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Characterizing localization effects in an ultracold disordered Fermi gas by diffusion analysis
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Disorder can fundamentally modify the transport properties of a system. A striking example is Anderson
localization, suppressing transport due to destructive interference of propagation paths. In inhomogeneous many-
body systems, not all particles are localized for finite-strength disorder, and the system can become partially
diffusive. Unraveling the intricate signatures of localization from such observed diffusion is a longstanding
problem. Here, we experimentally study a degenerate, spin-polarized Fermi gas in a disorder potential formed by
an optical speckle pattern. We record the diffusion through the disordered potential upon release from an external
confining potential. We compare different methods to analyze the resulting density distributions, including a new
approach to capture particle dynamics by evaluating absorption-image statistics. Using standard observables,
such as diffusion exponent and coefficient, localized fraction, or localization length, we find that some show
signatures for a transition to localization above a critical disorder strength, while others show a smooth crossover
to a modified diffusion regime. In laterally displaced disorder, we spatially resolve different transport regimes
simultaneously, which allows us to extract the subdiffusion exponent expected for weak localization. Our
work emphasizes that the transition toward localization can be investigated by closely analyzing the system’s
diffusion, offering ways of revealing localization effects beyond the signature of exponentially decaying density
distribution.
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I. INTRODUCTION

In 1958, Anderson showed that a single electron in a dis-
ordered material will stop to diffuse, i.e., it localizes [1,2].
The tails of the particle’s wave function or probability density
profile decay exponentially in space ⟨n(r)⟩ ∼ exp(−|r|/ξ ),
where n is the particle density, r is the position, ξ is the
localization length, and ⟨·⟩ is a disorder and quantum average.
In one and two dimensions, localization in random potentials
always emerges from the interference among various multiple
scattering paths. This interference is constructive only at the
spatial point where the particle has been initially placed. In
d = 3 dimensions, the system only localizes for sufficiently
strong disorder, as not all scattering paths are expected to
return to the origin. Thus, localization is expected only if
the disorder becomes sufficiently strong [2]. In this case, a
metal-insulator transition is expected with power-law diver-
gence at a critical value ξ (E ) ∼ |E − Ec|−ν where E is the
energy, Ec is a critical energy called mobility edge, and ν ≈
1.58 is the critical exponent [3–5]. Within the last 65 years,
such Anderson localization (AL) [1,2] has been observed in
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noninteracting systems of light [6–12], ultrasound [13–15],
and microwaves [16,17]. In the context of ultracold atoms, AL
has been intensively studied in one dimension (1D), both in
the quasiperiodic lattice [18] and in the continuum [19], in 2D
[20–22], as well as in 3D [23–25].

During the last years, the investigation of the Anderson
metal-insulator transition has increased significantly [26–28]
due to an active debate whether an interacting system can
localize at a finite disorder strength [29–39]. Moreover, even
in the noninteracting case, the literature seems not fully con-
clusive as the most striking feature, the exponential tails of
Anderson-localized particles, can simply be an artifact from
an energy-dependent diffusion coefficient D(E ) [40–42]. In
particular, this is a problem for fermionic systems, where a
broad distribution of D(E ) due to Pauli exclusion is present.
Since the observation of an exponential decay of the wave
function as a smoking gun for AL is not sufficient, other
signatures for localization from experimentally accessible ob-
servables are required.

A common technique to study transport phenomena is via
a quantum quench [18,19,23,24,43]. Here, an initial equilib-
rium state is prepared in a harmonic trap, usually at a low
temperature, and then quenched into a disorder potential while
simultaneously extinguishing the trap. Classically, one ex-
pects the particles above the percolation threshold to undergo
standard Brownian diffusion when expanding through such a
disordered potential landscape. Due to quantum interference
effects leading to localization, however, anomalous subdiffu-
sion is expected for particles close to the mobility edge [41,44]
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FIG. 1. Schematic illustration of the experimental setup, absorption images, and evaluation of disorder-free ballistic expansion. (a) Ab-
sorption images taken at various expansion durations t . 50 repetitions are averaged per image. (b) Experimental setup. The atomic cloud
(red ellipsoid) is initially trapped in a superposition of two optical dipole traps (blue tubes). The speckle beam (green volume and arrow),
propagating along the +z axis, produces randomly distributed anisotropic grains (green ellipsoids). At t = 0, the crossed dipole trap is
extinguished, and the atoms begin to expand along the y axis. The cloud is imaged after a variable expansion duration t with a resonant
beam (red arrow) propagating along the −z direction. (c) Density profiles n(y, t ) for equidistant time steps (bottom to top, left axis). The
profiles are calculated from the absorption images shown in (a) by integrating along the x axis. (d) Variance σ 2

IPW(t ) − σ 2
IPW(0) over time for

short timescales, the solid line is a power-law fit with exponent α = 2.02 ± 0.09, see Eq. (2). Error bars are calculated from error propagation.
In the inset, the same fit with more data for longer timescales is shown in a double-logarithmic plot.

while the diffusion coefficient approaches the Heisenberg-
limited ratio of the reduced Planck constant and the particle
mass, the quantum of diffusion h̄/m [24,25,41,42,45–48].
Hence, the evolution of a system toward localization can be
investigated by closely observing its diffusion.

Generally, different regimes of anomalous diffusion are
distinguished by the exponent α of the growing mean-squared
displacement (MSD) of a particle from its initial position
r(t = 0),

MSD(r(t )) ≡ ⟨|r(t ) − r(0)|2⟩ = 2dDαtα, (1)

which evolves over time t and anomalous diffusion coefficient
Dα [49–52]. In particular, MSD is equal to the spatial variance
of the particle position if one has access to single-particle
trajectories. For α = 1, the system undergoes normal diffu-
sion, subdiffusion for α < 1, and superdiffusion for α > 1.
Another special case, α = 2, is called ballistic and describes
the free expansion without any medium while also occurring
in nontrivial cases [49,51,53].

Here, we study the expansion of a noninteracting Fermi gas
into a disordered optical waveguide. Recording the dynamics
of the density distribution upon releasing the system from the
trap allows us to observe the diffusive expansion and devia-
tions from normal diffusion, which we attribute to signatures
of Anderson localization. We compare different methods to
obtain anomalous-diffusion observables, i.e., exponent and
coefficient, from absorption images taken, and we analyze
them for signatures for localization.

II. EXPERIMENTAL METHODS

Experimentally, we prepare a degenerate Fermi gas of typ-
ically N ≈ 8 × 104 6Li atoms, polarized in the lowest-lying
Zeeman substate and inside a crossed optical dipole trap
[see Fig. 1(b)]. Due to the fermionic nature of the atoms,
for the low temperature T = 0.10 ± 0.03 TF = 55 ± 20 nK

(with Fermi temperature TF) of the atomic samples, s-wave
interactions are prohibited, while p-wave and higher-order
interactions are strongly suppressed. Hence, in good approx-
imation, the atomic cloud behaves as an ideal Fermi gas
[41,54,55]. Initially, the atoms are trapped in an optical dipole
trap (ODT), created by superposing a focused laser beam
ODT1, propagating along the y axis, with a secondary beam
ODT2, crossing the first laser beam at an angle of 53◦ in the
x-y plane, see Fig. 1(b). The resulting crossed trap has the trap
frequencies (ω×

x ,ω×
y ,ω×

z ) = (386, 37.8, 257) × 2π Hz, with
the superscript × denoting the crossed trap. By extinguishing
ODT2 at t = 0, the trap frequencies become (ωx,ωy,ωz ) =
(365, 1.9, 248) × 2π Hz. This happens instantaneously, i.e.,
at a duration smaller than 1 µs, much shorter than the inverse
trap frequency. The trap geometry along the x and z axis does
not change significantly, ωx,z ≈ ω×

x,z, while the potential along
the y axis effectively becomes flat, ωy ≪ ω×

y , allowing the
atoms to expand along the y direction. After a variable expan-
sion duration t , we perform resonant high-intensity absorption
imaging [56–58] along the z axis.

To probe diffusion in disorder, a repulsive optical speckle
disorder potential V (x, y, z) composed of 532 nm laser light
and with a typical grain size η2

x,y × ηz = (750 nm)2 × 10.2 µm
is quenched on at t = 0, where ηx,y and ηz are the correlation
lengths along the respective directions [45,58,59]. We
note that this three-dimensional speckle potential does
not allow for classically bound states [60–62]. Since our
speckle is fully developed, we characterize its strength by its
spatial average ⟨V ⟩, as it is equal to the standard deviation√

⟨V 2⟩ − ⟨V ⟩2 [58,59]. In this work, we investigate the effect
of disorder strengths of up to ⟨V ⟩ ≈ 700 nK × kB, which
can be somewhat larger than the typical Fermi energies
EF ≈ 550 nK × kB.

For all settings, i.e., expansion duration and disorder
strength, we create and image 50 realizations of the atom
sample and turn the speckle diffusor plate by a small angle
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in between to ensure a unique disorder realization for each
shot. These images are averaged to ensure a good disorder
average [41] and reduce the impact of noise in the evaluation.
For this setup in particular, image noise is enhanced due to
technical details (see Appendix A) compared to our previous
works, requiring more averaging for the same signal-to-noise
ratio. To analyze the expansion along the y direction, we
integrate the averaged images taken at time t over the x axis,
see Figs. 1(a) and 1(c). This yields the column densities n(y, t )
for the one-dimensional density distributions we analyze as
described in Sec. III.

Finally, we use d = 1 in the analysis as the dimensions x, z
are blocked from undergoing diffusion due to the remaining
harmonic confinement from the ODT1 or, in other words,
Dx,z = 0. However, we emphasize that the gas as well as the
speckle disorder never cross into the regimes of dimensional-
ity lower than d = 3. More specifically, the spacing of energy
levels in the trap along the radial directions h̄ωx,z < 18 nK ×
kB is significantly smaller than other relevant energy scales,
i.e., thermal energy kBT or Fermi energy kBTF. Thus, our
sample is three-dimensional. Similarly, the disorder’s smallest
length scales, the correlation lengths, lie below the cloud’s
extension along all axes.

III. DIFFUSION OBSERVABLES

In noninteracting systems, we expect particles to expand
ballistically if no disorder is present, while they should diffuse
normally or anomalously (specifically subdiffusively [41])
when the system is subjected to weak or strong disorder,
respectively. Ideally, diffusion is investigated by evaluating
the mean-squared displacement computed from trajectories of
single particles traced over time [49,63]. Since we, like the
majority of cold-gas experiments, cannot physically access
the individual-trajectory MSD as defined in Eq. (1), we need
to restrict ourselves to observables characterizing the ensem-
ble of many particles. In this section, we look at four different
observables of the spatial variance σ 2

i of the cloud that we
briefly introduce and then compare each to their ability to
extract the diffusion exponent α as well as coefficient Dα from

σ 2
i (t ) − σ 2

i (0) = 2Dαtα. (2)

Here i stands for the different methods to extract the variance,
(1) σ 2

fit, the variance of a Gaussian fitted to the density
profile, see Sec. III A,

(2) σ 2
Var, the spatial variance of the density profile, see

Sec. III B,
(3) σ 2

PR, the variance extracted from the participation ratio
(PR), see Sec. III C, and

(4) σ 2
IPW, the variance extracted from the inverse participa-

tion width (IPW), see Sec. III D.
To find an appropriate estimate for the spatial variances of the
cloud, we use a Gaussian function

nGauss(y, y0, t ) = N (t )
√

2πσ 2(t )
exp

(
− (y − y0)2

2σ 2(t )

)
(3)

as a control distribution representing the density profile of the
experimental data [see Fig. 1(c)], with atom number N (t ) =∑

y n(y, t )(y, density n(y, t ) on position y and (y the size of
a pixel. Note that we fix y0 = 0 in the following. Here, the

variance is time dependent, following Eq. (2) with α = 2 for
ballistic, α = 1 for normal, and α < 1 for anomalous subdif-
fusion, respectively.

The accurate determination of the diffusion exponent re-
mains an actively investigated topic [49]. For the present
work, we chose the following procedure. By taking the log-
arithm of Eq. (2),

ln
[
σ 2

i (t ) − σ 2
i (0)

]
= ln (2Dαtα ) = ln (2Dα ) + α ln t, (4)

the diffusion exponent α can be directly inferred via linear re-
gression. We use the standard fit error as the uncertainty of the
exponent’s error. An example of this fit to σ 2

IPW(t ) − σ 2
IPW(0)

as extracted from data from a ballistic expansion without
disorder, which is discussed in more detail in Sec. III E, is
shown in Fig. 1(d). For the anomalous diffusion coefficient,
we calculate

Dα =
〈
σ 2

i (t ) − σ 2
i (0)

2tα

〉
. (5)

Note that the set of values for different t that are averaged is
constant in time. For the error of Dα , we use the standard devi-
ation of that set. Even though Dα is already contained in the fit
result as the variance-axis intercept, we decide for this option
to be less dependent on fit results. Note that both options yield
values that are equal within their ranges of uncertainties.

Comparing the anomalous diffusion coefficient Dα for dif-
ferent α is not straightforward. Technically, it has the unit
of m2 s−α , or normalized to the diffusion quantum h̄/m as
mDα/h̄, the unit of s1−α [50,51]. The alternative method is to
remove the dependence on α by focusing on D1(t ) = Dαtα−1,
which has the unit of m2 s−1. However, D1(t ) will then not
be a constant in time for α ̸= 1, making a direct comparison
of single representative values of the diffusion coefficient for
different settings with different α not possible. Hence, we
decide to evaluate Dα as described.

A. Gauss-fit variance

One of the most simple and also most common methods is
to fit a distribution function to the recorded density profiles
[18,43,64,65], see Fig. 2(a), and extract values such as the
variance or peak height. On the one hand, fitting has the
advantage of approximating the raw data without other forms
of data filtering or additional averaging. On the other hand,
the results strongly depend on the fitting function and number
of fit parameters. In particular, the number of fit parameters
should be restricted to as few parameters as possible to avoid
overfitting and, therefore, omitting the general properties of
the dynamics [66,67]. In the case of normal diffusion, fitting
Eq. (3) becomes straightforward. The variance σ 2

fit is then
directly extracted from the fitted parameters. As the density
profiles consist of about 105 fermions, one would naively
expect the central-limit theorem to be valid. This is, however,
only the case when the diffusion coefficient is not energy
dependent. Since this is generally not the case in our exper-
iment, deviations from the Gaussian density distribution will
be present in the profiles, which we discuss in more detail
in Appendix D. Still, a Gaussian fit is a good approximation
for the first and second moment σ 2(t ) of the true density
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FIG. 2. Density-histogram analysis. (a) Noisy line-density plot (orange line) as calculated from absorption image and its Gauss fit (dark-
green dashed line) as well as line density from noise measurement (black line). Here, data from the disorder-free expansion at t = 20 ms
are shown as a representative example. (b) Histograms of the data shown in (a), with the same line colors and types. Additionally, the noise
histogram is fitted with a normal distribution (light-green dotted line). Further, the convolution of the fit-function histogram with the noise
Gauss fit is plotted (red dash-dotted line) to visualize the convolution character of histograms. (c) Evolution of histograms over time, shown
as bar plots for the same data set as shown in Fig. 1. The noise histogram is additionally plotted at the front in black (labeled “noise”). The
black dashed line below the decreasing histogram width is a guide to the eye. (d) Widths w(t ) of all histograms shown in (c) over time, offset
by noise-histogram width wnoise. The dash-dotted line shows 2σnoise as the lower validity bound of IPW. Error bars are the standard deviation
of the noise histogram.

profile and, thus, sufficient to extract the diffusion exponent
and coefficient.

B. Variance of the density profile

Another common and more direct method is to compute
the mean-squared displacement of the distribution [24]

σ 2
Var (t ) := 1

N (t )

∑

y

n(y, t ) (y − ycom )2(y, (6)

with the center-of-mass position ycom. As ycom, we choose the
cloud-peak position taken from fitting the Gaussian since it
is significantly more stable against noise when compared to
calculating the center-of-mass position directly as the mean
of the distribution. Similarly, we need to omit negative n(y, t )
arising from our imaging system, which is calibrated to
⟨n⟩ = 0 if no atoms are present.

C. Participation ratio

As a complementary approach, we present the participation
ratio (PR) [9,68–71]

PR(t ) =
(∑

y n(y, t )(y
)2

∑
y n2(y, t )(y

. (7)

Note that PR(t ) has the physical dimension of length here,
describing the cloud width here. Here, the inverse PR is
proportional to the probability of a particle returning to the
same position after infinite time [72]. Similarly, the cloud’s
displacement becomes PR2(t ) ∼ Dαtα and is expected to fol-
low PR = 4ξ in the perfectly localized case in the continuum
[71]. Although not commonly used to investigate diffusion,
we expect PR to be constrained by upper bounds of particle
transport [73]. To estimate the variance, we evaluate PR for
the Gaussian control distribution, Eq. (3),

σ 2
PR(t ) := PR2(t )

4π
. (8)

This quantity tends to underestimate the diffusion exponent
and coefficient.

D. Inverse participation width

Access to local counting statistics [26,63,74–81] allows
obtaining fundamental indicators for general particle diffusion
and localization. Extracting these statistics is, however, not
feasible in experimental setups with large amounts of particles
and high densities. Similarly, when considering the Gaussian
camera noise, we would need thousands of realizations to
build a significant statistic. Instead of focusing on particle
statistics, complementary approaches have evaluated the in-
tensity contrast of the measured image [82] as an indicator
of (de)localization. Similarly, we decided to investigate the
image histograms, which correspond to the distribution of par-
ticle densities recorded in an absorption image. By inspecting
the normalized ordinary histogram p(n, t ) and the underlying
distribution of densities, we gain additional knowledge to
extract the diffusion details.

We calculate p(n, t ) from the line density n(y, t ) by count-
ing the number of densities that fall into 100 bins between
the smallest and largest density recorded at time t . We nor-
malize

∑
n p(n, t ) = 1, such that p(n, t ) corresponds to a

discrete probability density function (PDF) of the occurrences
of densities n. Examples of density distributions and their
histograms are shown in Figs. 2(a) and 2(b) where we discuss
the different cases in more detail below.

Here, we introduce a noise-robust method to extract the
peak density, which we call the inverse participation width
(IPW), a quantity based on the width of these histograms.
From IPW, we extract σ 2

IPW and, thus, the diffusion exponent
and coefficient. The histograms provide criteria for when IPW
is a good quantity to extract the diffusion details and give
an insight into how noise and IPW are related, which we
discuss later in this paragraph. To get a more profound view of
the image-histogram dynamics, we first discuss the histogram
shapes and IPW itself for noise-free densities, then for the
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histogram contribution of camera noise alone, and finally for
the combined histograms as recorded in the experiment.

We begin with the noise-free case and a unimodal den-
sity distribution in space such as a Gaussian [see Eq. (3)
and the green dashed line in Fig. 2(a)]. Then, the image
histogram p(n, t ) shows two effectively diverging flanks at
n = 0, no particles, and n = n(y = 0, t ) = N (t )/

√
2πσ 2(t )

for the Gaussian function, corresponding to the peak density at
time t [see green dashed line in Fig. 2(b)]. Further, the kernel
of the histogram, see Appendix B, follows

pGauss(n, t ) ∼ 1

n

√

−ln
(

n
√

2πσ 2(t )
N (t )

) (9)

for 0 < n < n(0, t ), the support of the kernel, which is
given by the peak amplitude n(0, t ) of the distribution. This
means that the full width w(t ) := nmax(t ) − nmin(t ) of the
histogram is equal to the peak density n(0, t ), which holds
for any unimodal distribution in space. From the peak den-
sity, we can extract the Gauss variance directly as σ 2(t ) =
N2(t )/[2πw2(t )]. Note that this relation for σ only holds in
the noise-free case. The variance we extract from the ex-
perimental data, in which noise plays a significant part, is
discussed further below. We consider IPW a good observable
to extract σ (t ) as long as the noise-free profile of p(n, t ) is
effectively diverging at the flanks, meaning that the decreasing
width w(t ) captures the most relevant part of the distribution
change. Like the other diffusion observables, IPW is not sen-
sitive to the tails of spatial distributions.

In the second case, we focus on the camera noise by it-
self. Experimentally, we expect noise in absorption images
to result from spatial and temporal atom-number or imaging-
beam-intensity fluctuations, random influences by stray light
or similar factors, as well as camera noise, including shot
noise, and thermal or electronic fluctuations. To investigate the
noise in the absorption images, we conduct the experimental
sequence without the sample and take the average from 50
images with only noise. We calculate the histogram pnoise of
the averaged image and fit it with a Gaussian function pfit

noise,
see light-green dotted line in Fig. 2(b), which we find to agree
very well with the noise histogram. Finally, we compute the
width wnoise of the histogram and use the standard deviation
σnoise from the fit as the statistical uncertainty for w and n.

In the third case, we consider the histogram pdata of the
noisy density distribution and, hence, the experimentally rel-
evant case. With noise, the density distribution fluctuates,
yielding a wider histogram as n < 0 and n > n(0, t ) will be
observed as well. In fact, as is expected for the probability
density function of the sum of two random variables, the
combined histogram pdata of signal p and noise pnoise is given
by the convolution

pdata (n, t ) = (pnoise ∗ p)(n) =
∞∑

n′=−∞
pnoise(n′)p(n − n′, t ),

(10)
see the orange solid line for the data histogram pdata as well
as the red dash-dotted line for pfit

noise ∗ pGauss in Fig. 2(a).
The resulting distribution is still bimodal, where the peaks
are approximately located at the effectively diverging flanks

of the noiseless distribution, e.g., p(n, t ) = pGauss(n, t ). Thus,
for w(t ) − wnoise > 2σnoise, the resulting histogram will be
bimodal [83], see Figs. 2(c) and 2(d).

As the convolution near the diverging flanks resembles
the convolution kernel, and hence the noise histogram pnoise,
we can approximate the noise-free peak density simply
by n(0, t ) ≈ w(t ) − wnoise. With that, we define the noise-
corrected inverse participation width as

IPW(t ) := N (t )
w(t ) − wnoise

(11)

and the resulting observable for the variance is then

σ 2
IPW(t ) := 1

2π
IPW2(t ). (12)

Note that the diffusion exponent α can be directly inferred
from IPW2(t ) without any specific assumptions about the
density profile except for its spatial unimodality.

We note that IPW in itself does not require any calculation
of the histogram p(n, t ), as the width w(t ) can be extracted
directly from the image. Since the validity and properties
of IPW are derived directly from the image histograms and
the underlying statistics, we chose to motivate the observable
with the histogram analysis. We further state that the noise
correction is intrinsic in the sense that the statistical properties
of both the data and the system are exploited to reduce the
effects of noise rather than trying to remove the noise from
the data itself. For all other observables, noise reduction meth-
ods such as smoothing or wavelet decomposition are applied
directly to the absorption images, significantly affecting them
and potentially the extracted result.

Finally, we note that our efforts to solve the deconvolution
problem of extracting p from Eq. (10) have not produced
satisfactory results for the experimental data. However, the
application of machine learning to this problem could be a
good prospect that we will explore in a future work.

E. Comparison of observable performance

To choose the best observable for our system, we focus
on the evaluation of two representative data sets, where the
first data set corresponds to ballistic and the second to normal
diffusion. We compare the extracted diffusion exponent α and
generalized coefficient Dα from the respective observable with
expectations for both data sets.

For the first data set, see Fig. 3(a), the disorder was absent
(⟨V ⟩ = 0). Here, we predict a free (ballistic) expansion with
α = 2 and D2 = EF/8m =: v2

pr. (dashed line). The latter is
the square velocity vpr. ≈ 9.8 mms−1 along the y axis for a
noninteracting Fermi gas released from a harmonic trap [84].
As can be seen in Fig. 3(a), the different observables are all
generally in line with the expectation.

For the second data set, shown in Fig. 3(b), weak disorder
⟨V ⟩ = 160 nK × kB ≈ EF/4 was applied to investigate diffu-
sive expansion. Similarly to before, all observables generally
follow the linear normal-diffusion behavior (dotted line) with
α = 1. Note that α = 1 is only our expectation for this data
set, as it is, to our knowledge, not possible to objectively infer
a priori which exact type of diffusion occurs at these weak
disorder strengths. Still, we chose this data set because, for
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FIG. 3. Comparison of observable performance. Shown are the values for σ 2
i (t ) − σ 2

i (0) in a double-logarithmic plot (a), (b) as well as
the extracted diffusion exponent (c) and coefficient (d) for the Gauss-fit variance “fit” (orange triangles), profile variance “Var” (red squares),
and width from the participation ratio PR (purple hexagons), and from IPW (green circles). (a) Ballistic expansion without disorder, ⟨V ⟩ =
0 nK × kB. The black dashed line is Eq. (2) with fixed α = 2 and D2 = EF/8m [84]. Points plotted in lighter colors were omitted from the
fitting procedure. Gauss-fit-variance error bars are standard errors from the fit, while errors of Var, PR, and IPW are calculated from error
propagation. (b) Expansion in weak disorder, ⟨V ⟩ = 160 nK × kB, with point colors and symbols as in (a). Note that the vertical light-green
line is the error bar of the final and omitted value of σ 2

IPW(t ). The black dotted line is Eq. (2) with fixed α = 1 and D1 = 10h̄/m. This value
of D1 is not necessarily the expectation for this data set and is rather chosen to yield a guide to the eye, see Sec. III E. (c) Diffusion exponent
α as extracted from fits to the data shown in (a), data on top and (b), data on the bottom. The expectation for the ballistic exponent α = 2
(normal-diffusion exponent α = 1) is plotted as a dashed (dotted) line. Areas shaded in gray show the results of a numerical investigation of
observable performance (see Appendix C for details). Error bars are standard errors from fit. (d) Diffusion coefficient Dα . The dashed line
shows D2 = v2

pr.. Error bars are standard deviations of values used to calculate Dα [see Eq. (5)] and are too small to be seen for most points.

even smaller disorder strength, finite-size effects could effec-
tively increase α, as is described in more detail in Sec. IV A.
The diffusion coefficient D1 = 10h̄/m, used for the dotted line
in Fig. 3(b), is set to yield a guide to the eye. As stated above,
we aim to distinguish between normal diffusion and subdiffu-
sion (for stronger disorder). Correspondingly, we consider the
determination of α = 2 as the more important benchmark for
the observables.

We show the performances of the observables in deter-
mining the diffusion exponent and coefficient, see Figs. 3(c)
and 3(d), respectively. Furthermore, for the exponent α, we
present the results of a numerical investigation indicated by
gray areas. More specifically, we generated numerical data of
a noisy Gaussian function whose width increased according to
Eq. (2) either ballistically (α = 2) or diffusively (α = 1) and
evaluated it identically to the measurement data. More details
can be found in Appendix C. In the following, we focus on the
performances of each observable separately.

The Gauss-fit variance σ 2
fit (Sec. III A) captures the bal-

listic expansion very well but claims subdiffusion for the
second data set. For the ballistic case, the velocity

√
D2,fit ≈

9.7 mms−1 we extract from the data set as described in
Eq. (5) is the closest of all observables to the prediction
vpr. ≈ 8.9 mms−1. Importantly, σ 2

fit appears to saturate toward
larger t in Fig. 3(b), which could cause the lower exponent.
A remaining curvature in a double-logarithmic plot signals a
deviation from the modeled power-law behavior, meaning the
analysis based on the anomalous diffusion as in Eq. (2) breaks
down. As can be seen in Fig. 3(c), the numerically determined
Gauss-fit variance expectedly yields very accurate exponents
as the underlying distribution function is precisely the same,
which is experimentally not the case. As stated in Ref. [41],
the density profile of fermions diffusing through disorder is

expected to differ significantly from a Gaussian function. The
profile would be modified even further when localization is
considered. As we discuss in more detail in Appendix D,
it is impossible to discern the underlying shape due to the
large amount of image noise. Using another function, such
as a generalized Gaussian, would technically fit better to the
data (see Appendix D) but its parameters might not yield
as much physical meaning while possibly suffering from the
mentioned problem of possible overfitting.

The exponent extracted from the variance of the density
profile σ 2

Var (Sec. III B) significantly underestimates the bal-
listic exponent for the first data set but is compatible with
normal diffusion in the second one. In both cases, most of its
initial values have to be omitted due to them being negative.
Note that negative values are physically not sensible but arise
due to too much noise influence if the observable does not
increase significantly enough for earlier expansion times and,
thus, subtracting σ 2

i (0) can result in negative values. This sus-
ceptibility to noise is also reflected in the large uncertainties
in the numerical analysis. The fact that σ 2

Var changes from
strong fluctuations around the zero point to the power law
of interest only for rather long expansion durations makes it
problematic from the point of view of evaluation, as the signal
of the data then approaches the magnitude of the camera noise
[see Fig. 1(c) for example], which makes its prediction less
reliable. We conclude that σ 2

Var is not a good observable for
our system.

The participation ratio (Sec. III C) has the obvious advan-
tage that it is not dependent on external factors other than the
atomic density detected. Moreover, it is quite robust against
noise, at least compared to σ 2

Var. According to the numerical
investigation, σ 2

PR seems to be quite accurate in determin-
ing α for the case of normal diffusion, but it also finds a
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subdiffusive behavior for the experimental data. The major
drawback, however, is the significant underestimation of the
ballistic exponent for both the numerical and, especially, the
experimental data set. Since it does not meet this benchmark,
we cannot consider it a sufficiently good observable to study
anomalous diffusion in our system accurately.

The statistical observable σ 2
IPW (Sec. III D) agrees very

well with the expectations in both cases. The numerical data
suggests that it tends to generally slightly overestimate both
exponent and coefficient while being precise, especially in
the case of normal diffusion. Indeed, the diffusion coefficient
D1 determined in the numerical investigation is consistently
overestimated by a factor of less than two. For the coeffi-
cient determined for the ballistic case, we find

√
D2,IPW ≈

12.3 mms−1, which is slightly larger than vpr.. Since IPW
yields the largest estimation for the diffusion coefficient of
the investigated observables, the experimentally determined
coefficient can be seen as a close upper bound. An additional
property of σ 2

IPW is that, for very large timescales, the variance
and its error both suddenly increase significantly. This occurs
when w(t ) ≈ wnoise, causing σ 2

IPW to diverge. This has the
advantage that the choice of the fit range is quite obvious, see
σ 2

IPW and its error bar for the largest t in Fig. 3(b).
We conclude from the comparison that both the Gaussian

fit and IPW are good observables. For the former, however,
the diffusion exponent is extracted from a fit which, in turn,
is performed on Gauss-fit results, since we perform a linear
regression as in Eq. (4). As the curvature of σ 2

fit is more
strongly pronounced for expansions in stronger disorder, the
precise choice of fit range would significantly influence the
final exponent. In fact, this issue was the main motivation
behind the search for alternative observables. Therefore, for
the remainder of this work, we use the inverse participation
width to determine the diffusion properties of the ultracold
atom cloud.

IV. SIGNATURES OF ANDERSON LOCALIZATION

Using the inverse participation width, we analyze the
behavior of the atoms when diffusing through disorder of dif-
ferent strengths and infer signatures of Anderson localization
from deviations of normal diffusion and additional quantities.
We first focus on the diffusion and localization fraction when
the full cloud is symmetrically diffusing in a disordered po-
tential in Sec. IV A. Second, we directly compare the spatially
resolved probability density distributions of clouds diffusing
in asymmetric disorder in Sec. IV B. In this scenario, one part
of the cloud diffuses into the disorder, while the other part
shows close-to-ballistic expansion in very shallow disorder.

A. Diffusion in symmetric disorder

Experimentally, we align the focus of the speckle-laser
beam to the cloud position to ensure that the cloud can sym-
metrically diffuse along the y axis in the disorder potential.
For each disorder strength we take a series of in situ ab-
sorption images for increasing diffusion time t and extract
the inverse participation width. An overview of the series of
cloud variances for varying disorder strengths is shown in
Fig. 4(a). All expansion series follow the expected power-law

behavior (straight line in a double-logarithmic plot). For dis-
order strengths ⟨V ⟩ > 0, the system quickly transitions from
ballistic expansion toward normal diffusion. There is an ap-
parent intermediate regime of 1 < α < 2 for ⟨V ⟩ < 100 nK ×
kB (dark-blue points), which can be explained by finite-size
effects. Faster atoms with energies close to the Fermi energy
EF ≫ ⟨V ⟩ perceive the disorder potential only as a small
perturbation and can thus move approximately ballistically.
Further, since the speckle-beam waist is finite at roughly
450 µm along the y axis, even the slower atoms can leave
the central part of the disorder field during the diffusion time
such that the speckle inhomogeneity has a substantial effect
for these energies.

The transition toward normal diffusion is also reflected
by the exponent α shown in Fig. 4(b). For moderate dis-
order strengths, ⟨V ⟩ = 100–400 nK × kB (green points), the
diffusion exponent becomes constant at unity, as expected
for normal diffusion. In that regime, the diffusion coefficient,
shown in Fig. 4(c), still decreases significantly for increasing
disorder. In fact, we find that Dα also follows a power-law
behavior (see black line) with a fit yielding an exponent of
νD = −1.41 ± 0.10.

For strong disorder, ⟨V ⟩ ! 400 nK × kB (brown points),
the exponent rather suddenly switches to that of slight but
statistically significant subdiffusion, α = 0.93 ± 0.03. Devi-
ations in the form of subdiffusion have been reported when
interactions are introduced [64], however, these are entirely
absent in this work due to Pauli blocking. Since subdiffusion
with α = 2/3 is expected to occur near the mobility edge [41],
we interpret this observation as the emergence of localization
effects hindering the diffusive expansion. The deviation of
the observed exponent 2/3 < α < 1 may be attributed to the
fact that the observable IPW is sensitive to the peak density.
For a smaller fraction of particles starting to localize and
the majority of particles undergoing normal diffusion, our
observable accordingly shows a mixture of both behaviors.
Especially taking into account that we release a degenerate
Fermi gas with a relatively broad spectrum of initial energies
and momenta, a large fraction of not localized, extended states
will be present even for the highest disorder potentials. We
note, however, that a direct comparison of the localization
lengths in strong and weak disorder allows us to extract the
predicted exponent of α = 2/3 for weak localization, see
Sec. IV B.

The diffusion coefficient Dα lies well within the order of
the quantum of diffusion h̄/m [24,25,41,42,45–48] for the
largest disorder strengths. It is expected to vanish as |⟨V ⟩ −
Vc|(d−2)ν [5,86,87] with a critical disorder strength Vc, the
critical exponent ν ≈ 1.58 [3–5,41]. The dimensionality d of
our system is not straightforward to define. The expansion is
limited to one dimension, while the atom cloud is always three
dimensional. Investigating a possible 1D–3D crossover will be
an interesting topic for future works.

While the exponent νD of Dα (⟨V ⟩) seems to be compatible
with the expectation from Anderson theory, it is unclear to
what extent ν and νD can even be directly compared as no
indication for some critical disorder strength is apparent in
Fig. 4(c). As mentioned above, the competing energy scales
of our system make it difficult to draw a reliable conclusion.
We are also not sure whether we should expect Dα to vanish at
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FIG. 4. Expansion in disorder of variable strength. Without disorder (light blue on the top left side), the atoms expand ballistically. For very
weak disorder (dark blue), ⟨V ⟩ < 100 nK × kB, the system appears to be superdiffusive due to finite-size effects. For weak to moderate disorder
(green), ⟨V ⟩ = 100 nK to 400 nK × kB, the atoms undergo normal diffusion. For strong disorder (brown), ⟨V ⟩ ! 400 nK × kB, subdiffusion is
observed. (a) Atom-cloud variance from IPW over time for different disorder strengths (colors), plotted double logarithmically. Error bars are
calculated from error propagation. The power laws for ballistic expansion (dashed line) and normal diffusion (dotted line) are plotted as a visual
aid. (b) Diffusion exponent α over disorder strength. The dashed (dotted) line marks the ballistic-expansion (normal-diffusion) exponent. Error
bars are standard errors from fit. (c) Diffusion coefficient Dα over disorder strength. Values of data with ⟨V ⟩ < 100 nK × kB were omitted to
enhance visibility. The black line is a power-law fit which yields the exponent −1.41 ± 0.10. The quantum of diffusion h̄/m is shown as a
dash-dotted line. Error bars are standard deviations of values used to calculate Dα . The inset shows the same data as a double-logarithmic plot
to highlight the power-law behavior of Dα . (d) Fraction of localized atoms floc over disorder strength. Error bars are standard errors from fit.
The black solid line shows the theoretically expected localized fraction, see Eq. (13), estimated from the numerical results of Ref. [85].

all since the largest contribution to the observation is always
diffusive.

To support our interpretation, we first employ the widely
used Ioffe-Regel criterion to estimate whether our system
should be expected to exhibit localization effects in principle.
It compares a particle’s mean-free path (often approximated
by the disorder’s correlation length η, see below) with
its wavelength, usually the DeBroglie wavelength λdB =
h̄
√

2π/mkBT [88]. Our setup fulfills this criterion.
However, as shown in Refs. [62,85], the actual mobility

edge is significantly overestimated by this approach. Hence,
we instead compute the critical momentum kAL below which
AL can occur according to Ref. [54]. This critical momentum
is explicitly adapted to the case of small correlation energies
Eη = h̄2/(mη2) of the disorder. More specifically, our exper-
iment is in the regime of ⟨V ⟩/Eη > 1 if ⟨V ⟩ > 25 nK × kB
for the geometric mean of correlation lengths η (and ⟨V ⟩ >
150 nK × kB for the transversal correlation lengths ηx,y). For
that case specifically, we compute the critical momentum as
kAL ≈ (⟨V ⟩/Eη )2/5/η [54]. Comparing it with the Fermi mo-
mentum kF for the strongest disorder yields kF/kAL ≈ 1.8 for
η = η (and kF/kAL ≈ 0.8 for η = ηx,y). Therefore, we expect
at least a significant fraction of the fermions with smaller
momenta to localize.

To investigate this onset of localization quantitatively,
we adopt the method to infer the localized fraction floc as
introduced in Ref. [24]. This value estimates the infinite-
time fraction of atoms that would not diffuse away due to

localization, assuming no losses. We modify the method for
our expansion along only the y axis and implement the com-
plete anomalous-diffusion power law from Eq. (2) into the fit
function. We use the histogram width to approximate the peak
density as introduced in Sec. III D. Thus floc is the only free
parameter. See Appendix E for more details on its evaluation.

The localized fraction is shown in Fig. 4(d), and it is ex-
pectedly zero for low disorder strengths. It starts to increase
only around the disorder strength ⟨V ⟩ ≈ 250 nK × kB. The
disorder strength where the localized fraction starts to form
roughly coincides with the disorder range where the diffu-
sion coefficient enters the order of magnitude of the diffusion
quantum h̄/m. The largest value we observe is floc = (9.2 ±
2.0) %. This agrees well with the hypothesis that diffusion is
the main contribution to our observation, reflecting influences
of Anderson localization when the disorder becomes suffi-
ciently strong. The course and order of magnitude of floc as
well as the general behavior of the diffusion coefficient agree
well with the findings of Ref. [24].

Finally, we compare the extracted localized fraction to the
theoretical expectation from Ref. [85], where the mobility
edge Ec was investigated numerically for anisotropic three-
dimensional systems. We write the localized fraction for the
case EF > Ec more generally as

floc =
∫ Ec

0 ρ(E )dE
∫ EF

0 ρ(E )dE
, (13)
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FIG. 5. Asymmetric-disorder measurement for variable expansion time and fixed ⟨V ⟩ = 691 nK × kB. (a) Density profiles n for increasing
expansion time t (bottom to top, left axis). The colored lines at the right side (dark-gray lines at the left side) denote the part in +y (−y)
direction outside the extent of the cloud at t = 0, which itself is plotted as light-gray lines around y = 0. The outer regions are fitted with
exponential functions (left: black dashed lines, right: black dotted lines) The bottom-most line plot (black line) shows the t = 0 density profile
and a Gaussian fit (green dashed line). The density scale (right axis) is the same for all profiles. The horizontal solid lines mark n(y, t ) = 0
for each respective t in the same color. (b) Cloud-extension length scale ξ± as extracted from density-profile fits over time. Gray squares
show values for −y direction, away from the disorder, and colored circles for +y direction, toward it. Error bars are standard errors from
fit. (c) Variance ξ 2

±(t ) − ξ 2
±(0) over time with the same point colors and symbols as in (b). The dashed gray line is a power-law fit with fixed

exponent α = 2 to the first four points of −y direction. The black line is a power-law fit with fixed exponent α = 2/3 to all plotted +y-direction
data.

where ρ(E ) is the density of states. Since our gas is degenerate
and initially prepared in a three-dimensional harmonic trap,
all states with energies up to EF are populated according to
the density of states ρ(E ) ∼ E2 [84]. For this evaluation, we
employ the naive assumption that this density of states is
still valid when the disorder is introduced. A more accurate
evaluation of the density of states by a numerical analysis
according to Ref. [24] is beyond the scope of this paper and
will be left for future work. Thus, we compute floc = E3

c /E3
F .

The solid line in Fig. 4(d) shows the theoretically expected
localized fraction as calculated from this energy ratio us-
ing the numerical results from Ref. [85]. Here, we used the
transversal correlation lengths for the correlation energy. Our
experimental data systematically overestimates floc slightly
but generally agrees with the expectation. The larger fraction
could be an effect of the presumed 1D–3D crossover since
theoretical works that investigate strongly anisotropic settings
suggest that anisotropy reduces the dimensionality and en-
hances localization effects [89,90].

B. Diffusion in asymmetric disorder

Beyond the cloud width, an additional quantity often used
to characterize localization is the localization length ξ , i.e.,
the length scale on which a localized wave function decays.
For the nonequilibrium setting considered here, the signatures
of localization on the atomic density distribution are mixed
with signatures from diffusion. To unravel the contributions
of disorder-induced localization and diffusion, we modify the
setup by displacing the speckle-disorder beam toward the +y
direction. In this setting, the Fermi gas is initially trapped
at the edge of the disorder envelope, and the atom cloud
released experiences a strong disorder in the +y direction
and a weak or even negligible disorder in the −y direction.
The resulting time-resolved density distributions for the max-
imally achievable disorder strength of ⟨V ⟩ ≈ 691 nK × kB is

shown in Fig. 5. While the resulting density distribution in
the −y direction can be assumed to be free of any localiza-
tion effects, the part in the +y direction will be affected by
localization and diffusion. This version of the setup is remi-
niscent of transfer-matrix approaches to probe localization in
the sense that the transport of particles moving toward the
disorder is limited by the probability of transmission versus
reflection.

During a few tens of milliseconds, the cloud shape changes
from the trapped-gas profile to a distribution that is compatible
with exponential functions on both tails outside of its exten-
sion at t = 0 [see first three line plots from bottom to top in
Fig. 5(a)]. The low signal-to-noise ratio does not allow us to
distinguish between exponential, stretched exponential, and
power-law functions (see Appendix D). Still, to investigate the
behavior of the length scale, we fit an exponential function
(see dotted or dashed lines), which yields a cloud-extension
length scale ξ± along the ±y direction.

After roughly 60 ms, ξ− (gray squares) saturates to an
equilibrium value, while the other side continues to increase,
albeit slowly, see Fig. 5(b). In fact, the variance ξ 2

−(t ) − ξ 2
−(0)

reveals a ballistic expansion in the direction away from the
disorder (gray squares) before saturating. Conversely, the
cloud moving toward the disorder expands subdiffusively with
exponent α = 2/3. We confirm this by fitting power laws onto
the variances where the only free parameter is the diffusion
coefficient, see lines Fig. 5(c).

The velocity from the ballistic diffusion coefficient is
roughly

√
D2 = ⟨v−⟩ ≈ 6 mms−1 which is somewhat lower

than the velocity found in the disorder-free expansion, see
Sec. III E. This confirms that some amount of disorder is
still present in that region, explaining the significantly pro-
longed observation duration achieved compared to the data set
shown in Fig. 4. For the subdiffusion in the strong-disorder
region, we find mD2/3/h̄ = (0.26 ± 0.03) s1/3. Since the ex-
ponent of α = 2/3 [41] agrees very well with the data and the
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FIG. 6. Asymmetric-disorder measurement for variable disorder strength and fixed t = 1 s. (a) Density profiles n for increasing disorder
strength ⟨V ⟩ (bottom to top, left axis). The colored line denotes the part outside the extent of the cloud at t = 0 (gray lines) and marks the data
fitted by an exponential function (black dotted lines). The density scale (right axis) is the same for all profiles. The horizontal solid lines mark
n(y, t ) = 0 for each respective ⟨V ⟩ in the same color. (b) Cloud-extension length scale ξ− (gray squares) and ξ+ (colored circles) direction as
extracted from density-profile fits. The black line is a power-law fit of ξ+ with exponent −0.48 ± 0.01. The gray dashed horizontal line shows
⟨ξ−⟩. Error bars are standard errors from fit. (c) Heuristic length scale for localization ξheur. The black line is a power-law fit of type |⟨V ⟩ − Vc|−ν ,
which yields ν = 0.47 ± 0.09 and Vc = 107 ± 9 nK × kB (red dash-dotted line). Error bars are calculated from error propagation. The black
dot-dashed line shows the mobility edge Ec as estimated from the results of Ref. [85] for our disorder.

fitted diffusion coefficient lies below the quantum of diffusion
[24,25,41,42,45–48], we conclude that the system must be
close to or at the mobility edge as these observations are clear
signatures for the Anderson transition.

The +y extensions of the density profiles after a fixed
expansion time of t = 1 s for increasing disorder strengths are
shown in Fig. 6. We chose this duration as a compromise
between ensuring a sufficiently long expansion and, hence,
clear signatures on the one hand and avoiding losses from
collisions with background particles on the other hand. The
cloud-extension length scale ξ+ appears to follow a power-
law behavior [black line in Fig. 6(b)] with an exponent of
−0.48 ± 0.01. In this direct plot of the length scale ξ+, no
critical behavior as expected from Anderson theory can be
observed. We emphasize, however, that the effect of extended
states also influences the observation in strong disorder. To
compensate for the contribution of extended states, we intro-
duce a heuristic localization length

ξheur = ξ+

1 − ξ+/⟨ξ−⟩
. (14)

We motivate this length scale as a rescaling of ξ+, which
we expect to exhibit signatures of localized states, with
the diffusion-dominated length scale ξ−, which we know
to be delocalized. For the latter, we use the average value
⟨ξ−⟩ = 435 ± 31 µm since ξ− does not depend on the disorder
strength ⟨V ⟩. In the limiting case ξ+ ≪ ξ−, the length scale
ξheur is equal to ξ+, indicating that ξ+ is close to the local-
ization length, while ξheur → ∞ for ξ+ = ξ−, and the system
behaves as in the disorder-free case.

In Fig. 6(c), ξheur is shown with a power-law fit of type
A|⟨V ⟩ − Vc|−ν , containing a critical disorder strength Vc, the
critical exponent ν and a prefactor A as free parameters.
This function agrees reasonably well with the coarse of ξheur
and yields an exponent ν = 0.47 ± 0.09 and Vc = 107 ±
9 nK × kB. A critical exponent of 0.5 has been reported in

the literature [91,92]. However, the generally accepted critical
exponent for the Anderson transition is ν ≈ 1.58 [4,5,41].
The exponent we find disagrees with this value. From the
numerical result of Ref. [85], we estimate a mobility edge
of Ec ≈ 220 nK × kB for our system. We compute this value
using the transversal correlation length ηx,y for the correlation
energy Eη and the theoretical mobility edge at ⟨V ⟩/Eη =
4, which matches the settings with stronger disorders in
our experiment. Thus, we find a critical disorder strength
that lies below Ec by a factor of roughly two. However,
as ξheur is a purely heuristic length scale, it is unclear if
it is at all expected to exhibit the Anderson critical power
law. As mentioned above, we suspect that our system might
be on a 1D–3D crossover. Correspondingly, neither pure-1D
nor pure-3D Anderson theory could be fitting expectations.
On the one hand, the anisotropy in this setting is not ex-
pected to change the critical exponents [93,94]. On the other
hand and as mentioned above, theoretical works suggest
enhanced localization in strong anisotropy [89,90]. To our
knowledge, it is so far unexplored how such a crossover
influences the critical exponent. We emphasize that this anal-
ysis is not supposed to determine the critical exponent but,
contrarily, suggests that focusing exclusively on exponential
density profiles is insufficient when investigating Anderson
localization.

V. CONCLUSION AND OUTLOOK

In summary, we experimentally investigated the compe-
tition of diffusion and localization in an ultracold nonin-
teracting Fermi gas with relatively broad initial energy and
momentum distributions. We presented and compared four
observables for MSD of in situ images of the ultracold atom
cloud, which can be used to investigate diffusion and localiza-
tion. We further carefully examined how our system crosses
over from being compatible with pure normal diffusion to
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a subdiffusion, being influenced by Anderson localization.
In a displaced-disorder configuration, we could observe the
power law of t2/3 that is expected near the mobility edge
before the system becomes fully localized [41]. We further
emphasize that the observation of density distributions, which
can be described by exponential functions is not sufficient
to identify Anderson localization unequivocally as expo-
nential tails would even be expected in a purely diffusive
setting [40,41].

A thorough investigation of the dimensionality of our setup
will be of direct interest as we could map out the supposed
1D–3D crossover by changing the radial trapping frequen-
cies. As mentioned above, the extension to smaller-grained
and more isotropic disorder should further allow for a thor-
ough investigation of the mobility edge. Since our system
is generally capable of creating a strongly interacting gas
of both bosonic and fermionic nature [95,96], we could in-
vestigate the influence of quantum statistics and thus initial
energy distribution, interparticle interactions, and even su-
perfluidity. In recent years, machine learning (ML) concepts
for data analysis in physical systems have shown widespread
use and better performances in detecting anomalous diffu-
sion than other common techniques [49]. Combining this
with possible ML regression models, one may extract the
physical features of the noisy density profiles in interrelation
with the newly presented density histograms. Furthermore,
statistical methods for deconvolutions are mostly not ro-
bust, and their quality depends strongly on the strength of
the noise [97]. Here, ML nonlinear and generative models
also promise more robust approaches [98,99]. Sampling tech-
niques and data augmentation can be equally useful for image
and signal processing, particularly when augmentation co-
incides with the effects expected in the underlying physical
system [100].

All data of the figures in the paper and Methods are avail-
able in a Zenodo repository [101].
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APPENDIX A: DETAILS ON EXPERIMENTAL METHODS

As stated in Sec. V, our system can create strongly inter-
acting gases. More specifically, we usually work with an equal
mixture of the two spin states |↑⟩ := |mJ = −1/2, mI = 1⟩

FIG. 7. Sketch of the preparation of the spin-polarized gas. The
magnetic field (large blue area) pertains to the left axis, and the laser
powers (ODT 1 and 2, speckle disorder) to the right axis. The black
horizontal line shows the Feshbach resonance for the spin mixture
in states |↑⟩ , |↓⟩ at B = 832.2 G. The time of the push-out beam is
shown as a black dash-dotted line.

and |↓⟩ := |mJ = −1/2, mI = 0⟩ at high magnetic fields,
with mJ (mI ) being the magnetic quantum number of
the electronic (nuclear) spin [58]. We can apply magnetic
fields of up to B = 1070 G, granting us access to the
broad Feshbach resonance around B = 832.2 G and, there-
fore, the crossover between Bose-Einstein-condensate (BEC)
and Bardeen-Cooper-Schrieffer-type (BCS) superfluidity
[102,103]. For more details about our setup, see Refs. [58,95].

In Fig. 7, a sketch of the preparation of the spin-polarized
gas is shown. We start the sequence used for this work by
creating a BEC at B = 763.6 G, followed by a slow ramp of
200 ms to B = 1070 G. There, deep in the BCS regime where
the fermionic pairs are weakly bound and spatially far apart,
we apply a push-out laser pulse resonant to state |↓⟩ with
a duration of 2 µs. During that pulse, only roughly 10 % of
atoms in state |↑⟩ are lost due to resonant scattering, and no
measurable amount of |↓⟩ atoms remain.

Afterward, we deepen the trap by increasing the laser
power of ODT1 from the initial 15 mW to 100 mW and per-
form a very slow (1.65 s) double-parabolic field ramp down to
an intermediate field of B = 400 G. This is necessary because
the position of our magnetic field center changes significantly
with B, making this a transport over a distance of more than
300 µm. Since our noninteracting sample cannot thermalize,
any excitations will remain in the gas, which is why this
ramp was chosen with such a long timescale. For every step
of the sequence until t = 0, we ensured no oscillations or
unaccounted broadening occurred. Further, we never observe
atom losses, the only exception being during the push-out
pulse.

At that stage, we load our gas into the crossed trap
by slowly introducing ODT2 over 100 ms until a power of
500 mW is reached. Then, we switch off the magnetic field
rather quickly during 30 ms, also in a double-parabolic ramp.
We found that switching off the field rapidly rather than
slowly induced no measurable excitations. We explain that
with the magnetic trap being relatively shallow at that stage
(ωy < 15 × 2π Hz), while ODT2′s influence was large during
the field shut off (resulting in ωy > 60 × 2π Hz and several
hundred 2π Hz for the remaining axes).

Once the magnetic field is switched off, the signal-to-noise
ratio is significantly reduced due to optical pumping into dark
states as described in Refs. [104,105]. Further, our imaging is
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aligned and calibrated for high magnetic fields, both of which
explain the large noise in the images.

To determine the atom number accurately, we ran an ad-
ditional sequence in which we took absorption images after
every step and after additionally reverting to the previous step.
By reverting, we ensured that no atoms were actually lost even
if the measured atom number was significantly different at
B = 0 G compared to finite fields. From that measurement,
we found an imaging-correction factor of roughly 3.4, which
translated the perceived atom number at zero field to the value
we would measure at the field of B = 763.6 G for which our
imaging is calibrated.

Once the field has been switched off, we ramp the laser
power of ODT2 down to 200 mW during 100 ms. This finishes
the preparation, after which we initialize the expansion at
t = 0 by switching off ODT2 while switching on the dis-
order. Using acousto-optical modulators, this step happens
in less than one microsecond, faster than the timescale of
the atom’s motion. Finally, by instead imaging the cloud
in situ, we can extract its temperature as described in
Refs. [104,106].

APPENDIX B: STATISTICAL INVESTIGATION
OF DENSITY DISTRIBUTIONS

For the theoretical investigation of the qualitative profiles
of p(n, t ) in the main text, we evaluate the normalized his-
tograms for the continuum

℘(n, t ) = 1
N (t )

∫ ∞

−∞
dy δ[n − n(y, y0, t )], (B1)

where
∫
w(t ) n℘(n, t ) dn = 1 which is given by the condition∫ ∞

−∞ n(y, y0, t )dy = N (t ). For the remainder of this section,
we will fix the peak position to y0 = 0. Furthermore, ℘(n, t )
can be thought of as a kernel of a probability density function,
as ℘(n, t ) is expected to show divergences in the continuum
leading to

∫
w(t )℘(n, t ) dn being not convergent. As a kernel, it

has all the properties of a PDF besides normalization. Still,
evaluating Eq. (B1) allows for an easier analytical insight,
which will become relevant when we test the control distri-
bution, see Eq. (3). Given an initial unimodal distribution in
space without noise, see Eq. (3), the normalized histogram
has the form

℘Gauss(n, t ) =
√

2σ

n

√
−ln

( n
√

2πσ 2(t )
N (t )

)
, (B2)

for the support 0 < n < N (t )√
2πσ 2(t )

. The two divergencies cor-

respond to the most common occurrences of densities, which
are 0 and the peak density. In the noise-free case, the peak
density is then trivially given by n(0, t ) = N (t )√

2πσ 2(t )
for the

density centered around zero.
To further estimate the range of unimodal distributions

in space, giving divergent flanks in their corresponding
histogram, we assume a generalized Gaussian distribution

FIG. 8. Comparison of inverse kernels of ℘Gauss (blue solid line)
and Beta (black dashed line), Eq. (B5), over a = n/κ . For p = 0.22
and q = 0.505, as used here, the Beta distribution approximates
℘Gauss.

centered around zero

ngG(y, t ) =
νgG

2
√

2σ 2(t ) .(1/νgG)
e
−

(
|y|√

2σ2 (t )

)νgG

, (B3)

where .(·) is the gamma function and νgG is an additional
parameter controlling the shape of peak and tails. For νgG =
2, we restore the normal distribution and, for νgG = 1, we
get a symmetric exponential distribution, as expected in the
perfectly localized case [71]. Evaluating the histogram of
Eq. (B3), we get

℘gG(n, t, νgG) = 2
√

2σ 2(t )

nνgG

[
− ln n

√
2σ 2(t ).(1/νgG )

N (t )νgG

]1−1/νgG
, (B4)

for the support 0 < n <
N (t )νgG√

2σ 2(t ).(1/νgG )
, which restores the

℘Gauss for νgG = 2. This distribution has divergent flanks for all
νgG > 1. The divergent flanks in the histogram are necessary
for the evaluation of IPW with noise since the convolution
with the noise shows a bimodal profile from which we can
approximate the noise-free width and, therefore, the peak
density, see Sec. III D.

Instead of assuming Gaussian density distributions in
space, we may model the histogram. In statistics, it is common
to model probabilities or random variables in a finite range
(0, nmax) via a Beta distribution [107]

Beta(p, q, a) = ap−1(1 − a)q−1

B(p, q)
, (B5)

for 0 < a < 1 and B(p, q) = .(p).(q)
.(p + q)

. (B6)

where p and q are parameters and depend on the provided
density profile. To fit the profile, we will look at the stretched
Beta distribution κBeta(p, q, κa), where κ = n(0, t ) = w(t )
is the stretching factor corresponding to the width w(t ) and
n = κa. If the density profile n(y, t ) is unknown, we can either
fit or use the method of moments to evaluate p and q. If
n(y, t ) is known, we can fix p and q, as shown in Fig. 8 for
the exemplary case of a Gaussian, Eq. (B2). We may also
evaluate the variance of a variable A ∼ Beta following the
Beta distribution

Var(A) = pq
(p + q)2(p + q + 1)

. (B7)
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FIG. 9. Observable performance on numerically generated data
for the (a), (b) noise-free and (c), (d) noisy case. (a), (c) Generated
Gaussian line densities over y for different expansion times t , see
color bar in (a). (b), (d) Extracted σ 2

i (t ) − σ 2
i (0) over time t . The

observables i stand for the Gauss-fit variance “fit” (orange trian-
gles), density-profile variance “Var” (red squares), width from the
participation ratio PR (purple hexagons), and IPW (green circles),
with same point colors and symbols as in Fig. 3. The black line
shows the true σ 2 set for the plotted Gaussians. For the data shown
here, α = 1 and D1 = 10h̄/m is used. Errors are computed as for
the experimental data. See Sec. III E and Fig. 3 for details about the
observables.

Evaluating the variance for the stretched Beta distribution,
where p and q are assumed constant, we receive κ2Var(A).
This means that the change of the variance is completely
determined by the stretching factor, which is equal to the
width w(t ).

APPENDIX C: NUMERICAL INVESTIGATION
OF OBSERVABLE PERFORMANCE

To further analyze the observable performances, we eval-
uated numerically generated density profiles. We begin by
generating a Gaussian density, see Eq. (3), over y from a Gauss
fit to the trapped-gas profile from the experimental data. We
use a y axis analogous to the axis in the experiment to simulate
our imaging system’s resolution and image size. For a given
list of expansion times t , we generate new Gaussians for every
t while changing their σ (t ) according to Eq. (2), simulating a
diffusive expansion. Depending on the case, we use α = 1 or
2 and any arbitrary Dα . Before we evaluate the line densities in
the same way as for the experimental data, we can optionally
add random white (Gaussian) noise, which we usually set
to have the same σnoise as the camera noise, see Fig. 2 and
Sec. III D. As in the experiment, we generate 50 images per
setting that are averaged and then evaluated further. In Fig. 9,
the noise-free density distributions are shown in Fig. 9(a),
and the data with noise in Fig. 9(b). The various σ 2

i for the
respective cases are plotted in Figs. 9(c) and 9(d).

Compared to the experimental data, this investigation has
several advantages. First, we can switch off the camera noise
to investigate its influence on the results directly. Similarly,

FIG. 10. Analysis of density profiles for expansion in symmetric
(a), (b) and asymmetric (c), (d) disorder. Several expectations for
density profiles have been fitted to the respective data, see legend
on bottom. Additionally, smoothed data computed by convolutions
with box functions of the given widths are shown for enhanced
visibility. Note that both (a), (b) and (c), (d) display roughly 800
camera pixels along y. (a) Data from ⟨V ⟩ ≈ 642 nK × kB and t ≈
0.82 s. For both the zeroth-order Hankel function K0 [40,41] and the
exponential function, the region |y| < 0.15 mm was excluded. The
exponential function was fitted independently for both directions ±y.
(b) Same as (a) but with logarithmic density scale. (c) Data from
⟨V ⟩ ≈ 691 nK × kB and t = 1 s. All shown functions were fitted in-
dependently for both directions ±y. Segmentation along y is identical
to Figs. 5 and 6. (d) Same as (c) but with logarithmic density scale.

it is significantly faster to generate more data numerically
compared to running the experiment, yielding better statistics.
Second, we can increase or decrease both resolution and im-
age size, which allows us to eliminate or enhance finite-size
effects. Further, since we define how the drawn densities ex-
pand in time, we have a true reference to compare the inferred
results to [see solid line in Figs. 9(c) and 9(d)]. Also, we are
not limited by long-time atom losses.

Note that this investigation effectively only yields informa-
tion about how well a perfect (albeit noisy) Gaussian can be
evaluated during an expansion similar to that of our experi-
ment. As we interpret our cloud as being partially localized
and, therefore, potentially bimodal, this is not captured by
this effort. It would be, however, interesting how different
cloud shapes (see, e.g., the profiles shown in Fig. 10) would
be evaluated. Nevertheless, we can infer useful qualitative
information about the observable performance, i.e., that σ 2

Var
appears very susceptible to noise in general. Further, inde-
pendent of noise but enhanced by it, all observables tend to
curve below the simulated σ 2, except for IPW, which is ob-
served to do the opposite. Nevertheless, with sensible fit-range
choices, all observables perform perfectly in determining both
diffusion quantities if no noise is present. For the results in
the case with noise, see Fig. 3(c). Overall, combining such a
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FIG. 11. Determining the localized fraction floc. (a) Relative
peak density n(t )/n(0) (circles) over expansion time t . Lines are fits
with the anomalous-diffusion model Eq. (E2) where floc, the value
for t → ∞ is the only free parameter. Errors are calculated from
error propagation. (b) Plotting n(t )/n(0) over the inverse square root
of time visualizes floc as the density-axis intercept (crosses).

supporting numerical investigation with the evaluation of the
experimental data yields a good overview of the observable
performances.

APPENDIX D: DENSITY PROFILES

In this section, we compare several expectations of den-
sity profiles fitted to the recorded line densities n(y). For
that, we use two representative examples. The first, shown
in Figs. 10(a) and 10(b) is from the expansion in strong
symmetrical disorder, see Sec. IV A. The second, shown in
Figs. 10(c) and 10(d) is from the expansion in strong asym-
metrical disorder, see Sec. IV A. Both images were taken for
an expansion time of t ≈ 1 s and have been averaged from 50
realizations, see Sec. II for more details. We plot each image
in both linear and logarithmic density scales to emphasize the
exponential character of the different density profiles or the
lack thereof. Additionally, we show our data after smoothing
it via convolution with a top-hat kernel, see gray lines. For the
width of the smoothing kernel, we use both 15 and 60 pixels.
Note that we only show the smoothed line plots but do not
evaluate them. All shown fits are performed to the recorded
densities. In the following, we discuss the choice of density
profiles.

To begin with, we fit a Gaussian function, see Eq. (3), as
it is the basis for all observables described in Sec. III and is
generally a good albeit naive approximation for our density
profile. For a Bose-Einstein condensate (BEC) undergoing
diffusion, Refs. [40,41] derive a zeroth-order modified Hankel
function K0 and, as Ref. [41] states, expansion of a degenerate
Fermi gas is not expected to look very different. Therefore, we
fit K0 to the distribution tails. Note that this function is approx-
imated well by an exponential function for a large distance
to the origin, meaning a purely diffusive, delocalized BEC
is already expected to exhibit exponential tails. Further, as it
is the general expectation for an Anderson-localized density
profile, we fit an exponential function. Contrarily, Ref. [42]
claims a stretched-exponential function as the density profile
for the case of diffusive spread with an energy-dependent

diffusion coefficient. Note that we use the same exponent
of 4/7 for the fits presented here. The authors of Ref. [42]
further add that the tails should follow a power law in the
localization scenario. Finally, we fit a generalized Gaussian,
see Eq. (B3). This function includes an additional exponent
νgG in the argument compared to the Gaussian and can be used
to indicate the transition between a normal and exponential
distribution [18,108].

As can be seen in Fig. 10, all density distributions are, in
principle, compatible with the experimental data due to the
large noise. For the symmetric disorder, see Sec. IV A, the
generalized Gaussian appears (exponent of νgG ≈ 1.50) clos-
est to the data, which is expected as it has the largest amount
of free parameters. The Gaussian function underestimates the
tails slightly, while most other functions describe it relatively
well. For completeness’s sake, the power-law fit yields an
exponent of νpl ≈ −2.63 (νpl ≈ −2.85) for the tail toward the
+y (−y) direction.

For the asymmetric disorder, which is displaced toward the
+y direction, see Sec. IV B, the Gaussian function exhibits
the largest discrepancy. However, all other functions describe
the outer regions (dark gray and brown lines outside y = 0)
very well. Here, the generalized Gaussian yields an exponent
of νgG ≈ 1.29 (νgG ≈ 0.76) for the +y (−y) direction, while
the power-law exponent is found to fit best at νpl ≈ −2.71
(νpl ≈ −1.20).

We conclude that the low signal-to-noise ratio does not al-
low for a reliable analysis of the distribution shape in general,
but especially the tails. In fact, this was the motivation for the
careful investigation of subdiffusion.

APPENDIX E: LOCALIZED FRACTION

As introduced in Ref. [24], the localized fraction estimates
the portion of atoms at the cloud peak that would not have
diffused away due to being localized,

floc = lim
t→∞

n(0, t )
n(0, 0)

. (E1)

We modified its computation to fit our expansion along a sin-
gle dimension and implemented the full anomalous-diffusion
power law as in Eq. (2) by using the model

n(0, t )
n(0, 0)

= floc + (1 − floc)

√
σ 2(0)

2Dαtα + σ 2(0)
, (E2)

where we fix the diffusion exponent α and coefficient Dα

to the values we extract as described in Sec. III and use
σ (0) = 53 µm. For the relative peak density n(0, t )/n(0, 0),
we use the approximation of n(t ) ≈ w(t ) − wnoise mentioned
in Sec. III D, multiplied by the factor N (0)/N (t ) to compen-
sate for atom losses. With that, floc is extracted as the only free
parameter from fitting the right side of Eq. (E2), see lines in
Fig. 11.
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