
PHYSICAL REVIEW B 112, 125137 (2025)

Parton mean-field theory of a Rydberg quantum spin liquid induced
by density-dependent Peierls phases
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We derive a parton mean-field Hamiltonian for Rydberg excitations on a honeycomb lattice with nearest and
density-dependent, complex next-nearest neighbor hopping. Numerical results obtained from exact diagonaliza-
tion of small systems have given indications for a ground state that is a chiral spin liquid (CSL) [Phys. Rev.
Res. 5, 013157 (2023)]. Here we provide further evidence for this. Calculating the ground-state wavefunction
self-consistently, we show that the mean-field Hamiltonian fulfills the requirements for a CSL ground state,
resulting from a projected symmetry group classification and verify the expected twofold topological degeneracy
on a torus. Furthermore we find very good overlap with the ground-state wavefunctions obtained by exact
diagonalization of the original Hamiltonian.

DOI: 10.1103/bh7y-k8x9

I. INTRODUCTION

Quantum spin liquids (QSLs) are fascinating states of mat-
ter that are primarily characterized by a lack of any magnetic
order in the ground state [1–3]. Quantum fluctuations prevent
the system to be ordered even at zero temperature. In recent
years, other properties of QSLs such as massive many-body
entanglement have moved into focus [4]. While theoretically
the existence of quantum spin liquids is certain, such states
being the solution to a growing number of exactly solvable
models [5–7], the quest for finding real materials that exhibit
such exotic phases is still a formidable challenge [3,4,8–14].

Recently, quantum simulators based on Rydberg atoms
have emerged as platforms to engineer Hamiltonians that can
host spin liquid ground states [15–17]. Such platforms pos-
sess the advantage that the microscopic interactions between
the individual spins can be tightly controlled and tuned to
mimic, e.g., quantum dimer models, where Rydberg blockade
enforces the dimer constraint [15].

In [18] some of the authors of this work presented a model
of interacting Rydberg atoms on a honeycomb lattice that
included a density-dependent Peierls phase responsible for
chiral motion of the Rydberg excitations. Numerical calcu-
lations and a mapping to fermions produced evidence that
frustration in this model leads to a chiral spin liquid (CSL)
state. Crucially, however, no ground-state degeneracy was
found on the torus, likely due to finite-size limitations. In a
subsequent publication [19], the observation of a QSL-phase
was further solidified using the projective symmetry group
(PSG) classification of CSLs [20], based on a parton mean-
field theory of spin liquids [21,22]. The authors considered
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different ansatz Hamiltonians derived from general symmetry
considerations, selected the best fitting model, and determined
its parameters by comparison with exact diagonalization (ED)
results for small systems. However, the physical origin of the
ansatz Hamiltonian remained unclear and the corresponding
parameters were ad hoc fits.

In this work, we derive the parton mean-field Hamiltonian
from microscopic properties and compute the ground state
self-consistently. The self-consistent solution verifies the spe-
cific form of the Hamiltonian suggested in [19] and shows
remarkable agreement with ED-simulations. In addition, it
yields a twofold topological degeneracy expected for CSLs
but not observed in ED.

II. MODEL HAMILTONIAN

In this work we consider the model originally proposed in
[18], derived from microscopic dipole-dipole interactions of
Rydberg atoms.

As can be seen in Fig. 1, the atoms are placed on the nodes
of a honeycomb lattice at nearest neighbor (NN) distance r,
where every atom is characterized by three energy levels: the
qubit (or spin-1/2) states |0〉 and |1〉 as well as the auxiliary
state |+〉, which represent the Zeeman-split sublevels of a
Rydberg S and P manifold. The interactions between the
Rydberg atoms are then composed of several components.
First, the simple dipole-dipole exchange process leads to a NN
hopping of the Rydberg P excitation (state |1〉). However, due
to the auxiliary state |+〉 one also obtains a second order hop-
ping process, where an excitation is transferred off-resonantly
via the |+〉 state. Due to angular momentum conservation, the
hopping amplitude of this process acquires a phase of ei2φi j

depending on the geometric angle φi j that the three involved
atoms enclose. In summary, this process leads to an effective
NNN hopping that is associated with a Peierls phase and
depends on the occupation of a third atom. This Hamiltonian
has been studied in previous publications [18,23–25], which is
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FIG. 1. Honeycomb lattice with a two-site unit cell (A and B) of
trapped atoms excited to Rydberg states |1〉 and |0〉, forming spin-1/2
systems. Spin-orbit coupling induced by an external magnetic field
leads to nonlinear, complex second-order hopping processes to the
next-nearest neighbor (NNN, curved arrows) in addition to direct
nearest neighbor (NN, black arrows) hopping. The relevant level
structure of a single atom is shown in the inset. The NNN hopping
is facilitated by virtual transitions from |0〉 to the off-resonant state
|+〉 detuned by �. The black arrows and dashed arrows correspond
to the lattice vectors ν,μ.

why we refer to those for a detailed derivation. Adiabatically
eliminating the |+〉 state and setting J = d2/(8πε0r3), with d
being the dipole matrix element between |0〉 and |1〉, as the
unit of energy the Hamiltonian reads

Ĥ = − J
∑
〈i, j〉

b̂†
j b̂i − 2gJ

∑
〈〈i, j〉〉

b̂†
j b̂ie

± 2π i
3 (1 − n̂i j )

+ 2gJ
∑
〈i, j〉

n̂in̂ j + H.c., (1)

where b̂†
i and b̂i create or destroy a hard-core boson on lattice

site i, respectively, and n̂i = b̂†
i b̂i is the number operator. We

label the two triangular sublattices of the honeycomb lattice
A and B, respectively. We define 〈i j〉 to signify summation
over NNs with i ∈ A and 〈〈i j〉〉 to mean summation over
next-nearest neighbors (NNNs) where i → j is in counter-
clockwise direction.

In Fig. 1 the different hopping terms are illustrated. Black
solid arrows correspond to NN hopping, while the red and
blue arrows signal the NNN terms with the complex phase
encoded in the color. The respective intermediate site, which
controls the hopping, is indicated in the bend of the arrow.
The dashed black arrows denote the lattice vectors used later.
While the NN hopping is of constant strength, the NNN
hopping as well as the NN density-density interaction terms
scale with the parameter g = c J/�, which is determined by
the detuning of the auxiliary |+〉 state. Since � has to be
large to justify the adiabatic elimination, the value of J/� has
to remain small, however g ∼ 2 is possible, due to favorable
Franck-Condon factors contained in c.

The mean-field approximation to Hamiltonian (1), ob-
tained by replacing the number operators by their expectation
value at half filling,

Ĥ = −J
∑
〈i, j〉

b̂†
j b̂i − gJ

∑
〈〈i, j〉〉

b̂†
j b̂ie

± 2π i
3 + H.c. (2)

contains two competing terms, which lead to frustration at g ≈
0.5. This can be seen most easily in an equivalent spin rep-
resentation b̂i ∼ Ŝ−

i , and b̂†
i ∼ Ŝ+

i : The NN hopping aims to
align the spins parallel in the xy plane, while the g-dependent
NNN hopping term prefers a 120◦ orientation on each sub-
lattice. The competition between the two causes a phase
transition at g ≈ 0.5. Close to this point, quantum fluctuations
of the term n̂i j become relevant and induce an intermediate
phase that is characterized by the absence of spin order as well
as the breaking of chiral symmetry, manifested by a Chern
number of C = 1, found by ED simulations in [18], and is
thus a candidate for a CSL state.

However, a definite identification of unambiguous spin
liquid characteristics such as the topological entanglement
entropy and in particular the ground-state degeneracy were
not obtained in the numerics. Chiral spin liquids are expected
to be described in the low-energy regime by a Chern-Simons
theory [20,26], which implies a ground-state degeneracy de-
pending on the genus g of the compactified parameter space.
In the simplest case of an Abelian theory, the degeneracy
is 2g, i.e., 2 on a torus. Using projective symmetry group
(PSG) arguments and ansatz Hamiltonians, the authors of [19]
determined the putative spin liquid phase to indeed be a CSL
state.

In this publication, we expand on the previous results
and construct a parton Hamiltonian not from symmetry con-
siderations but directly from the microscopic physics of
the hard-core bosonic Rydberg excitations. We obtain an
analytical ground-state wavefunction and compute physical
observables confirming the accuracy of our approach.

III. PARTON CONSTRUCTION AND MEAN-
FIELD APPROACH

Since QSLs are characterized by vanishing magnetic cor-
relations 〈Ŝi〉 = 0, it is not possible to do a straight-forward
mean-field treatment on the spin-operator basis or equiv-
alently in the hard-core boson basis. However, a way to
construct wavefunctions of 2D spin liquids is the projective
construction by Wen [21] first introduced in the context of
high-Tc superconductors by Baskaran, Zou, and Anderson
[27]. One introduces fermionic parton operators fi,α called
spinons with α ∈ {↑,↓}, which carry spin 1

2 and replace spin
operators by

Ŝ = 1
2 f †

α σαβ fβ, (3)

where σ is the vector of Pauli matrices [e.g.,
Ŝx = 1

2 ( f †
↑ f↓ + f †

↓ f↑)]. It is now possible to do a mean-field
decoupling of the Hamiltonian where all expectation values
corresponding to magnetic order can be set to zero [28], i.e.,

〈Ŝi〉 = 1
2 〈 f †

i,ασαβ fi,β〉 = 0. (4)

The fermion-parton replacement enlarges the Hilbert space to
contain unphysical states where a site is occupied by zero or
two fermions. This fact is dealt with in the end by performing
a Gutzwiller projection on the resulting mean-field ground
state where these unphysical states are projected out, i.e.,
P̂G = �in̂i(2 − n̂i ).

For our mean-field model we first replace the bosonic op-
erators in Eq. (1) according to Eq. (3), i.e., a bosonic creation
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operator is replaced by the product of a creation operator of a
spin-up and an annihilation operator of a spin-down fermion.
The resulting Hamiltonian is of sixth order in the parton
operators.

We then perform a mean-field decoupling of the resulting
parton-Hamiltonian, reducing the problem to correlation func-
tions of the type 〈 fi f j〉 and 〈 f †

i f j〉. We simplify the problem by
setting the expectation value for pair creation and annihilation
to zero:

ηi jεαβ = 〈 fi,α f j,β〉 != 0. (5)

This approximation is justified since we want to obtain the
ground state at half filling, which corresponds to a double half
filling of the fermion partons, and the operation in Eq. (5)
moves a state out of this particle-number conserved subspace.

This leaves only the expectation value for fermion-hopping

χi j,α = 〈 f †
i,α f j,α〉 (6)

with no implicit summation over α, which is restricted to
NN and NNN hopping, and which we call χ1,α and χ2,α ,
respectively. Note that we allow for the fermion hopping of
the two species ↑ and ↓ to be independent of each other, in
contrast to the procedure in [21].

As usual in Wen’s method, one expresses the mean-field
Hamiltonian in terms of the spinor operator � = ( f↑, f †

↓ )T .
Restricting this kind of mean-field Hamiltonian to NN and
NNN interaction leads to

HMF (χ1,2) =
∑
〈i j〉

�
†
i V � j +

∑
〈〈i j〉〉

�
†
i W � j + H.c., (7)

where V and W are 2 × 2 matrices. In our case, V and W
contain no off-diagonal terms due to suppression of spin-
pairing terms [see Eq. (5)]. Thus, the mean-field Hamiltonian
becomes diagonal in the ↑ and ↓ fermions. We furthermore
perform a particle-hole transformation on the ↓ fermions,
which makes it easier to project the parton state back to the
physical subspace:

fi,↑ → f̃i,↑ = fi,↑, (8)

fi,↓ → f̃ †
i,↓ = fi,↓. (9)

We can then express the mean-field Hamiltonian (dropping
constant terms and setting J = 1) as

HMF ({χ̃1,α, χ̃2,α})

=
∑

α=↑,↓

⎡⎣∑
〈i j〉

vα f̃ †
i,α f̃ j,α +

∑
〈〈i j〉〉

wα f̃ †
i,α f̃ j,α

⎤⎦ + H.c. (10)

with

vα = −χ̃1,(−α) − gχ̃†
1,α

(
4Re

(
e−i 2π

3 χ̃2,(−α)
) + 1

)
, (11)

wα = −ge−i 2π
3 (χ̃2,(−α) + |χ̃1,(−α)|2), (12)

where (−α) denotes the opposite spin index. HMF as well
as the exact parton-Hamiltonian is spin isotropic in terms of
the particle-hole transformed fermions, while in the original
description it is not.

Note that although HMF is quadratic in the fermionic opera-
tors, it is still a nonlinear function of the correlations χ̃1/2,α via

FIG. 2. Spectrum of ↑ fermions for self consistent mean-field
values at g = 0.7

Eq. (6). Because of this we need to find the “true” ground state
by self-consistently determining χ̃1/2,α as the limiting values
of the following iteration scheme:

χ̃
(n+1)
1 = 2

3N

〈
ψ

(n)
MF

∣∣∑
〈i j〉

f̃ †
i f̃ j

∣∣ψ (n)
MF

〉
, (13)

χ̃
(n+1)
2 = 1

3N

〈
ψ

(n)
MF

∣∣ ∑
〈〈i j〉〉

f̃ †
i f̃ j

∣∣ψ (n)
MF

〉
, (14)

where N denotes the number of lattice sites. In the limit of
N → ∞ we can express each of these expectation values
analytically. To this end, we note that HMF is diagonal in the
two spinon species, so we can find the ground state for each
spinon separately. Each spectrum has two bands (depicted in
Fig. 2) since the honeycomb lattice features a two-site unit
cell. The Hamiltonian in each spin subspace can be diagonal-
ized in momentum space by a unitary transformation that can
be represented by a 2 × 2 matrix

Uk =
(

a(k) c(k)
b(k) d (k)

)
(15)

so that U †
k HkUk = Hdiag, where we drop the spin-index α for

simplicity. Since Uk is a function of the mean-field Hamilto-
nian Eq. (10), in general Uk = Uk ({χ̃1,α, χ̃2,α}). The ground
state |ψMF 〉 for half filling of the original bosons is then
obtained by filling the lower bands for both ↑ and ↓ fermions.
Thus, we can re-express Eqs. (13) and (14) as

χ̃
(n+1)
1 = 1

3A

∫
k∈1.BZ

d2k ϕ1(k)(a(n)(k))∗c(n)(k), (16)

χ̃
(n+1)
2 = 2

3A

∫
k∈1.BZ

d2k

{
ϕ2(k)|a(n)(k)|2

+ ϕ∗
2 (k)|c(n)(k)|2

}
, (17)

where A denotes the area of the first Brillouin zone (1.BZ) and

ϕ1(k) =
3∑

j=1

eik·ν j , ϕ2(k) =
3∑

j=1

eik·μ j , (18)

where ν j are the vectors pointing at NNs from an atom on
sublattice B and μ j are vectors pointing at NNNs in a clock-
wise direction starting from an atom on sublattice A (see
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FIG. 3. Self-consistent solutions of (real) NN (χ1) and (complex)
NNN (χ2) correlations as functions of g.

Fig. 1). According to [21], χi j,↑ = χi j,↓. In the particle-hole
transformed picture, this translates to

χ̃i j,↑ = −χ̃
†
i j,↓. (19)

To self-consistently determine the correlations χ1/2,α , for
each value of g, we draw the starting values χ̃

(n=0)
1,↑ and χ̃

(n=0)
2,↑

randomly from the interval (0,1) and set χ̃
(n=0)
1/2,↓ according to

Eq. (19). We then determine χ̃1/2,↑ and χ̃1/2,↓ independently
of each other according to Eqs. (16) and (17). Remarkably, the
iteration series converges to a point where χ̃1,↑ = χ̃1,↓ := χ̃1

and χ̃2,↑ = χ̃2,↓ := χ̃2. The full result is shown in Fig. 3.
In [19], a classification scheme of QSLs based on projec-

tive symmetry groups (PSG) [21] was used to construct a
parton mean-field wavefunction of the Rydberg QSL model
Eq. (1). To this end, six distinct PSGs were identified that
may describe the model in the form of a parton mean-field
theory. They are characterized by their SU(2) representation
of reflection gσ (A, B) and π/3-rotation gR(A, B) and have
nonvanishing mean-field amplitudes V and W of the Hamil-
tonian Eq. (7) (see Fig. 4).

The amplitudes V and W are represented as linear com-
binations of Pauli matrices. For each ansatz, V and W were
taken as variational parameters and optimized in order for
the resulting ground-state to have maximum overlap with the
ED wavefunction (see Sec. IV). The ansatz with the largest
overlap with ED wavefunctions was found to be ansatz no.
1. The optimal parameters obtained for g = 0.7 were V =
v · σ0 and W/v = −0.31i σ0 − 0.1i σ3. The overlap obtained
for these parameters is shown in Fig. 5. Our self-consistent

FIG. 4. Modified from [19]: PSG classification of parton mean-
field Hamiltonians. ε = ±1 denotes doubling of unit cell in parton
space, gσ (A, B) and gR(A, B) are projective representation of reflec-
tion and rotation symmetries, σμ are Pauli matrices, and a = ei 2π

3 σ 3
.

V and W are the matrices in (10) allowed by PSGs.

FIG. 5. Overlap of parton mean-field and ED wavefunctions for
different lattice shapes. Light-colored, triangle marked values show
the overlap obtained for the PSG method as used in [19]. Gray
background marks the rough points of phase transition obtained from
ED [18]. Note that the exact points of phase transition depend heavily
on the shape on which ED was performed.

solution yields χ̃
(↑)
1 = χ̃

(↓)
1 = −0.238 and χ̃

(↑)
2 = χ̃

(↓)
2 =

0.019 + i0.280. Thus, we find directly, i.e., without fitting to
numerical results,

V = v · σ0, W/v ≈ −0.26 (1 + i)σ0, (20)

where v ∈ R. As the mean-field Hamiltonian Eq. (10) is rep-
resenting a class of Hamiltonians depending on the parameters
χ̃1/2,α , we can only now determine under which PSG the
Hamiltonian is falling. We find that the mean-field Hamilto-
nian for the self-consistently obtained mean-field amplitudes
is indeed in the same ansatz class no. 1 as found in [19].

In summary, our analytical expression allows us to de-
termine self-consistently χ̃1/2,α and therefore the mean-field
ground state. Our method of constructing the ground state
wavefunction is not restricted to small system sizes in con-
trast to ED. (Note that in order to find the appropriate ansatz
Hamiltonian in [19], a comparison with ED simulations for
rather small systems sizes (16 unit cells) had to be done.)

IV. COMPARISON TO ED-WAVEFUNCTIONS

Having found the self-consistent mean-field ground-state,
we can now compare it with the results obtained by ED. Since
ED can only be performed on finite lattices, we compute
the mean-field ground state on finite lattices as well [29]. We
then perform a Gutzwiller projection in order to obtain the
corresponding bosonic wavefunction. For g > 0, the spectrum
is gapped. Since a chiral spin liquid is expected to be described
in the low energy regime by a Chern-Simons theory [20],
which implies a ground state degeneracy depending on the
genus g of the parameter space, we expect the ground state to
show twofold topological degeneracy in the thermodynamic
limit. In the ED simulations, this degeneracy could not be
observed [18], most likely due to the dispersive band struc-
ture of the model (see Fig. 2) and the small system sizes on
which the wavefunction was computed on [19]. In the parton
mean-field approach, degenerate eigenstates on a torus can
be constructed in the thermodynamic limit by threading flux
quanta along the two directions, which corresponds to twisted
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boundary conditions �x,y ∈ {0, π} for the fermions, which is
explained in detail in [19,30]. This could in principle lead to a
fourfold degeneracy, if the constructed wavefunctions would
all be linear independent. To determine the actual number of
orthogonal ground states, we calculate the eigenvalues of the
overlap matrix Oi j = 〈ψi|ψ j〉, where each |ψ j〉 stands for one
of the four ground states. For g > 0, we observe two of these
eigenvalues being zero up to a tolerance of 10−2 similar to
[19]. Thus, the actual degeneracy of the ground-state manifold
is only two and the two linearly independent ground states
|ψ (I )〉, |ψ (II )〉 can be obtained by computing the eigenvectors
for the nonvanishing eigenvalues of the overlap matrix. Re-
markably, this twofold topological degeneracy has not been
found in ED simulations but emerges naturally in the parton
mean-field description.

Finally, the overlap with the ED ground state reads

OMF
ED =

√∣∣ 〈ψED

∣∣ψ (I )
MF

〉 ∣∣2 + ∣∣ 〈ψED

∣∣ψ (II )
MF

〉 ∣∣2
. (21)

The result is shown in Fig. 5. The mean-field ground state
shows large overlap within the QSL-phase for 0.4 � g � 0.9.
Remarkably, the maximum overlap is achieved for even lower
g values, where ED-measurements using a ground-state fi-
delity metric predict the system still to be in a BEC phase [18].
This observation could point at the existence of an additional
intermediate phase already suggested in [19]. On the other
hand, our mean-field model is not capable of predicting phase
transitions, as we excluded spin order by setting 〈Ŝ〉 = 0,
see Eq. (4). We note that for the comparably small system
sizes used in the ED simulations, a high overlap does not
necessarily imply a QSL phase, but rather that low values of
OMF

ED indicate the absence of a QSL phase.
We also observe that the overlap of the wavefunctions for

both our method and the PSG-method used in [19] with the
ED wavefunctions are remarkably similar within the QSL
phase. However, our method is now able to give an insight
in the physical origin of the mean-field hopping amplitudes V
and W .

Next we compare the spin chirality

ζ = 〈σ̂ i · (σ̂ j × σ̂k )〉 (22)

for the wave functions computed on the shape 24c, which is
displayed in Fig. 6. We see a very good agreement of the mean
field with the ED result within the QSL phase. Note again
that the parton mean-field approach is expected to describe
only the CSL phase accurately. We can also compute other
observables discussed in [18] that are indicators of a spin liq-
uid phase. One such example is the in-plane spin-orientation

C(θ ) = 4
〈
Ŝ(0)

i Ŝ(θ )
j

〉
(23)

with

Ŝ(θ )
j = cos(θ )Ŝx

j + sin(θ )Ŝy
j , (24)

which is shown in Fig. 7 and is identical for NNs at g = 0.5.
The results for NNNs coincide well considering the already
very small order of magnitude C(θ ) ≈ 0.01.

FIG. 6. Spin chirality, Eq. (22), as a function of g obtained within
the parton mean-field approach (solid lines) and exact diagonal-
ization (ED) (triangles) for the three different triangles indicated
in the inset. One recognizes very good agreement within the CSL
phase marked by a gray background (Note that the parton mean-field
approach is expected to describe only the CSL phase).

We also computed the static spin-structure factor (SSF)

S(k) = 1

N

N∑
i j=1

eik(ri−r j )〈Ŝi · Ŝ j〉 (25)

for g = 0.5 shown in Fig. 8 practically vanishes, showing
the same expected behavior as in the ED simulations. We
also show the SSF in the neighboring BEC and 120◦ phases
obtained by ED simulations which show clearly different fea-
tures. The authors of [18] also investigated the effect of on-site
potential noise on the stability of the CSL phase and found
it to be robust. Since such perturbations break translational
invariance, our mean-field model is not suitable for imple-
menting this kind of noise.

V. CONCLUSION

We here discussed the ground state of Rydberg spin ex-
citations on a honeycomb lattice with real-valued NN and
complex NNN hopping processes controlled by the spin state
on the intermediate lattice site. ED simulations [18] and

FIG. 7. In-plane spin-correlation, Eq. (23), from mean-field and
ED simulations. One recognizes perfect agreement for NN (blue) and
reasonable agreement for NNN (orange) spin correlations.
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FIG. 8. Static spin-structure factor, Eq. (25) at g = 0.5 of the
mean-field wavefunction showing absence of simple spin order. For
comparison, the SSF is shown for different phases of the ED model.

subsequent symmetry considerations [19] have indicated the
presence of a chiral spin liquid phase induced by quantum
fluctuations of the nonlinear NNN hopping at parameter val-
ues where the competition between NN and NNN terms leads
to frustration. Following the fermion parton construction for
spin liquids suggested in [21], we here constructed a parton
mean-field Hamiltonian, which is bilinear in the fermion op-
erators but depends parametrically on fermion correlations.
The ground state can then be obtained self-consistently for
arbitrary system sizes. We showed that the self-consistent
mean-field Hamiltonian fulfills all requirements of the classi-
fication scheme for quantum spin liquids based on projective
symmetry groups. Projective symmetries alone do not com-
pletely fix the form of the parton mean-field Hamiltonian,
however. In [19] the authors postulated a specific form by
maximizing the overlap of the ground state wavefunction
of different mean-field Hamiltonians allowed by projective

symmetries and ground states obtained by exact diagonal-
ization of small systems. Our self-consistent solution yields
a unique mean-field Hamiltonian which agrees with the one
postulated in [19] and furthermore shows large overlap with
exact ground states obtained by ED on small lattices. Finally,
the self-consistent solution yields a doubly degenerate ground
state wavefunction as expected for chiral spin liquids, which
could not be found in the ED simulations due to finite size
constraints.
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