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Nonequilibrium universality of Rydberg-excitation spreading on a dynamic network
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Understanding the universal properties of nonequilibrium phase transitions of spreading processes is a chal-
lenging problem. This applies in particular to irregular and dynamically varying networks. We here investigate an
experimentally accessible model system for such processes, namely, the absorbing-state phase transition (ASPT)
of Rydberg-excitation spreading, known as Rydberg facilitation, in a laser-driven gas of mobile atoms. It occurs
on an irregular graph, set by the random atom positions in the gas, and, depending on temperature, changes its
character from static to dynamic. By studying the behavior of the order parameter in the work of Brady et al.
[Phys. Rev. Lett. 133, 173401 (2024)], we showed numerical evidence for a crossover from directed percolation
(DP) universality through various phases of anomalous directed percolation (ADP) to mean-field (MF) behavior
when the temperature of the gas is increased. As the behavior of the order parameter is not sufficient to uniquely
determine the universality class, we here analyze the distribution of avalanches—characteristic of nonequilibrium
critical behavior—to fully characterize the ASPT. Performing extended numerical calculations and experiments
on a cold 87Rb atom gas, we confirm our earlier numerical findings and our phenomenological model that
maps the dynamic network to a static one with power-law tails of the distribution of excitation distances.
Furthermore, we discuss the influence of dissipation, present in the experiment and a necessary ingredient for
the self-organization of the system to the critical point. In particular, we study the potential modification of the
universality class by losses as a function of dissipation strength.

DOI: 10.1103/8rlg-169g

I. INTRODUCTION

The critical behavior at nonequilibrium phase transitions
and the phenomenon of self-organized criticality (SOC) [1–3]
are closely related to avalanche events—sudden, fast outbursts
of energy after longer periods of inactivity. Although the topic
is not without its controversies [4], the SOC mechanism is
believed to be key to the abundance of real world examples of
power-law distributed avalanche events like earthquakes [5],
solar flares [6,7], and neuron activation in the brain [8,9],
since it describes how a system can evolve in time to the
critical point of a phase transition without an external drive or
fine tuning. One of the most important categories of nonequi-
librium phase transitions in spreading processes concerns
absorbing-state phase transitions (ASPT). Here the behavior
of the system changes from an active (spreading) phase with
perpetual excitation cascades to an inactive (absorbing) phase,
where a single excitation does not change the system at large.
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Power-law distributed avalanche events are then observed at
the critical point between these two phases, reflecting the scale
invariance of the critical state. In this situation, a minimal
perturbation can cause a scale-free reaction of the system.

Avalanche events of self-organized critical systems have
first been studied in the context of sandpile models, most no-
tably the Bak-Tang-Wiesenfeld (BTW) model [1,2]. Shortly
after, additional systems were proposed that display SOC
behavior, such as the Manna [10], Drossel-Schwabl [11], or
Olami-Feder-Christensen model (OFC) [12] for a different
type of sandpile, forest fires, and earthquakes, respectively.
Most of the avalanche research so far has focused on lattice
models, where a toppling or relaxation event is defined as the
transfer of, e.g., energy or particles to adjacent sites on the
lattice. Some works have adapted these models to networks,
where adjacency is not defined by nearest neighbors on the
lattice but instead by links of the graph structure. Here, it was
found that the type of graph structure itself can significantly
affect the critical behavior [13].

Additionally, most work so far has been done on static
systems, where the adjacency relations between individual
sites do not change over time. This simplification is justified
in many cases, since avalanches typically happen on very
short timescales compared to other processes in the system.
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However, in other systems, for example, epidemic spreading,
the dynamical properties of the network are very important
and happen on relevant timescales [14]. The extent to which
graph dynamicity can impact the critical properties of the
system is not well understood. In the context of the OFC
model, for instance, it was found that the dissipative random-
neighbor version results in noncritical behavior compared to
critical scaling for fixed connectivity [15]; however, other
authors claim that also in the latter case the model turns
noncritical [16].

Generally, nonequilibrium phase transitions can be associ-
ated with a set of critical exponents that describe the scaling
of physical observables close to the critical point. For ASPTs,
these critical exponents can be related to the exponents of the
power-law distributions of avalanche events [17]. Obtaining
these critical exponents through experiments or simulations is
essential to identify the universality class of the ASPT and can
help in understanding the relevant physical processes.

For certain ASPTs, however, finding experimental rep-
resentations can be very difficult. One example is the
well-known universality class directed percolation (DP),
where to this day well-controllable experimental systems are
rare, the first one only being discovered in 2007 [18].

Gases of Rydberg atoms offer a versatile experimental plat-
form for the investigation of many-body phenomena, where
high-precision measurements on gases as well as on tailored
geometries can be performed [19–21]. Interactions of Ryd-
berg atoms can also be tuned to simulate the dynamics of the
SIS (susceptible-infected-susceptible) model [22,23], which
is an important example of a spreading model displaying
an absorbing-state phase transition, and Rydberg atoms have
been used experimentally to measure avalanche distributions
and other critical exponents [24]. In this context, the excitation
of an atom into a highly excited (Rydberg) state that can
spread to other atoms is considered the “active” or infected
state, whereas the ground state of the atom is the “passive” or
susceptible state.

Absorbing-state phase transitions and DP universality of
ensembles of Rydberg atoms have been previously studied
on fixed lattices, yielding numerical [25] and experimental
[26] signatures of DP in a one-dimensional chain of atoms.
Additionally, cluster growth processes have been studied in
a similar fashion [27]. In general, however, the spreading of
an excitation occurs on a network of atoms with fixed spatial
separation, given by the so-called facilitation distance. This
network can be a regular lattice, if the atoms are trapped,
e.g., in optical lattice potentials or tweezer arrays, or can be
static but random, e.g., in a cold gas. An important further
aspect of atomic gases is their thermal motion. In a recent
publication we provided numerical evidence that the ASPT of
a driven Rydberg gas under facilitation conditions changes its
universality class as a function of the (root mean square) gas
velocity [28]. For low temperatures we obtained DP scaling,
changing to anomalous DP (ADP) and eventually mean-field
(MF) for higher temperatures. These simulation results ex-
plained the unusual experimental measurement value of the
critical exponent β obtained in a previous publication [24].
However, the change in universality was only shown for the
critical exponent β as well as for one of the correlation
length exponents ν‖ [28], lacking the third critical exponent

ν⊥. Determining the exponents of the avalanche distribution
functions at the critical point provides an alternative way to
unambiguously determine the universality class, and we will
pursue this approach in the present paper, by both numerical
simulations and experimental studies. In addition, the scaling
of avalanche critical exponents on dynamical networks such
as in Rydberg facilitation remains a mostly open question,
with only one exponent having been measured in Ref. [24].

In this paper, we numerically study the avalanche events
in a three-dimensional gas of atoms that are driven by an
external laser field and compare the results with experimental
data as well as field-theoretical predictions for an effective
static model with temperature-dependent power-law tails in
the excitation distance. The atomic cloud is characterized by a
tunable velocity distribution that, combined with the distance-
dependent interaction, yields a dynamical graph on which
excitations can spread. As a function of velocity we obtain the
avalanche-exponents for area, size, and time of the avalanches
(for a definition see Sec. III B) and confirm the universality
class crossover from DP to anomalous directed percolation
that we found in a previous publication [28] analyzing the
β exponent of the order parameter, i.e., the Rydberg density.
This is a nontrivial result since predicting the avalanche expo-
nents requires knowledge of all three ASPT critical exponents
(β, ν‖, ν⊥). The numerical results are supported by exper-
imental observations of avalanche distributions of Rydberg
facilitation in a cold, trapped gas of 87Rb atoms. With this, our
work also provides the first experimental indication consistent
with ADP universality.

Secondly, the loss mechanisms inherent to self-
organization of a system to the critical point of an
absorbing-state phase transition can affect the universal
behavior at criticality or even destroy criticality altogether.
For this reason we consider additionally the effect of
losses from the excited state and quantify its influence on
criticality and exponent values for a frozen gas as well as
a finite-temperature gas by numerical simulations. This is
especially relevant in the context of our experimental results
that invariably include loss.

II. RYDBERG FACILITATION, MODEL,
AND EXPERIMENTAL SETUP

A. Microscopic system

We study a driven-dissipative system of atoms in three
dimensions, where any atom can at any time belong to one of
three states, namely, the ground state |G〉, the Rydberg state
|R〉, and the “removed” state |0〉, which describes a state in
which the atom does not take part in the dynamics at all (often
called “immune” in the context of epidemic spreading). We
apply an external driving (laser field) with Rabi frequency
� that couples |G〉 to |R〉 with detuning � (see Fig. 1). The
Rydberg state can spontaneously decay to the ground state
with rate (1 − b)γ with 0 � b � 1. The quantum mechanical
evolution of the system can then be described by a Lindblad
master equation [29] for the density operator ρ̂, which reads
(we set h̄ = 1)

d

dt
ρ̂ = i[ρ̂, Ĥ] +

∑
l

(
L̂l ρ̂L̂†

l − 1

2
{L̂†

l L̂l , ρ̂}
)

, (1)
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FIG. 1. Overview over the microscopic physics in our model. (a)
Single atom under external drive � with decay channels into ground
and inactive states. The parameter b controls the ratio between the
decay processes. (b) Two atoms with interatomic van der Waals force
that shifts the two-Rydberg state as a function of distance. At r = rf ,
the shift cancels the external detuning and the transition becomes
resonant. (c) Spreading of an avalanche on a network.

where the unitary evolution of the system is given by

Ĥ =
∑

i

�σ̂ x
i − �n̂i +

∑
j<i

c6

r6
i j

n̂in̂ j . (2)

Here, n̂i = (|R〉 〈R|)i is the number operator of the Rydberg
|R〉 state, ri j = |�ri − �r j | is the interatomic distance, and σ̂ x is
the Pauli x matrix. The last term in (2) corresponds to the van
der Waals interaction between two Rydberg atoms with c6 be-
ing the van der Waals coefficient. Using the Lindblad master
equation, the dissipation in the system is taken into account
by the Lindblad jump operators L̂(i)

1 = √
(1 − b)γ (|G〉〈R|)i,

L̂(i)
2 = √

bγ (|0〉〈R|)i, which describe spontaneous decay of
the i′th atom from the Rydberg state into the ground state
|G〉 and the inert state |0〉, respectively, with the branching
parameter b. Additionally, we include the effect of dephas-
ing, which stems mainly from laser phase noise and Doppler
broadening [24], but also from the nonzero width of the wave
function of the atom over the van der Waals potential [30], and
differential van der Waals forces [31]. The dephasing Lind-
blad operator reads L̂(i)

⊥ = √
γ⊥n̂i, where γ⊥ is the dephasing

rate.
In this publication, we always consider the high-dephasing

limit of the Rydberg gas, which has been proven to be a
good approximation for gaseous Rydberg systems [32]. In this
limit, the dynamics of the system is governed by effective
rate equations, which can be modeled using a classical Monte
Carlo approach [33] (for more details see Appendix A).

B. Facilitation mechanism

The level scheme of a single Rydberg atom and the
two-Rydberg dynamics is illustrated in Fig. 1. In the facil-
itation regime, the detuning � is chosen sufficiently large to

suppress spontaneous (seed) excitations from the ground state.
However, if one atom in the system is initially in the Rydberg
state, then the van der Waals interaction shifts the Rydberg
energy levels of the nearby ground-state atoms. Since the van
der Waals interaction is distance dependent, there exists a
distance called the facilitation radius rf = (c6/�)1/6, at which
the van der Waals interaction exactly cancels the detuning.
In this way, a Rydberg atom can resonantly “pass on” the
excitation to other atoms in a spherical shell with radius rf

around it. The width of this shell δrf is given by δrf = γ⊥
2�

rf

with δrf/rf 	 1 [34]. The rate of the resonant facilitation is
denoted by 
f = 2�2/γ⊥, which is an important timescale in
the system. Combining these two effects, we see that while an
initial (seed) excitation is very unlikely, as soon as Rydberg
atoms exist in the system it is possible to observe avalanche-
like cascades of excitations. For this a sufficiently high density
and strong enough external driving is needed such that the
global facilitation rate is stronger than the decay from the
Rydberg state to the ground state. At high atom velocities, the
Rydberg atoms see a homogeneous ground-state background
and the number of facilitated excitations is determined by
the density and driving strength only. For a frozen gas with
velocity v = 0, however, the atoms form a network where two
atoms are connected if and only if their distance falls into the
very narrow interval rf ± δrf . Since the atomic positions are
distributed uniformly, the resulting network of atoms that in
principle can participate in the Rydberg facilitation is of the
Erdős-Rényi [35] type [34].

C. Rydberg gas as a dynamical graph

The Erdős-Rényi network for the frozen gas is character-
ized by a Poissonian distribution PER of the number k of atoms
in the facilitation shell of a single Rydberg atom,

PER(k) = (nVs)k

k!
exp (−nVs). (3)

Here, Vs ≈ 4πδrf r2
f is the volume of the facilitation shell

and n = nG + nR the total density of remaining atoms in the
ground and Rydberg states. It is well known that such a net-
work features a percolation transition at the average network
degree 〈k〉 = 1. To be able to observe universal behavior, the
network needs to be above this threshold, since otherwise the
system is comprised of disconnected, finite clusters [34] and
a universal data collapse cannot be achieved [28]. Therefore,
the average degree 〈k〉 = nVs needs to be sufficiently larger
than unity. To increase 〈k〉 in our simulations we increase
n; however, that comes with significantly increased compu-
tational cost, leading us to choose 〈k〉 ∼ 2.5 as a reasonable
compromise. For this value, approximately 90% of atoms are
contained in the largest connected cluster (LCC) of atoms
that in principle could undergo Rydberg facilitation. For finite
temperature, the system has to be represented as a dynamical
graph, since the distances between the atoms change over
time. This implies that the pairs of atoms between which an
excitation can spread (pairs of atoms with a mutual distance
close to rf ) change over time, which, in the language of graph
theory, corresponds to the creation and desctruction of links
between nodes. Changing the gas velocity then allows to
change the rate of link creation and destruction and therefore
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FIG. 2. Average number of unique links an atom encounters over
the time 1/γ as a function of rms velocity normalized to the v = 0
case. The insets show the full distribution for velocities v = 0 (left)
and v = 10rfγ (right) as well as Poissonian and Gaussian fits.

the degree to which dynamical effects become relevant. We
quantify the degree to which the graph is dynamical by intro-
ducing the graph dynamicity D, which reads

D = 〈k〉dyn

〈k〉stat
, (4)

where kdyn counts all unique atoms (nodes) that an atom has
ever been connected to during the inverse decay time 1/γ

and kstat is the average number of instantaneous connections
(determined fully by the density and width of the facilitation
shell). The result can be seen in Fig. 2. We observe that after
a period of slow growth, starting from v ∼ 0.02rfγ we see a
continuous power-law increase in the number of unique con-
nections. Additionally, at this point the distribution of unique
partners changes from Poissonian (low-velocity) to Gaussian
(high-velocity). Coincidentally, this velocity scale agrees well
with the upper limit of DP universality found in Ref. [28].
In addition to the data, we also show the power-law fit to the
velocity interval from v > 0.06rfγ , which yields the exponent
λ = 0.85. The relevance of this power-law increase in dynam-
icity is, however, unclear. We note that this consideration takes
into account solely the dynamical graph structure of atoms
on which Rydberg facilitation is in principle possible, not the
actual excitation dynamics that depends on other factors like
the external drive intensity.

D. Experimental setup

To experimentally study the collective Rydberg facilitation
dynamics, we prepare a cloud of 87Rb atoms in a crossed
optical dipole trap with trapping frequencies of ωx,y,z =
2π × (332, 332, 73) Hz. The experimental setup is sketched
in Fig. 3. Forced evaporation in the dipole trap is stopped
at a final temperature of T = 1 µK, leading to a thermal
cloud with a density of ρ = 2.2 × 1013 cm−3. This tempera-
ture corresponds to an rms velocity of v = 0.39 ± 0.26rfγ .
The facilitation dynamics is induced by off-resonant, blue-
detuned (� = 40 MHz), continuous excitation from the |G〉 ≡
|5S1/2 F = 2 mF = 2〉 ground state to the |R〉 ≡ |40P3/2〉
Rydberg state for a total duration of 100 ms. Due to

FIG. 3. Sketch of the experimental setup. The Rydberg laser
off-resonantly drives facilitation dynamics and cascades of Rydberg
excitations (green circles) appear in the cold cloud. Rydberg atoms
can decay into ions via photo- or associative ionization, which are
guided to an ion detector where their arrival time is recorded. This
allows to observe the facilitation dynamics continuous in time.

photoionization from the dipole trap lasers and associative
ionization, a fraction of the Rydberg population gets ionized.
This decay channel contributes to the dissipation process that
brings atoms into the inactive state |0〉. This state accounts for
ions, atoms lost from the system since the Rydberg state is
not trapped, and also atoms that decayed to the |5S1/2 F = 1〉
ground state, which does not participate in the excitation dy-
namics. We estimate that approximately 2/3 of the Rydberg
excitations decay back to the |G〉 state, i.e., the branching ratio
is b ≈ 0.3 ± 0.15. The created ions are accelerated through a
small electric field toward an ion detector, where their arrival
time is detected. In this way, we obtain a time-continuous
measurement signal proportional to the Rydberg density,
which allows the observation of the facilitation dynamics in
situ. Due to the discrete nature of the ion arrival information,
binning the data is required to obtain an ion rate.

III. UNIVERSALITY CLASS AND AVALANCHE
DISTRIBUTION

A. Crossover of universality classes in Rydberg facilitation

In Ref. [28], it was shown by extensive numerical simu-
lations that the absorbing-state phase transition in a Rydberg
gas changes its universality class from DP through ADP to
MF by varying the velocity of the atoms. This crossover
was explained by mapping the Rydberg facilitation dynamics
on the dynamic network to a spreading process on a fixed
network, however with long-distance power-law tails in the
distribution of excitation distances. The power-law tails in
the probability distribution of distances between excitations
emerge since, due to the finite temperature of the gas, excited
Rydberg atoms can move larger distances before actually ex-
citing another ground-state atom. In order to determine the
probability distribution of distances r a Rydberg atom needs
to move before facilitating another atom, the space covered
by the Rydberg atom is discretized, i.e., r = Jδz with J ∈ N
[28]. This probability reads Q(X > J ) = (1 − pexc)J , where
pexc is the excitation probability in a given discretized interval
δz. In particular, if the Rydberg atom moves at velocity v,
the time spent in δz is given by δt = δz/v. For a single atom
the excitation probability in this interval δt is Poissonian and
reads p↑ = 1 − e−
f δt . Furthermore, the number of atoms in
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FIG. 4. Reciprocal Lévy-flight parameter as a function of gas
velocity. The horizontal lines denoting the transition from one uni-
versality class to another are given by Ref. [17]. The vertical lines
correspond to the velocities v− = δrf
f and v+ = rf
f . Shown data
has also been presented in Ref. [28].

the facilitation shell of a Rydberg atom also follows a Poisso-
nian distribution and therefore the excitation probability reads
pexc = ∑∞

k=0 P(k)(1 − (1 − p↑)k ), i.e.,

pexc = 1 − exp{−ξδz}, (5)

with ξ = 〈k〉
δrf

(1 − e−δrf 
f /v ). This then yields the probability
distribution of distances r from the initial position of the
Rydberg atom for the first successive excitation

Q(r) = 2πξr
∫ π

0
dθ

e−ξ (
√

cos2 θ+r2−1−cos θ )√
cos2 θ + r2 − 1

, (6)

where �r = rf êr (θ, ϕ) + (0, 0, z)T . We have shown in Ref. [28]
that this distribution agrees very well with the numerically ob-
tained distribution of first excitations in the finite-temperature
gas. It also agrees very well with a power-law fit of the form

Phop(r) ∼ 1

rd+σ
, (7)

which resembles a Lévy-flight statistic for d being the dimen-
sion of space and σ the Lévy-flight parameter.

In Fig. 4 we show the inverse Lévy-flight parameter over
the gas velocity 1/σ , obtained from power-law fits to the
distances between excitations in the simulated gas [28]. We
see that the Lévy-flight parameter σ = σ (v) depends on the
average velocity v = (〈v2〉)1/2 of the atoms, causing a tran-
sition between universality classes. The critical exponents
(β, ν‖, ν⊥) characterizing the behavior of the order parameter
(Rydberg density), temporal, and spatial correlations, respec-
tively, can be approximated as a function of σ close to the
MF regime via a renormalization-group approach. In this case,
for d = 2σ − ε, ε being a small parameter representing the
distance to the upper critical dimension, the exponents can be

written as [36]

β = 1 − 2ε

7σ
+ O(ε2),

ν⊥ = 1

σ
+ 2ε

7σ 2
+ O(ε2),

ν‖ = 1 + ε

7σ
+ O(ε2). (8)

In Ref. [28] we determined two of the three critical ex-
ponents β and ν‖, characterizing the order parameter and
temporal correlations, while the third one, ν⊥, which deter-
mines spatial correlations, was not accessible. In the following
we discuss an alternative approach to fully determine the
universality class, which we pursue in this work, both numer-
ically and experimentally.

B. Avalanches

A characteristic phenomenon in dynamical systems close
to the critical point of an ASPT is the appearance of
avalanches, i.e., cascades of excitation events spreading
through the system. Their time t (duration), area a, and size
s are random but show a power-law probability distribution,
which reflects the scale invariance at the critical point. For the
definitions of area and size we follow Ref. [17], where the
area is the number of unique sites (in our case atoms) that
were involved in the avalanche, while size is the total number
of relaxation (in our case decay) events that took place in the
avalanche, counting possibly multiple relaxations for a single
atom. Time is measured from the first excitation to the last
decay of the avalanche. The distributions then scale as

P(t ) ∼ t−τt , P(s) ∼ s−τs , P(a) ∼ a−τa . (9)

Generally, the critical exponents of the ASPT (β, ν‖, ν⊥) are
connected to these avalanche exponents in the following way
[17]:

τa = 1 + β

dν⊥
, τs = 1 + β

ν‖ + dν⊥ − β
, τt = 1 + β

ν‖
.

(10)

For the MF case, the critical exponents β, ν⊥, ν‖ are known
exactly, while for DP there exist numerical estimates in the
literature [37]. For the case of ADP, the critical scaling of the
system depends on the Lévy-flight parameter σ = σ (v).

1. Simulation results

To numerically investigate the critical properties at the
boundary between absorbing and active phase in the Rydberg
gas, we first need to pinpoint the parameters to obtain the
critical state, namely, the critical driving-strength parameter
�c and the corresponding critical density nc. To see universal
scaling in our system, the underlying Erdős-Rényi network
needs to be well above the percolation threshold [34], so we
fix nc = 20.0r−3

f , which corresponds to an average network
degree of 〈k〉 = 2.5. This holds for all gas velocities that we
consider, while �c changes as a function of velocity. We then
determine the critical driving strength �c via active-density
decay, where we start with all atoms in the excited state and
observe the decay process to the ground state (b = 0) (see
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FIG. 5. Simulation avalanche area, size, and time distributions for v = 0 and a system size of L = 20rf . The power-law fit function is
shown in black. Note that statistically insignificant counts have been omitted. The broadening and drop in the distributions for large values are
results of low statistics and finite-size effects.

also Appendix C). In the absorbing state, the active density
ρ will decrease exponentially with time, for an active state
ρ approaches a constant value, and for the critical state we
expect power-law decay [34,38]. Note that we could simply
use the SOC mechanism (b �= 0) to obtain the critical state
by starting in the active phase and time-evolving to the phase
transition. However, to achieve sufficient accuracy this would
necessitate an extreme separation of time scales, which is
computationally more expensive.

Having obtained the critical parameters, we perform re-
peated calculations where we generate a gas of ground-state
atoms at density n = nc and driving � = �c. Furthermore, we
use �/γ = 1000, γ⊥/γ = 20, and a cubic simulation volume
with edge length L and periodic boundary conditions. During
a simulation, we place a single excitation in the gas and let
the system evolve until no excited atoms remain, extracting
the area, size, and time of the avalanche. In this manner, we
obtain approximately 105 avalanches for each configuration of
parameters, allowing us to analyze the occurrence statistics.
See Fig. 5 for example distributions for a fixed system size at
v = 0. We do not extract the avalanche exponents from such
distributions directly, but perform a finite-size expansion on
the fitted exponents for system sizes up to L = 20rf . For more
details see Appendix B.

Using the two sets of equations, Eqs. (8) and (10), and
the mapping σ (v) from Ref. [28] (see Fig. 4), we can make
predictions about the expected avalanche exponents τt , τa, τs

over the Rydberg gas’ velocity in the DP, ADP, and MF
regimes. In Ref. [28] we additionally found that the Rydberg
gas enters the ADP II phase in between DP and ADP, which is
additionally characterized by Lévy-flight distributed waiting
times between facilitation (infection) events [39]. For this
regime, however, we cannot obtain theoretical predictions for
the critical exponents.

In Fig. 6 we show the predictions in the DP, ADP, and MF
phases combined with both the results of the simulations as
well as the experimental data for the time and magnitude ex-
ponents. The experimental magnitude exponent corresponds
to the area and size exponents; see the next section for details.
For the DP values, the thickness of the bars indicate the uncer-
tainty of the avalanche exponents derived from the uncertainty
of the critical exponents (β, ν⊥, ν‖) in the literature. For the

ADP values, the uncertainty interval is computed from the
σ uncertainty as shown in Fig. 4. The ADP predictions for
smaller velocities are shown with dashed lines and a shaded
uncertainty area, since the position at which a crossover to
the ADP II phase occurs is not known precisely. We observe
that for the expected DP and ADP universality classes the
simulation results agree very well with the literature values
and the ADP values found in Ref. [28]. For the case of
v = 10rfγ in the MF regime we see that while the time ex-
ponent remains close to theoretical predictions, the area and
size exponents are larger than the expected long-range (LR)
MF case.

There are two distinct MF cases that result in different
area and size exponents, depending on the dimension and the
range of interactions [17]. Short-range (SR) MF is expected
for d � 4 and σ � 2 and is characterized by the critical ex-
ponent νSR

⊥ = 1/2. In contrast, the LR MF case appears for
arbitrary dimension as long as σ < min(2, d/2) and is asso-
ciated with the value νLR

⊥ = 1/σ . Our simulations give values
of the area/size exponents that are in between the SR and LR
mean-field predictions. We do not have an understanding for
this behavior. However, it is important to note that both the
SR-MF as well as the LR-MF literature values were obtained
from static models on regular lattices, whereas we consider
a dynamical graph. Obviously, the mapping of moving atoms
with close-range interactions to a static network with long-
range connections (Lévy flights) breaks down when the atom
velocity becomes too large.

2. Experimental results

In order to observe the system at the critical point in the
experiment, the gas is initialized with parameters for the den-
sity and driving strength such that the dynamics always starts
in the active phase. Due to atom loss, as described above, the
density and thus the effective driving strength are reduced and
the system evolves toward the critical point (self-organization
of criticality). In the vicinity of the critical point the detected
ion signal distribution becomes clearly non-Poissonian and
avalanches of various sizes can be observed. The atom loss
rate is reduced as it scales with the Rydberg density. After
reaching the critical point, the system evolves slowly away
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FIG. 6. Left plot: Simulation avalanche exponents over velocity (in units of rfγ ) for b = 0. Each velocity uses a different value of � = �c.
Note that for both mean-field cases, the theoretical predictions for area and size become identical. The perturbative ADP predictions fade out
away from mean field. Also shown are the experimentally extracted values for time and magnitude (in the experiment area and size cannot be
distinguished). For an explanation of the latter, see text. Experimental values are derived from the highlighted area in the right plot. Right plot:
Experimental avalanche exponents as a function of time. Error bars represent the fit uncertainty; additional systematic errors may arise from,
e.g., binning. The dark green area corresponds to our estimate for tcrit , at which the critical point of the ASPT is reached. For more details on
the tcrit estimation see Appendix C.

from the critical point for two reasons. Firstly, the off-resonant
driving laser continues to create excitations at a low rate even
in the absorbing phase. Secondly, as long as there are Rydberg
excitations present, atoms will continue to become ionized or
decay into inert states. In the absorbing phase, the system,
even though it is noncritical, still shows power-law scaling
over finite scales. This dynamic in the measurement poses two
challenges when extracting the critical avalanche exponents:
(1) We need to find a reliable method to extract avalanches in
a system where the starting and ending time of avalanches
are masked by a random seed process, and (2) we have to
estimate rather accurately where the critical point is reached
during the time evolution of the sample. To distinguish dif-
ferent avalanches, we bin our data in tbin = 50 µs intervals
corresponding to the theoretical lifetime of the 40P3/2 Ry-
dberg state and consider an avalanche to end and the next
avalanche to start if one of those bins does not contain any
counts. The duration of an avalanche is then given by the
number of consecutive nonempty bins, and the magnitude
of the avalanche is quantified by the number of events in
those bins. It is not possible to count the number of times
an atom gets excited to the Rydberg state and decays back
to the ground state, and at the same time, not all atoms that
have been excited end up ionized. Therefore, the experimental
magnitude of an avalanche cannot be exactly mapped to either
the area or size exponent, and we are unable to define an
exact relation between the empirical τm and τa as well as τs.
However, the difference in theoretical prediction between both
exponents in the ADP regime is negligible compared to the
experimental uncertainty.

When the system evolves from the active to the absorbing
state, it eventually becomes critical. It is, however, not trivial
to precisely determine at what time tcrit the critical point is

reached, as can be seen by looking at the average ion count
rate during the measurement shown in the left plot of Fig. 7.
Starting in the active phase, we observe a steep drop in the
signal 2 ms after the pulse started, corresponding to a rapid
reduction in the number of facilitation partners due to loss into
the inert state.

In contrast, after 15 ms the strongly reduced decay rate
signals the absorbing phase where the decay is driven by
the off-resonantly created seeds and the exponentially dying
avalanches. The distribution of avalanche durations and mag-
nitudes continues to follow a power law around the critical
point as shown in Fig. 7. To account for the uncertainty in
the precise time tcrit at which the critical point is reached, we
analyze the avalanche exponents in three overlapping time
windows of length �twindow = 3 ms in the time range 3.5–
14.5 ms. By fitting a power law to the avalanche occurrence
statistics in the respective time window, we can extract the
time and magnitude exponents for the avalanches. Since the
power-law behavior prevails even away from the critical point,
its presence alone cannot serve as an indicator for the time
at which the system is critical. Instead, to estimate tcrit , we
analyze the activity distribution in the corresponding time
windows as detailed in Appendix C and obtain an estimate
of tcrit ≈ 8 . . . 13 ms (light green in Fig. 6), i.e., centers of the
overlapping evaluation windows ranging from 9.5 to 11.5 ms
(dark green in Fig. 6).

In Fig. 6 we plot the results for the simulation along with
the data extracted from the experiment. The horizontal er-
ror bars in the left plot denote the uncertainty regarding the
lifetime of the Rydberg states. In the right plot, the contin-
uously changing avalanche exponents are shown. Additional
contributions to the uncertainty in the exponent values emerge
from systematic sources such as the choice of tbin and are not
shown.
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FIG. 7. (Left) Average ion countrate during the excitation pulse, averaged over 1000 realizations (purple). The dynamics starts in the active
phase. The shaded purple area illustrates the standard deviation between runs. The colored vertical boxes show the �twindow = 3 ms long time
windows used to extract the avalanche exponents (centered at blue: 5 ms, orange: 9 ms, green: 13 ms). (Middle) Normalized distribution of
(middle) avalanche durations and (right) avalanche magnitudes in the three different time windows (blue, orange, and green). Dashed data
points have been ignored for fitting the power-law distribution.

We can see that the experimental time exponent for the
critical interval falls into the ADP range and is clearly in-
compatible with the DP universality class. The magnitude
exponent is smaller than expected for ADP universality, how-
ever it is unclear if this deviation might be caused by our
measurement imperfections.

Additionally, the experimental data allows to exclude other,
similar universality classes like the Manna class [10], where
in three dimensions a time exponent of τManna

t ≈ 1.78 is ex-
pected. We can also rule out that the Rydberg gas belongs
in the BTW-class universality, as for that model a three-
dimensional (3D) time exponent of τt ∼ 0.92 was predicted
[2]. However, one should note that the two-dimensional (2D)
predictions of said Ref. [2] are the subject of intense debate
since no simple finite-size scaling seems to exist [17,40,41].

IV. INFLUENCE OF DISSIPATION

A. Effect of self-organization on Erdős-Rényi
character of excitation graph

One important question is how the decay channel bγ into
the inert state |0〉, responsible for the self-organization of
the facilitated Rydberg gas to the critical point, affects the
properties of the network of possible excitations. As atoms
in the inert state no longer interact with other atoms, we do
not consider them as part of the graph. Furthermore since the
decay into the inert state affects only atoms in the Rydberg
state, it may lead preferentially to a loss of large clusters of
atoms that are pairwise in facilitation distance. This could
affect the structure of the network in particular for a frozen
gas, where this network is a static Erdős-Rényi network.
To analyze this effect, we calculate the degree distribution
P(k) for an initially percolating graph with loss parameter
b = 0.3 > 0 (see Fig. 8).

By fitting with a Poissonian function, with fit parameter
〈k〉, we find that the degree distribution P(k) remains Poisso-
nian, albeit with a continuously changing average degree 〈k〉,
plotted in the inset.

B. Effect of dissipation on the universality class

Dissipation is an essential ingredient of the SOC mech-
anism. It typically introduces characteristic length and time
scales and thus strict scale invariance is lost. In the context
of branching processes, for example, nonconservation of the
particle number leads to a self-organization into an attractor
state that is not critical but subcritical, leading to an exponen-
tially truncated distribution of avalanches [42]. As a result, the
distribution functions of avalanches no longer decay as a pure
power law, but rather as

P(t ) ∼ t−τt ht (t/tc),

P(s) ∼ s−τs hs(s/sc),

P(a) ∼ a−τa ha(a/ac), (11)

where the hμ(x) are cutoff functions with cutoff scales xc that
grow with decreasing dissipation strength. Some authors have
referred to this as quasicriticality [16]. It is also argued [16]

FIG. 8. Node degree distribution (dots) for different times in the
frozen gas with loss parameter b = 0.3 and Poissonian fit with fit
parameter 〈k〉 (solid lines). Fit parameter (average degree) 〈k〉 over
time (inset).
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FIG. 9. Finite-size extrapolated avalanche exponents over loss parameter b, for the cases of v = 0 in the DP regime (left) and v = 1.37rfγ

for the ADP case (right). The red, blue, and green bars show the expected exponents of area, size, and time, respectively, for the universality
class as stated. Note that in the case of the frozen gas for b > 0.1 the distributions of area, size, and time become increasingly characterized
by an early exponential cutoff, resulting in a poor power-law fit, which is why we focus on b < 0.1. Importantly, for both velocity cases the
exponents do not approach the values expected from the dynamical percolation (DyP) universality class.

that a “loading mechanism” can counteract the dissipation by
replenishing the lost particles after each avalanche, as is done
in, e.g., the OFC model of SOC [43].

As long as there are no observable differences for exper-
imentally relevant system sizes, we will here not distinguish
between quasi-critical and critical, i.e., truly scale-free be-
havior. Instead, we focus on the question of whether or not
dissipation modifies the universality class in the spreading
process of Rydberg facilitation, i.e., if the critical exponents
τμ in Eq. (11) are modified. In particular, we will explore
by numerial simulations if dissipation acts as a relevant per-
turbation in the renormalization sense. Since our atom loss
mechanism is conceptually very similar to that of the general-
ized epidemic process (GEP) or, more generally, of dynamical
percolation (DyP), the presence of dissipation may change the
critical behavior to that of the DyP universality class, and we
will compare our results with the corresponding predictions.
In the GEP and DyP models, an individual’s probability to be
infected for the first time and that of all subsequent infections
differ, the latter being set to zero in the extreme (GEP) case,
which is referred to as perfect immunization. For the more
general case of reduced repeated infection probability, the
phase transition is part of the DyP universality class [17,44].
The three-dimensional case of DyP is characterized by the
critical exponents [17]

β = 0.417, ν‖ = 1.169, ν⊥ = 0.875, (12)

which via (10) then result in

τa ≈ 1.159, τs ≈ 1.123, τt ≈ 1.357. (13)

In our model of Rydberg facilitation, dissipation is con-
trolled by the b parameter. The value b = 0 corresponds to
a dynamics where all Rydberg atoms return to the ground
state after an exponentially distributed time. The value b = 1,
however, leads to the guaranteed irreversible loss of this atom
from a Rydberg state.

To address the effect of dissipation, we simulate the
avalanches in the system with varying values of b > 0. Gener-
ically, we find a power law scaling over 1–2 orders of
magnitude truncated by an exponential cutoff function, Eq.
(11). We extract the power-law exponents and perform finite-
size extrapolations. The result can be seen in Fig. 9. We
observe that at v = 0 for loss parameters b < 0.01, we do not
find a difference in the values of the exponents larger than
our uncertainty. For larger b, the found exponents diminish
in magnitude, especially the time exponent. For the case of
v = 1.37rfγ , which is approximately the gas velocity in the
experiment, we find that the avalanche exponents follow a
nonmonotonous behavior of increase for smaller b and de-
creasing in magnitude again for larger b. Importantly, this
implies that the avalanche exponents found in the experiment,
which we also show in Fig. 9, do not incur a significant
additional systematic error based on nonvanishing b values. In
Fig. 9 we also show the predicted values for DyP. We observe
that neither the simulated nor the experimentally measured
values agree with those of DyP, showing that despite the
conceptual similarity, Rydberg facilitation cannot be simply
pictured as an epidemic spreading with immunization. We
have checked that this deviation does not result from the
network structure set by the random atom positions in a gas by
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repeating our avalanche simulations on a regular 2D lattice of
atoms with nearest-neighbor facilitation. Here, we also find no
agreement with DyP exponents for b → 1. We speculate that
the difference might be found in the infection mechanism: In
lattice models of DyP, an infected site passes on the infection
to adjacent sites with a given probability, but decays after a
single step of discrete time [44,45], whereas in our model,
both infection and decay occur probabilistically according to
certain rates.

V. CONCLUSION

We studied the critical properties of excitation growth
in a gas of atoms under conditions of Rydberg facilitation,
which represents an experimentally accessible model sys-
tem for a spreading process on a random and dynamical
network. In particular we determined the power-law expo-
nents of the distribution of avalanches at the critical point
of the absorbing-state phase transition (ASPT) from both nu-
merical simulations and experimental measurements. These
exponents can be related to the full set of critical exponents of
the nonequilibrium phase transition and thus uniquely deter-
mine the universality class Eq. (10). In a previous theoretical
work we have provided numerical evidence that with increas-
ing rms velocity of the atoms in the gas, the character of
the ASPT smoothly changes from directed percolation (DP)
universality through different classes of anomalous directed
percolation (ADP) to eventually mean-field (MF) behav-
ior, which also explained previous experimental observations
[24]. The velocity-dependent crossover was interpreted using
a phenomenological model that mapped the Rydberg facil-
itation in the gas of moving atoms, resembling a dynamic
network to an excitation spreading process on a random static
network with Lévy-flight tails in the distribution of excitation
distances [28]. Our simulations together with experimental re-
sults confirm that the avalanche distribution exponents follow
the predictions obtained from the phenomenological model
in Ref. [28] using the mapping relations (10) combined with
previous results on the velocity dependence of the Lévy-flight
parameter at the ASPT. Furthermore, our work has given
experimental evidence of ADP universality.

We also investigated the network structure and its effects
on the SOC mechanism. Since SOC on dynamical networks
has been little researched and is as of yet poorly understood,
we first characterize the dynamical properties of the underly-
ing network structure of atoms in mutual facilitation distance
as a function of gas velocity and quantify the number of
dynamical connections. Secondly, we investigated the influ-
ence of dissipation, important for the SOC, on the critical
behavior. For the frozen gas, we first verified that the Erdős-
Rényi character of the network is unaffected by decay. We
then analyzed the influence of decay on the critical scaling in
the DP and ADP regimes. While we cannot make any claims
about the presence or absence of true critical behavior over
arbitrary time and length scales, the observed power laws in
the avalanche distributions over extended parameter ranges
even in the presence of losses are consistent with at least
quasi-critical behavior. The question we addressed instead
was whether losses modify the universality class of the ASPT
in Rydberg facilitation, which could be the case if dissipation

was a relevant perturbation in the renormalization sense. For
a frozen gas we find that below a minimal dissipation proba-
bility we cannot detect a measurable influence on the scaling
exponents. At stronger dissipation we see that the avalanche
exponents are slightly reduced in magnitude. However, de-
spite the conceptual similarities, we do not obtain exponents
belonging to the dynamical percolation (DyP) universality
class.
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APPENDIX A: RATE EQUATION MODELING

All numerical data is obtained using fixed-time-step Monte
Carlo simulations [47] of classical rate equations in the high
dephasing limit. It has been shown that in this limit dynamics
become effectively classical and can therefore be described
by classical Monte Carlo simulations to a high degree of
accuracy [33].

For atom i, the excitation probability is given by the projec-
tion operator onto the Rydberg state |R〉i, i.e., n̂i = |R〉i 〈R|i.
Using the Lindblad master equation, given by Eq. (1), we can
formulate a set of differential equations for the ground state
|G〉i, Rydberg state |R〉i, and inert state |0〉i of the ith atom.
After adiabatic elimination of coherences, e.g., d

dt σ
gr
i = 0,

(where σ gr = |G〉〈R|), we receive the rate equations [22,34]
d

dt
p(i)

r = −(γstim + γspont )p(i)
r + γstim p(i)

g , (A1)

d

dt
p(i)

g = −γstim p(i)
g + (γstim + (1 − b)γspont )p(i)

r , (A2)

d

dt
p(i)

0 = bγspont p
(i)
r . (A3)
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FIG. 10. Finite-size expansion of the avalanche exponents. The
shaded area corresponds to the uncertainty interval. Size values are
shifted slightly along the x axis for better visibility.

Here, γspont corresponds to the spontaneous decay rate and
γstim corresponds to the stimulated (de)excitation rate. Explic-
itly, the stimulated rate reads

γstim = 2�2γ⊥

γ 2
⊥ + �2

(∑
j �=i
j∈�

r6
f

r6
i j

− 1
)2

, (A4)

where � corresponds to the subset of atoms in the Rydberg
state.

We initiate N atoms with random positions in a cubic
simulation box with length L and periodic boundary condi-
tions. Velocities are sampled from the Maxwell-Boltzmann
distribution, i.e., a Gaussian in each direction, with the most
probable velocity v. Furthermore, we dynamically adjust the
(fixed) time-step length depending on the facilitation rate with

f dt = 1

10 . In order to receive good avalanche fits, we use
approximately 200 000 trajectories per parameter set.

APPENDIX B: FINITE-SIZE EXPANSION
OF AVALANCHE DATA

All of the simulation exponent values reported in this paper
were obtained using a system size extrapolation. We fit a
linear function f (1/L), where L is the linear system size,
to the exponent values for different system sizes and then
extrapolate to f (0). In Fig. 10 we show the extrapolation
for the case of v = 1.37rfγ in the ADP phase. For the time
exponent we see a clear finite-size scaling with an increasing
value for larger systems, whereas the area and size exponents
do not show a clear trend over system size as well as a
much smaller variation. The shaded areas correspond to the
uncertainty region.

APPENDIX C: DETERMINING THE CRITICAL POINT

1. Numerical simulations

Finding the correct critical point �c is essential in ob-
taining power-law distributed avalanches. We determine �c

in our numerical simulations by starting from the fully in-
verted state (all atoms in the Rydberg state) and considering
the decay process as a function of the system size. In the

FIG. 11. Finite-size expansion of the active density decay
method of finding �c for v = 10rfγ . For all values of �, we show
the averaged decay data for L ∈ {5, 7, 9}rf ; for �/γ = 2.06 we also
show L = 12rf . The linestyles with increasing system size are: dot-
ted, dash-dotted, dashed, and solid.

absorbing phase, the decay is exponential and shows no strong
dependence on system size. In the active phase, the Rydberg
density approaches a constant. For values of � close to the
critical point, a regime with power-law decay emerges for
intermediate time scales, where the precise value of �c is then
obtained by fitting a power-law function with the exponent
δ = β

ν‖
to increasing system sizes L as shown in Fig. 11. Note

that for the absorbing as well as the active case the curves
for all system sizes lie on top of each other. Also see Ref.
[38] for more details. We find �c/γ ≈ 3.40 for the frozen
gas, �c/γ ≈ 2.325 for the ADP regime (v = 1.37rfγ ), and
�c/γ ≈ 2.06 for the mean-field regime (v = 10rfγ ).

2. Experimental data

The extracted exponents of the power-law distributed
avalanches strongly depend on the time windows in which
they are evaluated. It is a challenging task to determine the
correct point in time at which the critical point is reached.
In the active phase, the system typically forms a single large
cluster of Rydberg excitations where the total number of ex-
cited atoms is effectively limited by the size of the system. In
Fig. 12 we show histograms of the count numbers in a single
evaluation bin for different time windows. As the number
of ions in a fixed time tbin is proportional to the number of
Rydberg atoms times the decay rate, this can be understood as
a measure for the activity of the system. In the active phase,
which is our starting point, the histograms show a characteris-
tic activity bump for large counts. We estimate that the active
phase ends when the distribution shows no residuals of such
an activity bump clearly visible in the first evaluation frame.
In our experiment, we estimate that this is the case between 8
and 13 ms, i.e., time window centers of 9.5 and 11.5 ms.

We note that other, more indirect ways to estimate the
critical point are possible, e.g., by exploiting scaling rela-
tions of avalanche shapes [48]. Moreover, the critical point
may be reached after slightly different times in each indi-
vidual experimental realization, given that the loss process
is stochastic.
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FIG. 12. The activity distribution of the experimental system at different time intervals. In each subplot, the activitiy distribution for a
different time interval of �t = 3 ms is shown, centered as indicated in the corner of the plot. The distribution of count numbers in 50-µs bins is
shown. The fitted lines serve as a guide to the eye to evaluate whether the distribution is active. For early times up until the interval of 6–9 ms
we find a “bump” at large activity sizes, which is indicative of the active phase. We estimate that in the subsequent time windows of 8–13 ms
the critical point is reached.
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