leads 
to a complete transfer of the photon wave packet to the corresponding atom 
without any reflection from the input mirror (Cirac et al., 1997). The possibil- 
ity for suppressing the reflection for arbitrary photon wave packets (quantum 
impedance matching) was discussed by Fleischhauer et al., 2000; Lukin et al., 

2000). 
It was shown by Pellizzari (1997) that state swapping can also be performed by 

means of adiabatic passage via photonic dark states. In this case the two cavities 
remain in the vacuum states during the whole operation and the effect of resonator 
losses is diminished. However, the modes of the optical fiber connecting the two 
cavities are excited during the transfer process. An interesting extension of the 
adiabatic-passage idea, given by van Enk et al., (1999), avoids any excitation of 
fiber modes and thus suppresses the effect of fiber losses. 

D. MANY-ATOM SYSTEMS 

The disadvantages of single-atom cavity-QED schemes are the need for a strongly 
coupled cavity and the requirement for extremely close control of individual atoms. 
As shown by Lukin et al. (2000), both drawbacks can be overcome if collective 
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excitations of an ensemble of atoms are used as qubit states instead of energy levels 
of individual atoms. If N three-level atoms are placed inside a resonator, with the 
1 --+ 2 transition resonantly coupled by a quantized mode of the resonator and the 
2 ~ 3 transition by a resonant classical Stokes field, the interaction couples only 
symmetric superpositions: 

�9 , = ~]7r2 . . .  O N, (125a) 

1 N 
- ~ gr~ ~J 7t u (125b) kI/3 --  ~ ~ .=  " '"  3 " ' '  ' 

1 N 
--  ~ l/r] 1/t i ~r j 1/r N (125c) 

. . . .  3 . . . . . . .  

. 2  v / 2 N (  N 1) i "=1 

etc. 

In particular, if initially the field is in a state with at most one photon, the relevant 
eigenstates of the bare system are the total ground state J~l, 0), which is not 
affected by the interaction at all; the ground state with one photon in the field 
1~3, 1); and the singly excited states [~2, 0) and [~3, 0). For the case of two 
excitations, the coupling involves three more states, etc. 

The interaction of the N-atom system with the quantized radiation mode has a 
family of dark states, i.e., states with no component gr2 and zero adiabatic eigen- 
value (Parkins et al., 1993; Lukin and Imamoglu, 2000; Fleischhauer et al., 2000). 
The simplest one is 

~ l  _ cos0(t)lqJl, 1) - sin0(t)lqJ3, O) 

with tan O(t) -- ~ " 2 v a c ~  / f2(t), and in general one has 

k=0 k!(n - k)! 
( -  sin O)k(cos o)n-k [*3k, n - k). 

The existence of dark states provides a very elegant way to transfer an arbitrary 
quantum state of the single-mode field to collective atomic excitations. Adiabatic 
rotation of the mixing angle 0 from 0 to 7r/2 leads to a complete and reversible 
transfer of the photonic excitation to a collective atomic excitation, if the total 
number of excitations n is less than the number of atoms. If 0 = 0 ~ 7r/2 one 
has, for all n _< N, 

= I . , ) l , , )  , I , ; ) lo) .  



COHERENT MANIPULATION OF ATOMS AND MOLECULES 179 

By contrast with the single-atom case (120), the necessary condition for the adia- 
batic following of the systems state vector with the dark state is now 

~2acN 
~ T  >> n. 

Ifthe number of atoms Nis much larger than the number ofphotons n, this condition 
can be much more easily fulfilled and does not require strong coupling resonators. 

XII. Summary and Outlook 

Many contemporary fields in atomic, molecular, and optical physics require prepa- 
ration of samples in which almost all of the population resides in a preselected 
target state. Although a variety of methods have been proposed and tried over the 
years, many of the most successful ones are based on controlling adiabatic time 
evolution of the quantum system. 

The theoretical description of such time dependence is most easily presented 
with the aid of adiabatic states: if the evolution is adiabatic, then at all times the 
state vector remains aligned with one of these states. The progress of the changing 
state vector can be followed by viewing a plot of adiabatic eigenvalues and noting 
the crossings of diabatic energies. 

The experimenter has various guides for the applicability of adiabatic passage-- 
the adiabatic conditions. Typically these require that excitation pulses be strong and 
smooth and that the interaction act for a "long" time compared with a characteristic 
atomic time scale. Often this is expressed as the requirement that a time-integrated 
Rabi frequency be much larger than unity. What typically sets adiabatic techniques 
apart from other pulsed-excitation techniques is the relative insensitivity of the 
transfer efficiency to interaction parameters; adiabatic techniques are not sensitive 
to pulse area, for example. 

In simplest form, adiabatic passage can completely invert the population of 
a two-state system. Numerous extensions have been devised and put to practical 
use; we have mentioned some of these. When a quantum system of three (or more) 
states is subjected to two (or more) coherent pulses, to permit adiabatic evolution of 
a stimulated Raman process, then remarkable and novel effects become possible. 
These rest on the presence of a "population trapping" quantum superposition state, 
a concept first appreciated some 30 years ago and described here in some detail, 
and the use of "counterintuitive" pulse sequences. 

Earliest applications of the technique of stimulated Raman adiabatic passage 
(STIRAP) aimed to produce complete selective excitation of individual rovibra- 
tional states of molecules or magnetic sublevels of atoms. We have discussed the 
basic STIRAP and numerous extensions. Unlike techniques involving only two 
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quantum states, such procedures can produce population transfer into stable or 
metastable states. Beyond such simple population transfer uses, we have noted the 
growing interest in the use of STIRAP and related techniques to the creation of 
stable superpositions (controlled partial population transfer, with predetermined 
phases) for a number of applications. 

More recently, the response of the fields themselves to such coherent atomic 
evolution has been considered, and remarkable propagation effects have been 
demonstrated. For example, inducing an otherwise opaque vapor to allow nearly 
lossless transmission (electromagnetically induced transparency, or EIT), dramat- 
ically slowing pulses of light, and even "stopping photons" for controllable time 
intervals. These techniques have application, among other things, to the emerging 
research area of quantum information. 

As laser technology continues to improve, and experimenters acquire lasers 
with ever higher intensity and purer spectral content, one can expect to see imagi- 
native new applications of adiabatic passage to the task of transferring populations 
between quantum states, of creating novel superposition states, and of modifying 
pulse propagation in new and novel ways. 
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