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Impurities in a trapped one-dimensional Bose gas of arbitrary interaction strength:
Localization-delocalization transition and absence of self-localization
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We discuss impurities in a one-dimensional Bose gas with arbitrary boson-boson and boson-impurity inter-
actions. To fully account for quantum effects, we employ numerical simulations based on the density-matrix
renormalization group (DMRG) and—in the regime of strong boson-boson interactions—the mapping to
weakly interacting fermions. A mean-field description of the Bose polaron based on coupled Gross–Pitaevskii
Schrödinger equations predicts the existence of a self-localized polaron. We here show that such a solution
does not exist and is an artifact of the underlying decoupling approximation. To this end we consider a mobile
impurity in a box potential. Our work demonstrates that correlations between the impurity position and the
bosons are important even in the limit where mean-field approaches are expected to work well. Furthermore,
we derive analytical approximations for the energy of a single polaron formed by a heavy impurity for arbitrary
interaction strengths and large but finite boson-boson couplings which accurately reproduce DMRG results.
This demonstrates that the polaron problem of a heavy impurity in a one-dimensional Bose gas can be accurately
approximated by a proper mean-field description plus a linearized treatment of quantum fluctuations for arbitrary
boson-boson and impurity-boson couplings. Finally, we determine the polaron-polaron interaction potential V (r)
in the Born-Oppenheimer approximation for small and intermediate distances r, which in the Tonks gas limit is
oscillatory due to Friedel oscillations in the Bose gas.
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I. INTRODUCTION

Quasiparticles formed by quantum impurities immersed
in a many-body environment play a key role for the un-
derstanding of transport phenomena [1]. Furthermore, the
interaction of quasiparticles mediated by the host medium
forms the basis of many important many-body phenomena
in condensed-matter physics [2–5]. In recent years the pos-
sibility to experimentally investigate impurities in quantum
fluids, such as Bose-Einstein condensates (BEC) of atoms
has renewed the interest in these quasiparticles, called Bose
polarons. An important difference between Bose polarons in
ultracold quantum gases and the Landau-Pekar polaron [6,7]
introduced to model electrons interacting with the lattice vi-
brations of a solid is the large compressibility of the BEC.
As a consequence a common theoretical model similar to the
Fröhlich model in solids [8], which describes the polaron
as interactions of the impurity with phonon excitations, is
only suitable for weak boson-boson and weak impurity-boson
interactions [9]. In this limit the condensate can be considered
undepleted and the role of lattice vibrations is taken over by
the Bogoliubov phonons.

For stronger interactions with the impurity the backac-
tion to the condensate needs to be taken into account, while
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keeping correlations between impurity position and bosons.
For translational invariant systems this can be done by means
of a Lee-Low-Pines (LLP) transformation [10], which decou-
ples the impurity motion from the many-body problem of
interacting bosons. For weak boson-boson interactions g the
latter can then be treated rather accurately in a mean-field
description for arbitrary strength of the impurity-boson cou-
plings gIB [11–15].

In an inhomogeneous Bose gas and for repulsive impurity-
boson interactions, the polaron can localize in density minima
of the Bose gas and, similarly to phase separation in mul-
ticomponent condensates [16], a localization-delocalization
transition can occur. Due to the absence of translational in-
variance the LLP decoupling does not work here, however.
Instead, another mean-field ansatz is often used, which in
addition neglects however correlations between impurity po-
sition and bosons and results in a coupled Gross–Pitaevskii
and Schrödinger equation for the condensate and the impurity,
respectively [17–22]. This decoupling mean-field approach
(DMF) also predicts a localization transition to occur in trans-
lationally invariant systems. In analogy to impurities in liquid
4He [23,24], a single atom can become self-trapped in a
distortion of the condensate created by the impurity [17–22],
thereby spontaneously breaking translational invariance. In
two dimensions (2D) and three dimensions (3D) a critical
interaction strength is needed for such a self-trapped polaron
to exist, but in one dimension (1D) within the DMF approach
an arbitrarily small gIB is sufficient [21,22]. Recently it was
shown in Ref. [25] that correlations between the center-of-
mass motion of the impurity and the bosons suppress this
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FIG. 1. Mobile quantum impurity in a one-dimensional interact-
ing Bose gas trapped in a box potential. Boson-boson interaction is
characterized by coupling strength g and the impurity interacts with
the Bose gas with strength gIB.

self-localization transition and solutions with finite localiza-
tion length only survive for large gIB.

In the present paper we analyze the role of quantum fluc-
tuations to the self-trapping. To this end we consider a mobile
impurity of finite mass M in a one-dimensional condensate
and employ numerical simulations based on the density-
matrix renormalization group (DMRG) [26,27]. Furthermore
we consider a box potential, see Fig. 1, to explicitly break
translational invariance. For such a system a DMF approach
predicts a reentry transition from a self-localized polaron at
the trap center to a delocalized polaron and eventually to
one localized at the potential edge upon changing gIB. We
numerically determine the ground-state phase diagram taking
quantum fluctuations into account and observe instead only a
phase transition between a fully delocalized phase for small
values of the impurity-boson coupling gIB and a localized
phase near one of the edges. Our simulations show that there
is no self-trapped solution in the full quantum problem even
for very large impurity-boson couplings for which a finite
localization length was obtained in Ref. [25].

In Refs. [12–14] we have shown that for a heavy impurity
with mass ratios M/m > O(1) in a translational invariant,
weakly interacting 1D Bose gas, a mean-field approach in an
LLP frame gives very accurate predictions for most properties
of the polaron, which can further be improved by adding
quantum fluctuations perturbatively. We here show that this
is also true for a strongly interacting 1D Bose gas. To this
end we calculate the polaron energy as a function of gIB
for arbitrary boson-boson interaction strength ranging from
the Bogoliubov regime to the Tonks-gas regime of (nearly)
impenetrable bosons. Making use of the mapping between
strongly interacting bosons and weakly interacting fermions,
we derive an analytical approximation of the polaron energy
in the latter regime, which agrees very well with the numerical
DMRG data.

Finally we calculate the effective interaction potential
between two heavy impurities in the Born-Oppenheimer ap-
proximation for short distances. In a weakly interacting Bose
gas the potential is monotonic and has a linear slope for
small distances [13]. In the limit of (nearly) impenetrable
bosons the potential is modified by Friedel-like oscillations,
whose long-range behavior has been derived in Refs. [28,29]
using a low-energy approximation. We here extend this ap-
proach to also capture the short-distance behavior, relevant for
bi-polaron bound states.

The paper is organized as follows: In Sec. II we introduce
the model. We discuss the problem of self-localization of a
finite-mass impurity in a one-dimensional Bose gas in a box
potential in Sec. III. Then we discuss a mean-field approach

to single polarons formed by a heavy impurity in a strongly
interacting Bose gas in Sec. IV. Finally, we derive the short-
range interaction potential between two heavy polarons in
Born-Oppenheimer approximation in Sec. V.

II. MODEL

The Hamiltonian describing a single quantum impurity in
an interacting 1D Bose gas in a box potential of length L has
the form (h̄ = 1)

Ĥ = p̂2

2M
+

∫ L/2

−L/2
dxφ̂†(x)

×
[
− ∂2

x

2m
+ g

2
φ̂†(x)φ̂(x) + gIBδ(x − r̂)

]
φ̂(x), (1)

where m (M) is the boson (impurity) mass and g (gIB) the
strength of the Bose-Bose (Bose-impurity) s-wave interaction.
p̂ and r̂ represent the momentum and position operators of
the impurity in first quantization. φ̂(x) is the field operator
for the bosons. The bosons and the impurity are trapped in
an infinitely deep box potential, described by open boundary
conditions at x = ±L/2. To quantify the internal interac-
tion strength of the 1D Bose gas we use the unitless Tonks
parameter

γ = gm
n0

, (2)

where n0 is the mean particle density of bosons in the system.
The Tonks parameter gives a relation between the interaction
(∝gn2

0) and the kinetic energy (∝n3
0/m) of the bosons. A large

value of γ corresponds to strong boson-boson interactions.
For γ ≪ 1 and below a critical temperature a quasicondensate
forms. (True condensation is not possible due to the Mermin-
Wagner-Hohenberg theorem [30,31].) For γ → ∞ the bosons
become impenetrable hard-core bosons and can be mapped to
free fermions [32].

A powerful method to describe the ground-state of
quantum many-body systems in 1D is the density-matrix
renormalization group (DMRG) [26]. The DMRG method
was originally developed for lattice systems. It can also be
applied to continuous models, however, e.g., using a proper
discretization, which we apply here. The details of this
together with benchmarks are given in the Appendix A.

The Hamiltonian (1) contains both the position and mo-
mentum operators r̂ and p̂ of the impurity, which do not
commute. This leads to an entanglement between the motional
degrees of freedom of the impurity with the boson field. For
translationally invariant systems one can solve this problem
by a Lee-Low-Pines (LLP) transformation into a comoving
frame [10]. For weak boson-boson interactions and not too
small values of the impurity mass the effective Hamiltonian
can then be solved rather accurately in a mean-field approx-
imation [12,13], which due to the LLP transformation takes
impurity-boson correlations into account.

Without translational invariance, e.g., if the Bose gas (B)
and/or the impurity (I ) are subject to some trapping poten-
tials VB,I (x) a LLP transformation does not work. Here often
another mean-field ansatz is used, which neglects correla-
tions between impurity and bosons and results in a coupled
Gross–Pitaevskii and Schrödinger equation for a condensate
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wave function φ(x) and the impurity wave function φI(x),
respectively:

i∂tφ(x, t ) =
(

− ∂2
x

2m
+ gIB|φI(x, t )|2

+ g|φ(x, t )|2 + VB(x)
)

φ(x, t ),

i∂tφI(x, t ) =
(

− ∂2
x

2M
+ gIB|φ(x, t )|2 + VI (x)

)
φI(x, t ). (3)

We show here that, in contrast with a mean-field theory in the
LLP frame, this decoupling approach leads to artifacts.

III. LOCALIZATION-DELOCALIZATION TRANSITION
IN A BOX POTENTIAL

In Refs. [18,21] it has been argued based on a DMF ansatz,
(3), that in a translational invariant homogeneous system the
impurity wave function should self-trap in a co-localized
distortion of the BEC for small gIB. The reality of such self-
trapped polarons has been the subject of discussions. Recently
it was shown in Ref. [25] that, taking into account leading-
order correlations, self trapping only occurs above a certain
minimum value of gIB.

We now show that, in a full quantum model, self-trapping
is absent altogether. To this end we numerically investigate
a box potential for bosons and impurity VB(x) = VI (x). Here
we expect a transition between a delocalized phase, where the
impurity is spread out over the whole system, and a localized
one, where the impurity is localized at one of the two edges
of the system. This is because the energy of an impurity at the
edge increases as Eloc ∼ √

gIB, while the polaron energy in the
bulk scales as Ep ∼ gIB. Thus for gIB → 0 no edge state exists
which only emerges above a critical value of gIB. In addition
to this a decoupling mean-field theory predicts another phase
transition to a self-localized polaron. Due to the broken trans-
lational invariance in the box potential considered here, such
a self-trapping would manifest itself in a probability density
of the impurity centered in the middle of the trap with a width
independent of the trap size L.

In the following we investigate both localization phenom-
ena for a weakly interacting as well as a strongly interacting
Bose gas using DMRG simulations of the full quantum
equations and compare them with numerical solutions and
analytical approximations of the DMF equations (3).

A. Localization-delocalization transition in a box potential

We performed DMRG simulations of the ground state of
a mobile impurity in a 1D Bose gas in the box potential
for different mass ratios M/m and impurity-boson interaction
strengths gIB. Results for γ = 0.4 and γ = ∞ are shown in
Figs. 2 and 3, respectively. One recognizes in both cases a
sharp transition between a phase where the impurity is de-
localized over the trap to a phase where it is localized at
one of the two edges. (Note that the true ground state is
a superposition of localized states at both edges. Since the
energy difference between the symmetric and antisymmetric
superpositions vanishes exponentially with increasing system
size, the DMRG algorithm converges to a solution on one

FIG. 2. (a) Localization-delocalization transition of impurity in a
box potential in a weakly interacting Bose gas with Tonks parameter
γ = 0.4 and N = 40 particles. Color code describes average position
⟨X̂ ⟩ of impurity. The solid line is the prediction from (6) with l0 = ξ .
The dashed line gives the prediction with l0 from a variational ansatz.
Panels (b) and (c) show the density distribution corresponding to the
two points in panel (a).

edge only.) The transition point depends on the boson-boson
interaction strength. In the delocalized phase the probability
density of the impurity is spread out over the whole system
and apart from some corrections at the edges it corresponds
to the ground state of the box potential ≈ cos2(xπ/L), with L
being the length of the box. In the edge-localized phase, on the
other hand, the width of the probability distribution becomes
independent of system size for large L.

A simple estimate for the critical point of the localization-
delocalization transition can be obtained as follows: For weak
interactions with a Bose gas of density n0 the energy of a
repulsive polaron is given in lowest-order perturbation by

Ep ≈ gIBn0, (4)

and thus scales linearly in gIB.
On the other hand, the energy of an impurity localized

at the edge of the condensate can be estimated from the

FIG. 3. (a) Localization-delocalization transition of an impurity
in a box potential in a Tonks gas (γ = ∞, N = 40). Solid line is
prediction from (10). (b), (c) Density distribution corresponding to
the two points in panel (a).
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repulsive potential created by the bosons, whose density in-
creases quadratically close to the potential edge.

For a weakly interacting Bose gas (small γ ) the character-
istic length scale l0 = ηξ of the harmonic confinement is the
healing length ξ of the Bose condensate. The factor η ≃ O(1)
accounts for the backaction of the trapped impurity on the
density of the condensate near the potential edge, which is
relevant in the small-γ regime, due to the large compressibil-
ity of the Bose gas. The impurity thus experiences an effective
potential for small x:

Veff(x) =

⎧
⎪⎨

⎪⎩

∞ x ! 0

gIBn0
x2

2l2
0

x > 0.

The corresponding oscillator frequency ω follows from Veff =
M
2 ω2x2. The ground-state energy of the impurity localized in

Veff is thus

Eloc ≈ 3ω

2
= 3

2

√
gIBn0

Ml2
0

, (5)

which scales only with the square root of gIB. Thus for a small
impurity-boson interaction no bound state exists. A localized
solution emerges only above a critical value

gIBm
n0

∣∣∣∣
crit

= 9
4η2

m
M

1
n2

0ξ
2

= 9
2η2

m
M

γ . (6)

In Fig. 2(a) we plotted the critical transition line for η = 1
(solid line). One recognizes that the backaction of the impu-
rity to the condensate needs to be taken into account, which
leads to an increased width of the density minimum of the
condensate on the left edge, see Fig. 2(c).

One can obtain an approximation for the factor η in (6)
from a variational coherent-state ansatz considering a half-
infinite system with only one edge at x = 0. To this end we
assume a factorized ground state |ψgs⟩ = |φ⟩|φI⟩, with

φ(x) = √
n0 tanh (αx). (7)

describing the coherent amplitude of the condensate. |φI⟩ is
then the ground state of the impurity in the resulting effective
Pöschl-Teller potential, which can be calculated analytically
[33]. This approach has already been used to determine bound
states of the impurity in a box potential using the ansatz α =
1/(

√
2ξ ) [34]. Here we instead determine the characteristic

length scale α by minimizing the total energy. This gives the
implicit equation for η = 1/(

√
2ξα) as a function of the mass

ratio M/m, the Tonks parameter γ and γIB = gIBm/n0

0 =1 − η2 − 15
2

m
M

γ 1/2

η
+ 9

2
m
M

4γIB
M
m η2 + γ

η
√

8γIB
M
m η2 + γ

. (8)

The solution of this equation is shown in Fig. 2 as a dashed
line, showing very good agreement.

In the Tonks gas limit (γ → ∞) the hardcore bosons
are much less compressible but show Friedel oscillations in
the density which also affect the impurity wave function
in the localized phase. Hardcore bosons can be mapped to
free fermions, which due to Pauli exclusion occupy all single-
particle states in the trap up to the Fermi energy. Thus the

FIG. 4. Critical gIB of the localization-delocalization transition
for different Tonks parameters γ , a constant mass ratio M/m = 2
and N = 40 bosons calculated from DMRG simulations (crosses).
Also shown is the critical gIB derived from DMRG simulations of
a Tonks gas γ → ∞ (solid blue line). These values are compared
with the predictions for a weak interacting Bose gas made by the
variational ansatz (orange dashed line) and predictions for a Tonks
gas (10) (green dashed line).

density of the hardcore gas near one of the edges of the box is
given by

n(x) ≈ 2kF

π

(
1 − sin (2kF x)

2kF x

)
, (9)

with x being the distance from the edge and kF = πn0/2 is the
Fermi momentum. The characteristic length scale l0 is here
(
√

6/π )n−1
0 which gives the following estimate for the critical

gIB of the localization-delocalization transition:

gIBm
n0

∣∣∣∣
crit

= 9
2

m
M

π2

6
. (10)

In Fig. 3(a) we also plotted this value for comparison and
one recognizes reasonable good agreement. Due to the smaller
compressibility of the Tonks gas, the localization transition is
shifted to higher values of gIB.

In Fig. 4 we compare gIB|crit, obtained from DMRG sim-
ulations with the analytic predictions for small, (6), and
large Tonks parameters γ , (10). Since the box potential is
finite, we determine the transition point of the localization-
delocalization transition by calculating at the uncertainty of
the impurity position as a function of gIB. At the critical
value gIB|crit the position uncertainty is maximal. Analytical
and numerical values align well up to γ ≈ 2.5, above this
value the variational ansatz fails to produce a real value of
η. For γ > 10 the numerical values overshoot the analytic
predictions from (10). This is because we approximated the
potential produced by the Tonks gas as a harmonic potential.

B. Absence of self-localization in a weakly interacting Bose gas

We now compare the results from DMRG simulations with
solutions of the DMF equations (3). In Fig. 5 we show the
average position of the impurity as a function of the mass ratio
M/m and the impurity-boson interaction gIB from DMRG
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FIG. 5. Comparison between average impurity position ⟨X̂ ⟩ from
DMRG and DMF calculations for γ = 0.4 and N = 40. (a) Color
plot of ⟨X̂ ⟩ as a function of M/m and gIB obtained by DMRG. Red
lines show cuts which are plotted in panel (c). (b) The same obtained
from DMF. (c) Cuts in panel (a) for two mass ratios, solid and dashed
lines correspond to each other. One clearly recognizes the absence of
a self-trapped solution in the DMRG simulations.

[Fig. 5(a)] and DMF [Fig. 5(b)] simulations for γ = 0.4, i.e.,
for weak boson-boson interactions. Figure 5(c) shows a cut
for two mass ratios. Since the Tonks parameter is still small,
we expect the mean-field simulations to provide good results.
And indeed one recognizes that the localization-delocalization
transition to the edge of the trap is reasonably well captured
by the DMF approach. However, for small mass ratios M/m <
1.3 there is an area of coupling strengths around gIBm/n0 ≈
0.5 where there is a self-localization of the impurity in the
middle of the box. Importantly, the width of the impurity
distribution in this region is much smaller than the box size,
as can be seen in Fig. 6, where we compared the width of the
impurity distribution from DMRG and DMF simulations.

In Fig. 7 we plotted the density distributions of bosons
and impurity in the box potential for a mass ratio M/m = 1
for different values of gIB inside the region of self-trapping
predicted by DMF. Also shown is the analytic prediction
from Ref. [21] for the impurity probability density in the
self-trapping regime,

|φI(x)|2TF = 1
2λ

sech2
(

x
λ

)
, (11)

with λ = (2/γ 3)1/2(g/gIB)2(m/M )n−1
0 being the localization

length, which holds in the Thomas Fermi limit, i.e., for
λ ≫ n−1

0 .
In summary, the self-localization is an artifact of the de-

coupling approximation and is not present in the full quantum
approach. This is because boson-impurity correlations, which
are neglected in DMF, suppress the self-localization [25].
Different from Ref. [25] self-localization does not occur in
the full quantum simulations even for large impurity-boson
couplings.

FIG. 6. Comparison between spatial variance of impurity ⟨,X̂ ⟩
from DMRG and DMF for γ = 0.4 and N = 40. (a) Color plot of
variance from DMRG simulations as a function of M/m and gIB.
Red lines show cuts which are plotted in panel (c). (b) The same
obtained from DMF. (c) Cuts in panel (a) for two mass ratios, solid
and dashed line correspond to each other. The gray dashed-dotted
line shows the spatial width of the impurity expected for gIB = 0.
The black dotted line shows the self-localization length λ predicted
in DMF for M/m = 1.11.

FIG. 7. (left) Density distribution of Bose gas and impurity for
different gIB (given in the lower right) from DMRG simulations.
(right) The same from mean-field calculations compared with the
analytic prediction for a self-trapped polaron, (11). Parameters of the
Bose gas are γ = 0.4, M/m = 1, and N = 40.
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IV. HEAVY POLARON IN A BOSE GAS WITH ARBITRARY
BOSON-BOSON INTERACTIONS

In Refs. [12,13] we have shown that key properties of
heavy polarons in 1D Bose gases can be rather accurately
described by a mean-field theory in an LLP frame that takes
into account the backaction of the impurity to the condensate.
Quantum fluctuations have to be included only in a linearized
approximation. These studies were, however, limited to weak
interactions of the bosons, characterized by a Tonks parameter
γ < 1. In the following we show that the opposite case of
large Tonks parameters γ ≫ 1 can be accurately treated as
well by a perturbation expansion of a complementary mean-
field description in the Tonks gas limit.

A characteristic quantity of the polaron is the energy
EP needed to immerse an impurity into the Bose gas EP =
E (gIB ̸= 0) − E (gIB = 0). Here E (gIB = 0) is the ground-
state energy of the system without Bose-impurity-interaction.
In the following we compare analytic and semi-analytic
predictions from linearized fluctuation expansions around
mean-field approaches in the weak- (γ < 1) and strong-
interaction cases (γ ≫ 1) with exact numerical predictions.
To this end we employ DMRG simulations, which agree with
previous exact results obtained by Quantum Monte Carlo sim-
ulations in Ref. [35].

A. Polaron energy in a weakly interacting Bose gas

For a heavy impurity and a weakly interacting Bose
gas, γ ≪ 1, with periodic boundary conditions, a mean-field
approximation to the polaron Hamiltonian after a Lee-Low-
Pines transformation gives a rather accurate prediction of the
polaron energy [11,12,15]:

EP = 4
3

nc
[

1 + 3
2
χ + χ3 − (1 + χ2)3/2

]
, (12)

where the dimensionless parameter χ = gIB/(2
√

2gnξ ) char-
acterizes the impurity-boson interaction strength. If |χ |! 1
the condensate undergoes substantial deformation. ξ =
ξ
√

m/mr and c =
√

m/mrc are the rescaled healing length
and speed of sound, respectively. n is the boson density with-
out impurity, and mr = (Mm)/(M + m) is the reduced mass.

B. Polaron energy in a strongly interacting Bose gas

In the following we discuss the case of a strongly in-
teracting Bose gas, γ ≫ 1. To this end we consider an
impurity whose mass is much larger then that of the bosons
(M/m ≫ 1) such that the kinetic energy of the impurity
can be neglected. The resulting effective Hamiltonian then
reduces to a interacting boson problem in an external δ
potential

Ĥ =
∫

dxφ̂†(x)
(

− ∂2
x

2m
+ g

2
φ̂†(x)φ̂(x) + gIBδ(x)

)
φ̂(x).

(13)

Figure 8 shows the polaron energy in a strongly (γ = 20)
interacting, trapped 1D Bose gas. The boson density shows
Friedel like oscillations, see also Ref. [35], and the char-
acteristic size of the condensate depletion around the fixed

FIG. 8. Polaron in strongly interacting 1D Bose gas with γ = 20
and N = 80 particles in a finite box and M = ∞: (a) polaron energy
as a function of impurity-boson interaction; (b), (c) wave function
for two different values of gIB (written in the lower right) in a box
potential and impurity fixed at x = 0.

position of the impurity is given by the wavelength of these
oscillations.

1. Tonks limit γ → ∞
In the limit γ → ∞ the 1D interacting Bose gas maps

to free fermions. Here we can calculate the single-particle
solutions of free fermions with a infinitely heavy impurity at
x = 0 for open boundary conditions (OBCs). This system is
described by the Hamiltonian

Ĥ0
F =

∫ L/2

−L/2
dxψ̂†(x)

(
− ∂2

x

2m
+ gIBδ(x)

)
ψ̂ (x), (14)

with {.̂(x), .̂†(y)} = δ(x − y). This means we need to solve
the problem of noninteracting fermions trapped in a infinitely
deep box potential (OBCs) with a delta potential in the middle.

The ground state |ψ⟩ and the ground-state energy E can be
written as

|ψ⟩ =
∫

dx1· · ·
∫

dxNϕ1(x1) · · · ϕN (xN )

× ψ̂†(x1) · · · ψ̂†(xN )|0⟩, (15)

E =
N∑

l=1

k2
l

2m
, (16)

where the single-particle solutions are given by

ϕl (x) = al sgn(x)l sin
(

kl

(
|x| − L

2

))
. (17)

l is an integer and the wave numbers kl have to be numerically
calculated from the boundary condition at the delta potential

0 = kl

2m
(1 + (−1)l ) + gIB tan

(
kl

L
2

)
. (18)
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This then gives for the polaron energy, see Ref. [35],

Ep = n2
0π

2

2m
ε(gIB),

ε(gIB) = 1
π

[(
1 + η2

π2

)
arctan

η

π
+ η

π
− η2

2π

]
, (19)

where η = gIBm/n0 > 0.

2. Analytic approximation of the polaron energy for 1 ≪ γ < ∞
For large but finite values of γ one can derive semi-analytic

expressions for the polaron energy. As shown by Girardeau
[32], bosons with s-wave contact interactions are dual to spin-
polarized fermions with p-wave interactions and both can be
mapped onto each other by the well-known boson-fermion
mapping [32,36]: The bosonic Hamiltonian (13) can be writ-
ten as a fermionic Hamiltonian

ĤF = Ĥ0
F + Ĥ1, (20)

with

Ĥ1 = −gF

2

∫∫
dxdyψ̂†(x)ψ̂†(y)

←
∂

∂z
δ(z)

→
∂

∂z
ψ̂ (y)ψ̂ (x), (21)

where z = x − y and ψ̂ are fermionic field operators. The
arrows above the derivatives mean that in the case of the arrow
to the left, the derivative has to applied to the function on
the left of it and for the arrow to the right on the function to
the right. The p-wave interaction strength gF is then related
to the bosonic interaction strength g via

gF = −4
g
. (22)

This means a strongly s-wave interacting Bose gas maps to a
weakly p-wave interacting Fermi gas and vice versa.

The boson-fermion mapping provides an elegant way to
find approximate analytic expressions for the polaron energy
in a strongly interacting Bose gas with γ ≫ 1 perturbatively
in |gF| ∼ 1/γ .

The second line in (21) can now be treated as perturbation,
i.e., ĤF = Ĥ0

F + Ĥ1 and the first-order energy correction ,E1
reads

,E1 = ⟨ψ |Ĥ1|ψ⟩ (23)

= gF

2

N∑

l,n ̸=l

a2
l a2

nkl

4kn
[[kn − kn cos (knL)] sin (klL)

+ kl [knL − sin (knL)]]. (24)

Figure 9 shows a comparison of the polaron energies as a
function of gIB from first-order perturbation in 1/γ , as well
as from (12) for small values of γ , with numerical DMRG
results. In both cases the polaron energy saturates for increas-
ing gIB, which happens when the density of the Bose gas at
the position of the impurity approaches zero. One recognizes
rather good agreement between analytic approximations and
exact simulations both for small and large values of γ even
down to γ = 20 and for all values of gIB. Note that the analytic
approximation for γ = ∞ is that from Ref. [35].

Although we have considered here only the case of an
impurity with an infinite mass and large values of γ " 10

FIG. 9. Comparison of perturbative analytic approximation to
polaron energy (solid lines) with DMRG results (crosses) for a
strongly interacting 1D Bose gas with γ = 20, 40, ∞ and N = 80
particles, respectively, and M → ∞. In light blue are DMRG results
(crosses) compared with mean-field results (solid line) [12,13] for a
weakly interacting Bose gas with γ = 0.1.

and γ ! 0.1 one recognizes that key properties of polarons
formed by heavy impurities in a 1D Bose gas with arbitrary
boson-boson and arbitrary boson-impurity interactions can be
obtained rather accurately from a proper mean-field approach
and potentially including lowest-order quantum corrections in
the Bogoliubov approximation.

V. POLARON INTERACTION IN A STRONGLY
INTERACTING BOSE GAS

IN THE BORN-OPPENHEIMER LIMIT

Interactions between particles mediated by a many-body
environment play an important role in condensed-matter sys-
tems. Examples include the Ruderman-Kittel-Kasuya-Yodsia
(RKKY) interaction of spins in a Fermi liquid [2–4] and
Cooper pairing of electrons [5]. The mechanism responsible
for these interactions is the same as what causes the formation
of quasiparticles such as the polaron. Even if the impurities do
not interact directly with each other, as we assume here, they
do so by their coupling to the condensate. If the impurities
get close to each other they expel the Bose gas between them
and the surrounding gas pushes the impurities together. This
causes an effective attractive interaction which in itself can
lead to the formation of bound states called bipolaron states.
The understanding of bipolarons is one of the key questions
of many-body physics. They are suspected to be key for high-
temperature superconductivity [37–39] and phenomena such
as the electric conductivity of polymers [40–44] or organic
magneto-resistance [45].

For a weakly interacting Bose gas (γ ≪ 1) a mean-field
ansatz in the LLP frame can be used to obtain semi-analytic
expressions of the interaction potential at short distances,
which agree very well with quantum Monte Carlo sim-
ulations [13]. The mean-field approach does not describe
the Casimir-like contributions arising from the exchange of
virtual phonons [28,29,46–49], which give, however, only
important corrections in the tails of the interaction potential.

In this section we investigate the interaction between Bose
polarons in a strongly interacting 1D quasicondensate. In
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the Tonks limit γ → ∞, where the interacting bosons can
be mapped to free fermions, an analytic approximation to the
interaction potential has been obtained in Refs. [28,29] using
a low-energy Luttinger-liquid approximation

V (r) ≈ vF

2πr
Re Li2

(
− g2

IBe2π in0r

(vF + igIB)2

)
, r ≫ n−1, (25)

with vF = πn0/m being the Fermi velocity, and Li2 the dilog-
arithm function. One notices an oscillatory behavior with
the frequency being that of Friedel oscillations. The low-
energy approximation gives an accurate description of the
large distance behavior of the interaction potential including
the Casimir contributions but fails at short distances, which
are, however, important for the formation of bipolaron bound
states. Thus we here determine the interaction potential both
numerically by DMRG simulations and analytically in the
Tonks-gas limit for all distances r. Since DMRG is not well
suited for periodic boundary conditions, we again assume a
confinement of the Bose gas to a box potential. As long as
the distance of the impurities from the edges of the box is
much larger than the healing length or the Fermi wavelength,
boundary effects can be neglected. For the same reason, our
simulations, although in principle suitable, do not allow us
to accurately extract the far tails of the interaction potential,
dominated by virtual phonon exchange. As discussed in the
Appendix B, the DMRG simulations reproduce the semi-
analytical results from Ref. [13] obtained in mean-field theory
for small values of γ .

In the following we calculate the polaron interaction poten-
tial in Born-Oppenheimer approximation where M/m ≫ 1.
Here the impurities do not possess kinetic energy and are lo-
calized in space. By varying their distance r one can determine
the polaron interaction potential V (r) from

V (r) = Elr (r) − El (r) − Er (r) + E0. (26)

Here Elr (r) is the ground-state energy with both impurities
present, El (Er) the ground-state energy with only the left
(right) impurity, and E0 is the ground-state energy of the Bose
gas without any impurities. In the case of two impurities and
for M/m ≫ 1 the Hamiltonian becomes

ĤB =
∫

dxφ̂†(x)
(

− ∂2
x

2m
+ g

2
φ̂†(x)φ̂(x)

)
φ̂(x)

+ φ̂†(x)
{

gIB

[
δ
(

x + r
2

)
+ δ

(
x − r

2

)]}
φ̂(x), (27)

where the two impurities are described by the delta potentials
at r/2 and −r/2.

Figure 10 shows the short-distance behavior of V (r) for
a medium-sized Tonks parameter γ = 4 as well as density
distributions of the bosons for two different separations r
between the impurities. One recognizes a linear potential
for small distances similar to the results of Ref. [13] for a
weakly interacting Bose gas. The effective potential becomes
attractive as soon as the Bose gas between the polarons is
substantially diminished. The pressure from the atoms to the
left and to the right of the polaron pair then causes a constant
force and thus a linear interaction potential.

FIG. 10. (left) Interaction potential of heavy impurities in a Bose
gas with γ = 4 and N = 100 particles and Bose-impurity interaction
strength gIBm/n0 = 1.08. (right) Density of Bose gas at the two
separations indicated in left picture as crosses in the corresponding
color.

For large values of γ , on the other hand, oscillations appear
in the polaron potential, as can be seen in Fig. 11. The fre-
quency of these oscillations is that of the Friedel oscillations
caused by the polarons themselves. As shown in Fig. 11(b),
once a single impurity is introduced into the system it causes
density oscillation and the second impurity has to displace
a smaller or a larger amount of bosons and therefore needs
less or more energy to form a polaron. The resulting energy
modulations reflect themselves in the polaron potential. Also
shown is a comparison to the analytic low-energy approxima-
tion (25), which diverges as r → 0.

It can also be seen, that the gradient of the potential in-
creases with the Tonks parameter. This is the case since the
force results from the surrounding Bose gas pushing against
the polarons. For a stronger interacting Bose gas the resulting

2.Impurity

1.Impurity

Bose gas 2.

1.

FIG. 11. (Left) Interaction potential of heavy impurities in the
Tonks-gas limit γ = ∞, N = 80, and gIBm/n0 = 1.58. The dashed
line shows the Luttinger-liquid approximation from Refs. [28], (25).
The inset illustrates the origin of the oscillatory potential. Also
shown is the analytic prediction (black line) of the interaction poten-
tial obtained from mapping to free fermions in PBC. (right) Density
of Bose gas at the two separations indicated in left picture as crosses
in the corresponding color.
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larger quantum pressure in the gas exerts a bigger force on the
polarons.

The interaction potential in the Tonks gas limit can also be
obtained directly. To this end we have to calculate the energy
of a free Fermi gas (Tonks gas) in a box with periodic bound-
ary conditions in the presence of one or two δ potentials with
strength gIB at positions x = ±r/2, which is an elementary
quantum mechanics problem. The interaction potential can
then be obtained from the total energy Elr of the Tonks gas
in the presence of two δ potentials, the energy E1 of a single δ
potential, and the energy without impurities E0:

V (r) = Elr − 2E1 + E0. (28)

As can be seen in Fig. 11 the bipolaron potential as well as
the density distribution of the Tonks gas obtained in this way
compare quite well with the DMRG simulations. These results
are also in agreement with earlier findings in Ref. [50].

VI. SUMMARY

In the present paper we studied the ground state of a
single and two impurities in a one-dimensional Bose gas
for arbitrary impurity-boson and boson-boson interactions,
addressing: (i) the existence of self-localization of polarons,
(ii) the accuracy of mean-field descriptions of polarons which
take impurity-boson correlations into account, and (iii) the
Born-Oppenheimer interaction potential between two po-
larons beyond a low-energy approximation. To fully account
for quantum effects within the Bose gas, which are partic-
ularly important in the limit of large Tonks parameters γ ,
we performed numerical simulations of a discretized effective
lattice model using the density-matrix renormalization group.

In a commonly used mean-field approach to the Bose po-
laron, condensate and impurity are described by a factorized
impurity-boson c-number wave function, leading to a coupled
Gross–Pitaevskii Schrödinger equation. Such an approach
predicts the existence of a self-trapped polaron for arbitrarily
small impurity-boson couplings in a homogeneous 1D gas,
where the center of mass of the impurity is localized in a
distortion of the condensate created by the impurity. Such a
decoupling mean-field (DMF) theory neglects spatial corre-
lations between impurity and bosons. Recent findings have
shown that including these correlations in leading order pre-
vents self-trapping for small impurity-boson couplings [25].
We here showed by comparison with exact DMRG results that
the self-trapped solution is an artifact of the DMF approach
and does not exist also for large impurity-boson interactions.

Mean-field approaches to the Bose polaron in a frame of
relative coordinates between bosons and impurity, obtained
by a Lie-Low-Pines transformation, amended by a linearized
fluctuation analysis, have been shown to provide accurate de-
scriptions of Bose polarons for heavy impurities (M/m " 3)
and weak boson-boson interactions (γ ! 1) [11–13,51,52].
We here showed that the same is true for strongly interacting
bosons. To this end we calculated the polaron energy and
derived analytical approximations for large but finite Tonks
parameters 1 ≪ γ < ∞ and arbitrary boson-impurity cou-
plings by using the mapping to weakly interacting fermions.

Finally, we numerically calculated the short-distance inter-
action potential between two impurities in Born-Oppenheimer

approximation for arbitrarily strong boson-boson interactions.
For small Tonks parameter γ ! 1 we verified the results of
Ref. [13] were a linear short-distance behavior was predicted.
In the strong-interaction limit γ ≫ 1 we found oscillatory
modulations in the potential in agreement with low-energy
approximations [28,29] and extending them to short distances,
relevant for bipolaron bound states.

Note added. Recently, a work by Gomez-Lozada et al. ap-
peared studying polarons in 1D lattices of interacting bosons
[53], also showing (among other things) that correlations pre-
vent phase separation and self-trapping.
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APPENDIX A: DMRG SIMULATION OF QUANTUM
IMPURITY IN A 1D BOSE GAS

To apply DMRG for the continuum model let us first look
at the Hamiltonian where both bosons and the impurity are
described in second quantization:

Ĥ =
∫

dxφ̂†(x)
[
− ∂2

x

2m
+ g

2
φ̂†(x)φ̂(x)

]
φ̂(x)

+
∫

dxφ̂†
I (x)

[
− ∂2

x

2M
+ gIBφ̂†(x)φ̂(x)

]
φ̂I(x), (A1)

where φ̂I is the impurity field operator.
Discretization of the x coordinate into a 1D lattice with

lattice spacing ,x, the field operators can be replaced by
creation and annihilation operators at position xi = i,x,

φ̂(xi ) → 1√
,x

âi, φ̂I(xi ) → 1√
,x

b̂i. (A2)

The second-order derivative in (A1) can then be written as

∂2

∂x2
φ̂(x) ≈ âi−1 − 2âi + âi+1

,x
, (A3)

and we set the hoppings which go from and to site 0 and L + 1
to 0. This is justified because our average system sizes exceed
400 lattice sites were the energy contributions from these
hopping terms are small compared with the overall energy.
By inserting these transformations into (A1) one arrives at a
tight-binding lattice Hamiltonian

Ĥ =
∑

i

−J (â†
i âi+1 + H.c.) + 2Jâ†

i âi + U
2

â†
i â†

i âiâi

− JI(b̂
†
i b̂i+1 + H.c.) + 2JIb̂

†
i b̂i + UIb̂

†
i â†

i âib̂i, (A4)

where

J = 1
2m,x2

, U = g
,x

, (A5)

JI = 1
2M,x2

, UI = gIB

,x
. (A6)

Here the terms containing â†
i âi+1 (b̂†

i b̂i+1) describe the hop-
ping between lattice sites for the bosons (impurity) with
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FIG. 12. (a) Illustration of terms in Hamiltonian (A4). The blue
circles depict bosons which interact with strength U/2 and can
hop with amplitude J . The impurity is shown as a red circle. It
interacts with the bosons with strength UI and hops between lattice
sites with amplitude JI. (b) Comparison between the sinusoidal dis-
persion relation of particles in a lattice to that of free particles, with
the maximal energy to which both remain comparable.

hopping amplitude J (JI). The diagonal terms ≈â†
i âi (or b̂†

i b̂i)
describe a local potential at site i for the bosons (impurity).
The strength of this potential is also given by the hopping
amplitude J (JI). It does not effect the dynamics of the sys-
tem but needs to be taken into account when calculating
the ground-state energy. The terms proportional to â†

i â†
i âiâi

(b̂†
i â†

i âib̂i) relate to the interaction between the bosons (bosons
and impurity). The strength of this interaction is given by U
(UI). A graphical illustration of the terms of Hamiltonian (A4)
is given in Fig. 12(a).

The discrete Hamiltonian is only a faithful approximation
to the continuous model in the low-energy regime. Particles
in a lattice possess a sinusoidal dispersion relation while free
particles have a parabolic one [see Fig. 12(b)]. The two disper-
sion relations agree for up to a maximum energy of 1/2m,x2

which relates to the hopping amplitude of the bosons J in
the discrete system. So the energy per lattice site caused by
the interaction between the bosons needs to be lower then the
hopping amplitude J . This leads to the condition

ñ0U ≪ J, (A7)

where ñ0 is the mean particle number per lattice site. In terms
of the unitless Tonks parameter γ this can be expressed as

γ ñ2
0 ≪ 1. (A8)

Thus, for larger Tonks parameter γ , the mean particle number
ñ0 per lattice site needs to be kept low enough such that
the discrete system remains a faithful approximation to the
continues one.

In addition to the fact that the discrete system needs to be
a faithful representation of the continues one, one has also to
keep the compression of the DMRG in mind. We utilize the
Julia language library ITensors [27] for the implementation
of the DMRG algorithm and set the bond dimension com-
pression error to 10−6. This is sufficiently small such that the
state derived from the DMRG is a valid representation of the
uncompressed state, but large enough that the system is still
computable on a normal PC.

To gauge the effects of the impurity one can look at the
polaron energy which gives the energy it takes to immerse an
impurity in the Bose gas:

EP = E (gIB) − E (0), (A9)

where E (0) is the ground-state energy of the system with
gIB = 0 and E (gIB) is the corresponding ground-state energy

FIG. 13. Comparison of the saturated polaron energy (gIB = ∞)
for an immobile impurity (M = ∞) in a Bose gas with N = 100
particles from DMRG for OBC and diffusion quantum Monte Carlo
results (DMC) for PBC from Ref. [9].

for a finite boson-impurity interaction. The polaron energy
increases with gIB but saturates for large interaction strength
once the impurity has displaced all of the condensate at its
position.

To benchmark our DMRG code we calculated the satu-
rated polaron energy (gIB = ∞) of an infinite-mass polaron
(M = ∞) localized in the center of a 1D quasicondensate
with N = 100 bosons for varying strength of the boson-boson
interaction, quantified by γ and compared the results with
those from diffusion quantum Monte Carlo (DMC) simula-
tions taken from Ref. [9], see Fig. 13. The DMC simulations
were done for periodic boundary conditions, while the DMRG
data are for open boundary conditions, which explains the
small difference for small value of γ . Open boundary con-
ditions cause half dark solitons to form on each system edge
for γ ≪ 1 and Friedel oscillations for γ ≫ 1 which increase
the ground-state energy of the system compared with peri-
odic boundary conditions. This was mostly negated here by
choosing a system size which is large compared with the
characteristic length scale of the system, the healing length
ξ = 1/

√
2gn0m for γ ≪ 1 or the wavelength of Friedel os-

cillations 2kF = 2πn0 for γ ≫ 1. Apart from very small γ
values one recognizes excellent agreement. For small γ the
polaron energies obtained with open boundary conditions
(OBCs) as done in our DMR simulations are slightly larger
than those obtained with periodic boundary conditions (PBCs)
used in DMC as the spatial extent of the polaron, which is on
the order of the healing length, becomes comparable to the
system size:

L
ξ

=
√

2γ N. (A10)

Let us finally comment on some techniques to improve the
numerical simulations. It turns out to be beneficial for the
convergence of the DMRG algorithm to use a higher order
representation of the second-order derivatives. So

∂2
x φ̂(x) ≈

− 1
12 âi−2 + 4

3 âi−1 − 5
2 âi + 4

3 âi+1 − 1
12 âi+2

,x
.

(A11)
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By inserting these transformations in the continuous
Hamiltonian one arrives at

Ĥ =
∑

i

1
12

J (â†
i âi+2 + H.c.) − 4

3
J (â†

i âi+1 + H.c.)

+ 5
2

J (â†
i âi + H.c.) + Uâ†

i â†
i âiâi

× 1
12

JI (b̂†
i b̂i+2 + H.c.) − 4

3
JI (b̂†

i b̂i+1 + H.c.)

+ 5
2

JI (b̂†
i b̂i + H.c.) + UI b̂

†
i â†

i âib̂i. (A12)

As compared with a lattice Hamiltonian derived from (A3),
the above expression (A12) contains longer-range hopping
terms. These help the DMRG algorithm to establish correla-
tions and therefore the algorithm is able to reach the ground
state faster.

APPENDIX B: COMPARISON OF POLARON-POLARON
INTERACTION POTENTIAL TO MEAN-FIELD RESULT

In the case of a weakly interacting Bose gas with γ ≪ 1
the interaction potential between two Bose polarons in
Born-Oppenheimer approximation can be determined semi-
analytical [13]. One finds for repulsive interactions

V (r) = gn2
0r

(
1
2

− 4 + 2ν

3(ν + 1)2

)
+ 4

3
gn2

0ξ̄√
1 + ν

{
√

2ν + 2

+ 2E(am(u, ν), ν)

−
√

ν
3

1 + v
cd(u, ν)3[1 +

√
ν sn(u, ν)]

−
√

ν cd(u, ν)
[

3
2

+ 1 + 2ν

1 + ν

√
ν̃ sn(u, ν)

]}

, (B1)

FIG. 14. Comparison of polaron-polaron interaction potential
from mean-field calculations [13] (dashed lines) and from DMRG
simulations (solid lines) for a boson-impurity interaction strength
gIB

m
n0

= 1.25 and a weakly interacting Bose gas with γ = 1/8 and
N = 80 particles.

where u = r/(2ξ̄
√

1 + ν) is a normalized distance, E(x, ν) is
the incomplete elliptic integral of the second kind, cd(x, ν)
and sn(x, ν) are Jacobi elliptic functions and am(x, ν) is the
amplitude of these functions [54]. The dimensionless param-
eter ν = ν(r, η) with |ν| < 1 is given implicitly by

2
|η|
n0ξ̃

√
ν(ν + 1)
(1 − ν)

cn(u, ν)dn(u, ν) = [1 +
√

νsn(u, ν)]2,

involving the Jacobi elliptic sn, cn, and dn functions and
η = gIB/g > 0. In general, this equation has several solutions,
however, the physically relevant one is that with the largest ν.

In Fig. 14 we have shown a comparison of the DMRG
results (full line) with the above prediction (dashed line).
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