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The facilitation of Rydberg excitations in a gas of atoms provides an ideal model system to study
epidemic evolution on (dynamic) networks and self-organization of complex systems to the critical point of
a nonequilibrium phase transition. Using Monte Carlo simulations and a machine learning algorithm we
show that the universality class of this phase transition can be tuned but is robust against decay inherent to
the self-organization process. The classes include directed percolation (DP), the most common class in
short-range spreading models, and mean-field (MF) behavior, but also different types of anomalous
directed percolation (ADP), characterized by rare long-range excitation processes. In a frozen gas, ground
state atoms that can facilitate each other form a static network, for which we predict DP universality. With
atomic motion the network becomes dynamic by long-range (Lévy-flight type) excitations. This leads to
continuously varying critical exponents, varying smoothly between DP and MF values, corresponding to
the ADP universality class. These findings also explain the recently observed critical exponent of Rydberg
facilitation in an ultracold gas experiment [Helmrich et al., Nature (London) 577, 481 (2020)], which was
in between DP and MF values.
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Introduction—Nonequilibrium phase transitions [1] and
the dynamical self-organization of complex systems to the
corresponding critical point [2,3] are key phenomena
believed to be the underlying reason for the abundance of
scale invariance in nature. They are characteristic for a broad
spectrum of spreading processes ranging from epidemic
dynamics of diseases [4,5], earthquakes [6], and forest fires
[7], to neural networks [8], electric circuits, and information
spreading in the internet [9]. The most relevant nonequili-
brium phase transitions are those between an active and an
inactive phase (absorbing state) of dynamical activity. In
contrast to their equilibrium counterpart, they are much less
understood. However, the behavior near the critical point
shows universal features characterized by different non-
equilibrium universality classes [1].
One of the most prominent such universality class is

directed percolation (DP) [1], originally describing the flow
of fluids through porous materials. Janssen and Grassberger
conjectured that nonequilibrium transitions in any classical
system should belong to the DP universality class if they
(i) exhibit a continuous phase transition between an active
and a unique absorbing state, (ii) the transition is charac-
terized by a positive one-component order parameter,
(iii) the dynamical rules involve only short-range inter-
actions, and (iv) the system has no special attributes such as
additional symmetries or quenched randomness [10,11]. To
date no counterexamples to these criteria have been found
[12], and DP universality has even been predicted in more
general systems, e.g., with multiple absorbing states
[13,14].

In spite of its the apparent generality only few exper-
imental platforms are known for which DP behavior has
unambiguously been proven.
In 2007 the first such platform was found in turbulent

liquid crystals and a full set of critical exponents in d ¼
2þ 1 dimensions was measured [15,16]. Since then,
interacting systems of Rydberg atoms in the facilitation
regime have been suggested to study absorbing state phase
transitions, for which DP universal behavior was predicted
on a lattice with nearest neighbor interactions [17], and
subsequently experimentally observed in a 1D gas [18].
One important aspect, relevant for the emergence of scale
invariance, which these model systems lack is the effect of
losses from the system. In a number nonconserving regime
the gas density in the active phase decreases over time
which drives the system to its critical point [19,20], a
phenomenon called self-organized criticality (SOC) [2,3].
It is not conclusively understood if, and to which extend

SOC modifies DP universality [13,19,21]. An experiment
investigating Rydberg facilitation in a 3D gas, performed in
this number nonconserving regime [19], showed signatures
of SOC, but a deviation from DP universality. This
deviation was attributed to the self-organization process,
as it has been shown that losses can modify the universal
properties of the phase transition and may compromise
criticality altogether [21]. Specifically in sandpile models
dissipation is a relevant perturbation in the renormalization
group sense and any degree of bulk dissipation (in the
absence of loading) breaks criticality [21,22].
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Through numerical experiments and analytic consider-
ations we show that the deviation in the Rydberg experi-
ment is neither due to SOC [19] nor due to heterogeneity
[23], but results from a violation of the Jansen-Grassberger
conditions leading to a dependency of the universality class
on the relative velocity of the atoms in the gas. Tuning the
parameters which set the reference scale of the atomic
velocity, the system can either display DP, mean-field
(MF), or anomalous directed percolation (ADP) universal-
ity. In Fig. 1 numerical results for the critical exponent of
the active density around the critical point can be seen as a
function of the root mean square (rms) velocity of the
atoms. Also shown is the critical exponent measured in [19]
along with the estimated region of velocities in the experi-
ment ranging between the average thermal velocity of the
atoms and that resulting from the acceleration in the
repulsive Van der Waals potential.
Several real-life spreading processes go beyond the

Janssen-Grassberger conjecture. For example, the spread
of diseases by flying insects in addition to direct contact
violates the condition of short-range excitations [24,25].
Likewise, spreading processes often take place on

dynamical rather than static networks [26]. These often
change on a timescale comparablewith that of the spreading
process [27].
Microscopic system—We consider a three-dimensional

gas of N atoms coupled between a ground jGi and a
Rydberg jRi state with a laser with Rabi frequency Ω and
detuning Δ [see Fig. 1(a)]. The unitary dynamics are
described by the Hamiltonian Ĥ ¼ P

iΩσ̂xi − Δσ̂rri þP
j<iðc6=r6ijÞσ̂rri σ̂rrj , where σ̂rri is the projection operator

of the ith atom onto its Rydberg state, c6 is the Van der
Waals coefficient for the Rydberg-Rydberg interaction
potential, and rij ¼ jr⃗i − r⃗jj is the distance between atoms
i and j.
In addition to the unitary dynamics, we account for

spontaneous decay of the Rydberg state into the ground or
an additional dark state j0i described by the jump operators
L̂1;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − bÞγp jGiiihRj and L̂2;i ¼
ffiffiffiffiffi
bγ

p j0iiihRj, respec-
tively. Here the parameter b∈ ½0; 1� describes the portion of
atoms lost from the system, e.g., following decay into inert
states, or state-changing collisions. Finally, dephasing is
accounted for by L̂3;i ¼ ffiffiffiffiffi

γ⊥
p jRiiihRj. Typically in Rydberg

gases γ⊥ ≥ Ω, allowing classical rate equations to describe
these systems to high accuracy [28].
The evolution of the N-body density matrix is given by

the Lindblad master equation ðd=dtÞρ̂ ¼ −i½Ĥ; ρ̂� þ L̂ðρ̂Þ,
with the superoperator L̂ðρ̂Þ [29]. After adiabatic elimina-
tion of coherences a set of rate equations for the occupation
probabilities in Rydberg (pj

r) and ground states (pj
g) of the

jth atom can be derived. These read

d
dt
pj
r¼−ðΓjþγÞpj

rþΓjp
j
g;

d
dt
ðpj

rþpj
gÞ¼−bγpj

r; ð1Þ

where the rate Γj ¼ 2Ω2γ⊥=ðγ2⊥ þ V2
jÞ with Vj ¼ Δ½−1þP

l∈Σðr6f =r6jlÞ� depends on the dipole-dipole shift induced
by all other Rydberg atoms denoted by Σ.
For all simulationswe initiate randompositions in a 3Dbox

with lengthL ¼ 7rf and periodic boundary conditions. Atom
velocities are sampled from a Maxwell-Boltzmann distribu-
tion, i.e., a Gaussian in each direction, with rms velocity v.
Furthermore,we use γ⊥=γ ¼ 20 and aMonteCarlo algorithm
[30] with fixed time step γdt ¼ 0.0025.
For Rydberg facilitation systems, atoms are continuously

driven far from resonance, i.e., Δ ≫ Ω. As a result of the
strong detuning, off-resonant (seed) excitations are strongly
suppressed. However, in the presence of a Rydberg atom,
other atoms with distance r ≈ rf ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðC6=ΔÞ6
p

are shifted
into resonance as a result of the vdW interaction [see
Fig. 1(b)].
Consequently, atoms within a spherical shell with

volume Vs ≈ 4πδrfr2f around a Rydberg atom can be
facilitated (i.e., excited on much faster timescales). Here
δrf ≈ ðγ⊥=2ΔÞrf is the width of the facilitation shell. The
rate of excitation for atoms within the facilitation shell is

FIG. 1. (a) Single atom dynamics: ground jGi and Rydberg
states jRi are laser-coupled with Rabi-frequency Ω and detuning
Δ ≫ Ω. jRi decays with rate γ and with branching b∈ ½0; 1� out of
the system. (b) Two atom scheme. Dipole interaction shifts jRRi
into resonance at the facilitation distance rf . (c) Schematic of
spreading dynamics: Facilitation is constrained to orange shells
with radius rf andwidth δrf . Spreading then occurs at effective rate
κ (see main text). (d) Critical exponent β (blue dots, see main text)
as a function of mean gas velocity v. Also shown is the theoretical
prediction (black line, see main text), for the mean field, directed
percolation, and anomalous directed percolation I regimes. Errors
in β are given by the covariance matrix when fitting (see text). All
points use the parameters b ¼ 0.3, Δ=γ ¼ 2000, with varied
Ω=γ ∈ ½1; 10� and gas density n0r3f ∈ ½20; 30�.
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Γf ¼ 2Ω2=γ⊥. Facilitation can also be interpreted as in-
fection processes, with a global spreading rate κ ¼ ΓfnVs,
where n is the gas density. Spontaneous decay of Rydberg
atoms back to the ground state then corresponds to recovery
with rate γ.
Critical scaling—These systems feature a nonequili-

brium phase transition between an absorbing phase, for
κ < γ, with no excited atoms in the thermodynamic limit,
and an active phase, for κ > γ, featuring widespread and
infinitely long-lived activity. Near the critical driving
strength κ ≈ γ, there is universal behavior characterized
by scaling relations for the Rydberg density ρ, as well as the
temporal and spatial correlation lengths, ξk and ξ⊥,
respectively,

ρ ∼ ðp − pcÞβ; ξk;⊥ ∼ jp − pcj−νk;⊥ : ð2Þ

Here p − pc corresponds to the distance of the control
parameter from the critical point, and β, νk, ν⊥ are critical
exponents. Finally, while seed excitations are strongly
suppressed, they still occur with rate τ ∼ 1=Δ2.
In the following, we consider the system in the SOC

regime, allowing Rydberg atoms to additionally decay to an
inert state, effectively removing them from the system, with
the rate bγ [see Fig. 1(a)]. As a consequence, the system
drives itself to the critical density given in MF approxi-
mation by nc ¼ ðΔγ=4πΩ2Þr−3f .
The SOC dynamics for different initial gas densities can

be seen in Fig. 2(a). In the initial active phase there is a fast
loss of atoms to inert states until the critical point is reached
where this loss slows down substantially. To observe
universal critical behavior these two timescales must be
well separated [31].
Since an infinite separation of timescales is not numeri-

cally feasible, a slow decay of the density at the critical
point is expected [this can be seen in Fig. 2(a)]. This,
however, poses a challenge for the determination of the
critical density. To this end, we trained a machine learning
(ML) algorithm to predict nc based on the time-dependent
density nðtÞ [32]. Predictions of nc can be seen in Fig. 2(a)
as horizontal dashed lines for each trajectory.
For the critical scaling we first consider the limit where

the thermal movement of atoms occurs on a much slower
timescale than the internal dynamics, rendering them effec-
tively static (i.e., the thermal gas velocity is v < δrfΓf .) In
this frozen-gas limit, the spreading of excitations is con-
strained to a random Erdős-Rényi network with the average
network degree hki given by hki ¼ nVs [34].
At hki ¼ 1 a transition occurs between a nonpercolating

network of ground state atoms with distance rf , composed
of many small disconnected clusters, and a percolating
network with one large cluster on the order of the size of the
system [35]. For hki < 1 this gives rise to a heterogeneous,
nonuniversal Griffiths phase replacing the critical point.
Above the percolation transition, however, i.e., hki > 1, the

absorbing-state phase transition is recovered [34,36]. (The
SOC dynamics do not change the Erdős-Rényi character of
the network, but only lead to a reduction of hki).
At high gas temperatures the continuous mixing of

atomic positions and subsequent fast decay of spatial
correlations leads to mean field behavior regardless of
hki [37].
An unambiguous signature of universal behavior and a

precise method for the classification into a certain univer-
sality class is the collapse of data obtained over a large
parameter range onto specific scaling functions. Following
Ref. [19], we consider the density of atoms in active states
(i.e., in the ground and Rydberg state, but not in the inert
state) at the critical point nc, normalized to the initial
density n0 as a function of the generalized driving strength
Ω2n1=α0 , with α being tuned until all data points collapse
onto a single curve. Scale invariance requires

nc
n0

¼ f
�
Ω2n1=α0

�
ð3Þ

to hold over the entire parameter range, with a scaling
function fðxÞ, which can be chosen as fðxÞ ¼ xβcðxμβ þ
xμβc Þ−1=μ [19], where xc and μ are free parameters defining
the position and sharpness of the critical point. Finally, β
corresponds to the critical exponent from Eq. (2).

FIG. 2. (a) SOC dynamics of density of ground and Rydberg
atoms in high temperature limit (v=δrfΓf ¼ 5443) for b ¼ 0.3,
Ω=γ ¼ 3.7, and Δ=γ ¼ 1000, with varied n0 showing self-
organized criticality to a single density nc. Machine learning
predictions of the critical density for each trajectory (horizontal
dashed lines) and nc (horizontal solid black line). (b) ML
predictions of critical density nc normalized by initial density
n0 depending on the rescaled driving (see main text) for (b) the
nonpercolating gas, hki < 1 (left) and (c) for the percolating gas,
hki > 1 (right) for both frozen (v=δrfΓf ¼ 0) and high temper-
ature (v=δrfΓf ¼ 5443) limits. The exponent α is tuned until all
data points collapse. For the frozen, nonpercolating gas no
collapse can be found.
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For both high temperature and frozen limits, the results
are plotted in Figs. 2(b) and 2(c) for hki < 1 and hki > 1,
respectively. For the high temperature limit we receive a
collapse of all data points onto a single power-law using
α ¼ 1.08ð1Þ (hki < 1) and α ¼ 1.26ð1Þ (hki > 1). We then
extract the critical exponents βlowhki ¼ 1.049ð19Þ and
βhighhki ¼ 0.996ð18Þ, respectively, which both fall in line
with the expected mean field exponent βMF ¼ 1.00. Errors
are calculated from the covariance matrix of the fit
parameters.
For the low temperature regime, on the other hand, [dots

in Figs. 2(b) and 2(c)] we find no collapse of data below
the percolation threshold, i.e., hki < 1, for values of
α∈ ½0.5; 2.0�, indicating nonuniversal behavior which is
consistent with a heterogeneous Griffiths phase [34]. For
hki > 1, however, the data collapse onto a single power-law
for α ¼ 0.88ð1Þ, with the slope clearly differing from the
high temperature one. Furthermore, when using the above
mentioned fit function we obtain the power-law exponent
βfrozen ¼ 0.809ð13Þ, very close to the expected 3D DP
critical exponent βDP ≈ 0.813 [12].
To unambiguously confirm DP and MF universality in

the low and high temperature limits, we also determine the
critical exponent νk governing temporal correlations around
the critical point. We find a good agreement with literature
values. A detailed analysis including numerical results can
be found in Supplemental Material [32].
Anomalous directed percolation—From the above dis-

cussion one would naively expect that there is a critical
value of the mean gas velocity where a phase transition
between DP and MF behavior takes place. Astonishingly
however, we find for gas temperatures between the two
limits (and hki > 1) a universal collapse of data points
with a monotonously changing critical exponent β over
multiple orders of magnitude in the rms gas velocity
[Fig. 1(d)].
Increasing the temperature the system leaves the DP

regime at rather low velocities corresponding to the (very
small) width of the facilitation shell per facilitation time,
i.e., v− ¼ δrfΓf (left mark in Fig. 1). This is due to the
number of ground-state atoms that can be facilitated by a
single Rydberg atom increasing once this velocity is
exceeded. On the other hand, for velocities greater than
vþ ¼ rfΓf , i.e., when an atom flies distances larger than the
facilitation distance in the facilitation time, the network
character of (ground) state atoms becomes completely
washed out (right mark in Fig. 1).
In the following we show that the critical behavior with

continuously varying β in the velocity range between these
two limiting values is a signature of ADP universality,
resulting from effective long-range spreading processes and
heavy-tailed waiting time distributions [38].
Absorbing-state phase transitions in complex systems

where excitation distances follow a Lévy flight distribution
for large r as

PðrÞ ∼ 1

rdþσ ; ð4Þ

where d is the dimension and σ is a free parameter, no
longer fulfill the Janssen-Grassberger conjecture if σ
becomes too small. Such systems, however, still show
universal behavior, albeit with continuously varying critical
exponents depending on the value of σ [12,38]. The same is
true if the distribution of time intervals between successive
excitations [i.e., waiting time distribution PðδtÞ] is heavy
tailed. In general, the algebraic spatial and temporal
distributions effectively reduce the upper critical dimen-
sion, and the critical exponents approach the MF values.
In the frozen gas limit each atom is confined to a cluster

and has k atoms in its facilitation shell, with k given by a
Poissonian distribution as PðkÞ ¼ ½ðnVsÞk=k!�e−nVs . With
increasing thermal velocity, the probability that an atom
finds another connection outside of its original cluster
increases. Since the underlying network is a random
network, even small distances in real space can correspond
to completely new connections, i.e., very distant jumps in
the network.
For an initially excited Rydberg atom with velocity v, the

distribution of distances to the next facilitated atom can be
seen in Fig. 3(a), where the dots are from MC simulations.
Outside of the facilitation shell (vertical black dashed line),
we find that this probability decays as a power-law with an
exponent σ decreasing with increasing atom velocity. For
large distances around v=Γf the excitation probability is
exponentially truncated.
This distribution can be described analytically outside of

the facilitation shell by

PðrÞ ¼ 2πξr
Z

π

0

dθ
e−ξ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θþr2−1

p
−cos θ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θ þ r2 − 1

p ; ð5Þ

with ξ ¼ ðhki=δrfÞð1 − e−δrfΓf=vÞ [black solid line in
Fig. 3(a)]. The derivation of Eq. (5) can be found in the
Supplemental Material [32].
In 3D systems, (long-range) MF behavior occurs for

σ < 1.5 [lower black dashed line in Fig. 3(b)], while for
σ > 2.118ð17Þ regular DP behavior is expected [upper
black dashed line in Fig. 3(b)] [12]. In between these limits,
the long range interactions are prevalent enough to disrupt
DP universality, but not strong enough to suppress all
correlations. Here, the system is governed by a family of
continuously varying universality classes (ADP), labeled
by the long-range parameter σ [12].
Fitting the spatial distribution of excitation distances

with an exponentially truncated power-law fðxÞ ¼
c1x−c2e−c3x, with c2 ¼ σ − 1 [as Pðr⃗Þd3x ¼ PðrÞ4πr2dr],
we receive very good agreement between the data and the
fit function [dashed lines in Fig. 3(a)]. From this we can
extract the power-law slope σðvÞ governing the flight
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distance distribution depending on the thermal gas velocity
seen in Fig. 3(b).
For the distribution of times between excitations (see

Supplemental Material [32]), we find a deviation from a
pure exponential distribution for gas velocities in the
interval v=δrfΓf ∈ ½0.5; 50.0�. In this regime [reflected by
the green shaded region in Fig. 3(b)], spatial and temporal
long-range processes are relevant.
For gas velocities in the interval v=δrfΓf ∈ ½50; 160�, we

find an exponential waiting time distribution, but a spatial
power-law distribution with σ > 1.5, giving rise to the ADP
I regime [1]. Here the critical exponents β and νk can be
field theoretically approximated in perturbation theory to
one-loop order, which yields [12] for σ > 1.5

β ¼ 1 − 2
2σ − 3

7σ
; νk ¼ 1þ 2σ − 3

7σ2
; ð6Þ

and β ¼ νk ¼ 1 for σ ≤ 1.5. For gas velocities v=δrfΓf ≳
50 we see a very good agreement between the field
theoretical approximation of β½σðvÞ� and our simulation
results (black line in Fig. 1). With decreasing velocity, i.e.,
entering the ADP II regime, the field theoretical predictions
begin to diverge (gray dashed line in Fig. 1) resulting from
the nonexponential distribution in waiting times and the
failure of the perturbation expansion.

Conclusion—Systems of facilitated Rydberg excitations
form an accessible experimental platform to investigate
nonequilibrium dynamics. Using Monte Carlo simulations
we discover the existence of rare Lévy-flight type excita-
tions which, if prevalent enough, can alter the universality
class of the nonequilibrium phase transition in the system.
This deviation from directed percolation universality was
previously assumed to be a result of self-organized criti-
cality. However, for low temperatures we find critical
exponents which coincide with DP universality while the
system also displays SOC.
One important aspect is whether all universality classes

can be experimentally realized. For typical ultracold
Rydberg gases temperatures below 1 μK [39] are reachable.
The critical temperature to reach the DP regime is given by
v− ¼ δrfΓf ≡ ðκ=4πr2f Þ (explicitly T− ¼ ðmκ=3kB4πr2f Þ,
with the atom mass m). For the parameters used in [19]
this becomes T− ≈ 7 μK.
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