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Stabilizing an Ultracold Fermi Gas against Fermi Acceleration to Superdiffusion
through Localization
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Anderson localization, i.e., destructive quantum interference of multiple-scattering paths, halts transport
entirely. Contrarily, time-dependent random forces expedite transport via Fermi acceleration, proposed as a
mechanism for high-energy cosmic rays. Their competition creates interesting dynamics, but experimental
observations are scarce. Here, we experimentally study the expansion of an ultracold Fermi gas inside time-
dependent disorder and observe distinct regimes from sub- to superdiffusion. Unexpectedly, quantum
interference counteracts acceleration in strong disorder before a transition to a diffusive state occurs in the
driven system. Our system enables the investigation of Fermi acceleration in the quantum-transport regime.
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Brownian diffusion, its microscopic understanding, and its
application to macroscopic problems enabled the emergence
and development of modern science [1,2]. Commonly, the
diffusive motion of a particle inside a medium is charac-
terized in d dimensions by its position variance
0*(t) — 6%(0) = 2dDt, increasing linearly with time ¢ and
diffusion coefficient D. Although successful in describing
diffusion across many fields, fascinating phenomena deviat-
ing from this behavior have been found and studied
extensively in a plethora of systems [3,4], including cosmic
rays [5], animals’ foraging behavior [6,7], stock-market
fluctuations [8], turbulent-plasma transport [9], and molecu-
lar motion in cells [10]. Typically, a single regime of this
so-called anomalous diffusion emerges. This Letter demon-
strates how we employ a cosmological effect to control the
properties and type of anomalous diffusion in an ultracold
quantum gas, providing a first step to better understand and
investigate dynamical phase transitions, fundamental trans-
port behaviors, and even simulate the aforementioned sys-
tems. Anomalous diffusion can be characterized by the value
of the diffusion exponent « in a generalized power law [3,4],

o2(1) — 62(0) = 2dD1°, (1)

where D, is a generalized diffusion coefficient and the
system lies in the regime of subdiffusion (superdiffusion)
fora<1 (a>1).
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Perhaps the most extreme form of subdiffusion is the
perfect absence of diffusion (¢ = 0) for quantum particles
undergoing Anderson localization (AL) inside disorder
[11,12]. Here, multiple scattering of a particle’s wave
function from the disordered environment leads to destruc-
tive interference everywhere except for the particle’s initial
position, resulting in the complete halt of transport.
Interference-induced localization has been observed in
classical waves such as ultrasound [13,14], microwaves
[15], and light [16—-19] as well as in quantum matter using
ultracold atoms [20-23]. Further, in three dimensions, a
transition from the diffusive to the localized regime occurs
at a threshold energy called mobility edge [12]. Particles are
expected to undergo subdiffusion near that transition point
until they become fully localized [24]. Although decades of
theoretical and experimental research have passed [12],
previous observations of AL [25] and especially whether
particles in the interacting case may localize [26-28] are
widely questioned.

Going beyond static disorder, the impact of spatiotem-
poral noise on AL and the transition to delocalization has
been investigated intensively [29,30]. In the past decade,
the destruction of AL by temporal variation of an under-
lying disorder potential was studied, particularly in optical
systems [31]. Remarkably, random time-varying environ-
ments or fluctuating force fields have been found to drive
particle acceleration in outer space, explaining high-energy
cosmic rays [32-35]. This fundamental mechanism, which
has come to be known as Fermi acceleration, dates back
to Fermi [32] and was later studied in detail for classical
and quantum particles scattered in time-varying potentials
[36-39]. Microscopically, a particle scattered from a
copropagating potential maximum decelerates, while it
accelerates for collisions from counterpropagating potential
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FIG. 1. (a) Sketch of atom cloud (red ellipsoid), optical dipole traps (ODT1, ODT?2), speckle laser beam (green), and anisotropic
speckle grains (small green ellipsoids). Imaging is performed along the —z direction (red arrow). (b) Recorded density distribution for
different expansion duration ¢ for 1/7, = 0 ms™! (left) and 1/7, = 2.5 ms™! (right). The length along the y axis is 1 mm. For each
setting of ¢ and 1/z., 50 repetitions are averaged. For increased image clarity, the illustration was smoothed by a Gaussian filter with a
standard deviation of one pixel only for this figure. The asymmetric profiles after expansion occur due to the inhomogeneous speckle-
beam envelope causing an asymmetric acceleration for large 1/7.. This effect does not affect the analysis significantly. (c) Visualization
of the disorder’s time evolution from a 1D numerical simulation. Lines are snapshots along the evolution; later times correspond to
darker green. Both peak heights and positions vary with different rates. The black horizontal line marks the time-constant average
disorder potential (V). Inset shows Cf,,, in arbitrary units over 7 (same color scale) [48,49]. (d) llustration of Fermi acceleration: rear-
end collisions (top) effectively decelerate, while head-on collisions accelerate the particle. Colors indicate time as before. (e) Measured
cloud variance over time from the data sets shown in (b). Power-law fits (lines) to the data (points) yield diffusion exponents a =

1.02 £0.04 for 1/7, = 0 ms™! (circles) and a = 1.70 & 0.08 for 1/7, = 2.5 ms~'. Error bars indicate 1o statistical uncertainty.

maxima. Statistically, the counterpropagating collisions are
more probable with increasing particle velocity. On aver-
age, particles moving in time-varying potentials experience
a net accelerating force. This mechanism has since been
generalized to the classical Fermi-Ulam-accelerator model
[40,41], which was later expanded to include quantum
dynamics [42,43]. Moreover, diffusion inside such a time-
varying random disorder is expected to exhibit universal
behavior with 6> ~ 1% and (v?) ~ 1>/ [36-38,44] if d > 1,
where (v?) is the variance of velocity.

Previous theoretical works have considered the diffusion
of quantum gases through speckles [45] or in periodically
modulated disorder [46]. However, the expansion in con-
tinuously evolving disorder has only been studied for
classical particles [39], and experimental investigations
are scarce in general. Here, we investigate the expansion
of an ultracold noninteracting Fermi gas in a time-varying
disorder potential, studying the competition of localization
effects with the acceleration due to stochastic Fermi
acceleration by tracing the diffusion of the gas.

Experimentally, we produce a degenerate Fermi gas of
°Li atoms at a temperature 7 =~ 0.17¢ < 100 nK, with
Fermi temperature Ty = Eg/kg, Fermi energy Er and
Boltzmann constant kg. All N~ 10° atoms are prepared

spin-polarized in the lowest-lying Zeeman substate.
Our sample is well approximated by an ideal Fermi gas
due to its fermionic nature, as s-wave interactions are
prohibited entirely due to the Pauli exclusion principle and
p-wave and higher-order interactions are strongly sup-
pressed at these low temperatures [24]. Initially, the atoms
are prepared in a crossed-dipole trap; see Fig. 1(a). By
extinguishing one trap beam at time ¢ = 0, the trap instantly
becomes shallow along the y axis while the remaining
directions remain effectively unchanged. Hence, the atoms
start to expand along the y direction; see Figs. 1(b) and 1(e).
After a variable expansion duration, we probe the cloud’s
extension through absorption imaging along the z axis [47].

Additionally at + = 0, we quench on a repulsive optical
speckle disorder potential V(r), created by 532 nm laser
light; see Refs. [48,49] for details. Spatially, it consists
of anisotropic grains with typical sizes of nﬁ,y X1, =
(750 nm)? x 10.2 pm, where 7, , and 5, are the correlation
lengths along the respective directions [50,51]. We char-
acterize the strength of the disorder by its spatial average
(V). Furthermore, our speckle disorder can continuously
decorrelate into other, new realizations over time by
employing two diffusor plates that rotate relative to each
other [48,49]; see Fig. 1(c). While the disorder potential’s
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statistical properties (such as 7, , . and (V)) remain con-
stant, the local details change significantly with time. We
characterize the rate at which this change occurs via the
decorrelation rate 1/7., defined as the inverse time after
which the cross-correlation peak height C7,,, has decayed
to half its initial value at t = O; see inset of Fig. 1(c) and
Refs. [48,49] for technical details. Hence, we realize a time-
varying stochastic force field for our atom cloud, allowing
for stochastic Fermi acceleration [Fig. 1(d)]. We achieve
decorrelation rates up to 1/7, = 3.5 ms™! to study the
effect on the diffusion of noninteracting atoms in either
weak ((V) = 120nK x kg = 0.2Ey) or stronger ((V) =
400 nK x kg ~ 0.5Ef) disorder [52]. We note that, even
in the static case, our three-dimensional blue-detuned dis-
order potential does not allow for classically bound states.
Since classical trapping occurs only for much larger dis-
order strengths, it can be neglected for all cases considered
here [53,54]. Importantly, the atom cloud never crosses into
the regimes of dimensionality lower than d = 3. Still, we
analyze the diffusive expansion only along one dimension,
d =1, as the atoms cannot expand along the x and z
directions. From the absorption images taken, we extract
the cloud width ¢. While standard methods such as the
fitted Gaussian width or the participation ratio work in
principle, we use the so-called inverse participation width
(see Refs. [52,55] for details), which is particularly suited
to compensate for image noise, becoming relevant for long
expansion times, when the local cloud density decreases.

In Fig. 2, the dynamics of cloud variances 6 are shown
for (a) weak and (b) strong disorder. The data from the
expansion in static disorder, 1/7, = 0 ms™!, is shown as
black points. It exhibits the lowest exponent for both
disorder strengths, allowing for the longest observation
times. The observation time is technically limited by atom
losses or the finite size of the camera detection area and the
envelope of the disorder speckle pattern [55]. Nevertheless,
we observe various transient transport regimes. When we
increase the decorrelation rate toward its maximum value of
1/7, = 3.5 ms~!, we recover a strongly increased slope
and, therefore, exponent for both disorder strengths. In fact,
the slope even takes on the same value as in the disorder-
free expansion, i.e., ballistic transport. This conforms with
the predicted transport universality of o> ~ > for time-
dependent force fields [36-38,44].

To compare the experimental data to expectations
derived from Fermi acceleration, we perform a Markov-
chain Monte Carlo simulation employing the minimal
stochastic model of Ref. [44]. We simulate classical point
particles scattering with randomly moving large spheres;
see Appendix A. The simulation yields the same accel-
erating behavior as seen in the experimental data; see
Fig. 2(c). This comparison, reinforces that Fermi accel-
eration is indeed the underlying acceleration mechanism.

A quantitative analysis of the change of dynamical
regimes seen in Fig. 2 is done by extracting the diffusion
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FIG. 2. Experimental cloud variances (points) for different de-
correlation rates [color bar in (a)] for (a) (V) = 120 nK x kg, and
(b) (V) =400 nK x kg. Blue squares show variances from
disorder-free expansion [55]. Error bars indicate 1o statistical
uncertainty. The slope of the black dotted (dashed) line indicates
the exponent a of Eq. (1) for normal (ballistic) diffusion.
Specifically, the black data points show a slight but significant
subdiffusion [see also Fig. 3(c)], which is observed for a broad
parameter range compatible to localization in static disorder as
shown in Ref. [55]. (c) Particle-averaged mean squared displace-
ment (MSD) from a single simulation run for 25 velocity scales of
the medium, ranging from the static case (A) to the experimen-
tally maximum-achievable dynamics (B) (color scale as for the
experimental data). The dashed blue line shows free expansion
without a medium. Inset: 12 examples of simulated trajectories up
to t = 100 ms for the static (A, left) and maximally dynamic case
(B, right) from which we calculate MSD. Both boxes are of
size 1 mm x 1 mm.

exponent a and coefficient D, from the different series of
each (V) and 1/7.. The exponent « is obtained as the slope
from linear regression of the logarithm of both variance and
time. With that, we calculate the anomalous diffusion
coefficient as D, = {(6*(t) — 6*(0))/2t%), where the set
of values that are averaged is constant in time. Note that D,,
has the unit m? s~ [3].
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Diffusion properties in (a),(b) weak disorder, (V) = 120 nK X kg, and (c),(d) strong disorder, (V) = 400 nK X kg. (a),(c)

Diffusion exponents a as a function of decorrelation rate 1/z, from measurements (dots) and simulation of 12 trajectories (gray area).
The blue dashed line indicates the disorder-free measurement, and the blue area around is its error as shown in Ref. [55]. Error bars and
areas represent lo statistical uncertainty. (b),(d) Normalized diffusion coefficient mdD,/h with the same colors and line types as in
panel (a). For the experimental data (simulation), d = 1 (d = 2); see End Matter for details. Experimental errors are calculated as the
standard deviation of values used for averaging. Insets show the localized fraction f),. (Appendix B). For weak disorder, in (b), fi,. & 0

for all decorrelation rates. For strong disorder, in (d), we observe a significant f},. > 0, which vanishes at 1 /7. =~ 1 ms

~!, coinciding

with the transition from a constant to a significant increase in both the diffusion exponent and coefficient. The shading highlights this

quantum-transport region in (c),(d).

For the expansion in weak disorder, we see a direct and
monotonous increase of both a and D, with 1/7; see
Figs. 3(a) and 3(b). This directly reflects a kinetic-energy
gain increasing with the decorrelation rate. We can tune the
exponent through the entire range of superdiffusion with
values between o = 1 for static, weak disorder and o = 2
by choice of 1/z.. The simulation predicts this tunability
well, even agreeing quantitatively with the experimental
data for a wide range of 1/z..

We find a strikingly different behavior in strong disorder.
For static disorder, 1/7, = 0 ms™', we find the system to be
slightly but statistically significantly in the subdiffusive
regime with @ = 0.94 £ 0.03; see Fig. 3(c). As reported by
Ref. [24], subdiffusion is expected to occur near the
mobility edge until the wave packet has expanded into
its fully localized state. We refer to Ref. [55], where we
performed a thorough study of the expansion in static
disorder of various strengths. A widely used estimate for
AL is the Ioffe-Regel criterion, comparing the disorder
transport length [ to a particle’s wave number k.
Localization is expected to occur for kIl ~ 1 and below.
This criterion can be expressed for °Li as 7 < 160 nK for
the geometric mean of the correlation lengths # of our
speckle disorder (T < 900 nK for #,, along the expansion
axis) [23]. Since the gas temperature is 7 < 100 nK, our
system fulfills the loffe-Regel criterion. An alternative
criterion regards the critical momentum k,;, below which
AL 1is expected to occur [45]. Specifically for our case
(VY/E. > 1, with correlation energy E. = h?/(mn?), we

can estimate kn; = ((V)/E.)* /5, where # is the reduced
Planck constant and m is the atomic mass. The largest
momentum in our gas is the Fermi momentum kg, and we
find kg =~ 2k,;, for 77 (and kg ~ 0.8k, for 77,). Hence, we
can expect a significant fraction of the low-energy fermions
to localize [55]. Therefore, we attribute the onset of
subdiffusion for strong disorder as a signature of AL below
the mobility edge, slowing down the expansion.

This is supported by the experimental observation that
the diffusion coefficient is of the order of only a few
“quanta of diffusion” A/m [22,24,51]; see Fig. 3(d).
Furthermore, with increasing 1/7, <1 ms~!, we see an
initial plateau where neither diffusion exponent nor coef-
ficient changes [shading in Figs. 3(c) and 3(d)]. It illustrates
a strong suppression of the Fermi acceleration for suffi-
ciently slow changes of the underlying disorder potential.
The experimental observation is also in stark contrast to
the classical simulation based on Fermi acceleration. We
interpret this observation as the effect of localization due to
wave function interference for small decorrelation rates.

To investigate the interplay of localization effects with
superdiffusion or its suppression more closely, we estimate
the fraction f),, of localized atoms as introduced in
Ref. [22]; see Appendix B in End Matter and Ref. [55].
We find a localized fraction of zero for the expansion in
weak disorder even in the static case, as expected [inset of
Fig. 3(b)]. By contrast, we find a significant f,, =
(79 £ 1.2)% for the strong static disorder [inset of
Fig. 3(d)]. This fraction decays as the decorrelation rate
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1/7, increases, but as long as a localized fraction persists,
the system shows close-to-normal diffusion. This
restricted-diffusion plateau ends as soon as the localized
fraction has decayed.

We interpret this plateau of a and D,, as a consequence of
localization effects stabilizing diffusion against the disor-
der’s accelerating dynamics. In fact, the energy scale
h/t. ~ 48 nK x kg for the threshold 1/7,~ 1 ms™' is of
the same order of magnitude as the energy associated with
the critical momentum for AL, being E 5 = A%k, /2m =~
115 nK x kg for the strong disorder and 7. This may
explain why the observed plateau transitions to accelerated
diffusion around 1/7, ~ 1 ms~!. The fraction of particles
with sufficiently low energy to localize despite the addi-
tional energy E,; will be reduced with increasing 1/z,
until too few low-energy particles remain to influence the
transport globally. Importantly, it remains unclear why
Fermi acceleration can be efficiently suppressed even
though more than 90% remain delocalized. This rather
unexpected observation hints at deeper physics of dynami-
cal phase transitions that has not yet been fully understood.
Around 1/7,~1 ms™', where f,,. has vanished, the
acceleration becomes too strong to sustain coherent mat-
ter-wave interference and finally drives the system to
superdiffusion. For the three largest values of 1/z., we
again observe a = 2, consistent with the expected universal
transport in time-dependent force fields, i.e., Fermi accel-
eration [36-38,44].

We have demonstrated a system that exhibits a broad
tunability of anomalous diffusion during experimentally
achievable timescales, ranging from subdiffusion to super-
diffusion, reaching the regime of ballistic transport. Our
findings elucidate intriguing quantum dynamics in time-
varying random force fields, establishing an experimental
platform to investigate Fermi acceleration in quantum
systems. An interesting prospect will be to achieve 1/z,
timescales faster than the inverse Fermi energy. Then, we
can explore the maximum-achievable rate of Fermi accel-
eration experimentally and discern whether our system
tends asymptotically to the universal @ = 2 [38] or if hyper
transport as in Ref. [31] is achievable. Further, a theoretical
quantum many-body model of our system will be important
to further understand the observed nonequilibrium transi-
tion from localization to acceleration, but is computation-
ally costly; see End Matter for details. Such a computation
is planned in future work on a high-performance cluster.
Finally, since our system is capable of creating a strongly
interacting Fermi gas along the crossover from a molecular
Bose-Einstein condensate to a Bardeen-Cooper-Schrieffer
superfluid [47,56], studying particle interactions and super-
fluidity will be a promising extension.
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End Matter

Appendix A: Markov-Chain Monte Carlo simulation—
As stated in the main text, the simulations are based on
the model presented in Ref. [44]. We simulate classical
nonrelativistic point particles colliding elastically with
hard-sphere scatterers of infinite mass on a flat two-
dimensional plane. The initial particle velocities are
distributed according to the Fermi-Dirac distribution,
approximating the experimental setting as closely as
possible, while the movement of the spheres mimics the
dynamics of our time-dependent speckle. We choose a 2D
system since, in 1D, the mechanism of Fermi acceleration
is significantly different due to the lack of scattering
angles. Single scattering events are effectively the same
for dimensions larger than one if the scattering angles
are assumed uniformly distributed. Since our atom cloud
is three-dimensional, we simulate in d > 1 and choose
d =2 as a compromise to save computing resources.

In the case of frozen scattering centers, normal diffusion
is the result. However, when these scatterers themselves are
moving, the particles undergo Fermi acceleration and
expand superdiffusively. Since here and in contrast to
the experimental setup, we do have access to the trajectories
r(t) of each particle, we directly calculate the mean-
squared displacement (MSD) as

MSD(#) = (r?)(z) = (r*)(0), (A1)

where (-) denotes the average over the particles. For each
simulation run, we set 1000 particles, each colliding
25000 times with the randomly moving spheres. Finally,
we run such a series 12 times and average the diffusion
exponents and coefficients extracted from each series.
We choose values as close to the experimental setting as
possible for the scatterers. As their radius, we use the
geometric mean of our disorder’s correlation lengths 7 and
use the average distance of speckle peaks, 37, for their
density p = 1/(3ij)% Since the speckle’s spatial intensity is
exponentially distributed, we assumed that the same holds
for the velocity. Therefore, the simulated scatterers’ veloc-
ity is determined randomly with an exponential probability

distribution. Note that the choice of their velocity distri-
bution has little to no impact on the result. Only the average
velocity has a significant influence. Therefore, we iterate
through 25 different values of their average velocity
between zero [see black line A in Fig. 2(c)] and the
maximum value (yellow line B) of 7% = 6.3 mms~'.
That value is estimated from the velocity scale of our
maximally dynamic disorder by comparing the present
length and timescales #j/7, for 1/7, = 3.5 ms~!. For the
initial spatial distribution of the point particles, we choose a
Gaussian with ¢, ,(0) = 50 my. For their velocity magni-
tudes, we distribute values between zero and the Fermi
velocity vg of our experimental system as they would be for
an ideal Fermi gas, while the angles are chosen isotropi-
cally. Note that, except for the cases of static (where only
the direction but not the magnitude of the velocity vector
can change) or absent scatterers, its choice has a negligible
influence on the expansion due to the underlying Markov
assumption.

Even though we insert the various scales of our experi-
ment as closely as possible, we emphasize that the
simulation still describes a very different setting from
our system. Still, employing the simulation reinforces
the assumption that Fermi acceleration is the underlying
mechanism driving our atoms to superdiffusion.

Finally, we note that a many-body theory taking into
account the full quantum nature of the Fermi gas will be
important for an in-depth evaluation of the observed
transition from a localized to an accelerated gas. Such a
model must incorporate small-scale yet strong disorder that
varies smoothly and continuously over short timescales.
Additionally, it must account for the initial many-body
ground-state wave function and the energy distribution
within the disordered Fermi sea of 10° particles.

Appendix B: Localized fraction—The localized
fraction fj,. estimates the infinite-time fraction of atoms
that would not diffuse away due to being localized,
assuming no atom losses. We base the determination of
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FIG. 4. Determining the localized fraction f),. from the series with (a) weak disorder, (V) = 120 nK x kg, and (b) strong disorder,
(V) =400 nK x kg. Plotting the relative density n(z)/n(0) (circles) over the square root of inverse time allows us to visualize f},. as the
density-axis intercept (crosses at 1/4/t = 0). Lines are fits with the anomalous-diffusion model Eq. (B1) where f,.., the value of the
density for t — oo, is the only free parameter. Errors are calculated from error propagation. The insets show the same as enlargements of
the density-axis intercepts of the fit lines for enhanced visibility of how f),. emerges from the fits.

the localized fraction on the method reported in
Ref. [22], modified for our expansion along one
dimension. Assuming a purely diffusive setting and a
unimodal atom distribution, the cloud’s peak density
n(y =0,1) decreases in time with 1/6(t). Specifically,
we compute the relative peak density n(0,7)/n(0,r=0)=
6(0)/o(r), such that all remaining factors cancel out
irrespective of the specific underlying distribution.
We further adjusted the method of Ref. [22] by
implementing the full anomalous-diffusion power law for
o(t) as in Eq. (1). Then, any remaining fraction of the
relative peak density in the limit of # — oo is interpreted
as the localized fraction f),, i.e., the deviation from the
purely diffusive picture. Specifically, we use the model

n(0,1)
n(0,0)

a*(0)

Sroe + (1= fioe) 2D, + (0 (B1)

where we fix the diffusion exponent a and coefficient
D, to the values we extract as described in the text
and use ¢(0) =53 pm from a Gauss fit to the trapped
cloud. For the relative peak density n(0,r)/n(0,0), we
use the approximation of n(0, 1) & w(f) — wygie With an
additional factor of N(0)/N(z) to compensate for atom
losses, where w(z) and wy. are the so-called histogram
widths of the density profile at time ¢ and pure-noise
profile, respectively. We find this approximation to be
quite robust against image noise. Note that we describe
the histogram quantities as well as the inverse
participation width in more detail in Supplemental
Material [52]. Further, for a comprehensive introduction
and discussion of these quantities including a systematic
comparison with established observables, see our
previous work in Ref. [55]. Finally, we emphasize that
we extract f),. as the only free parameter from fitting
the right side of Eq. (B1); see Fig. 4.
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