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In recent experiments, a novel type of cascaded quantum system has been realized using nanofiber-coupled
cold atomic ensembles. This setup has enabled the study of superradiant decay of highly excited collective
spin states of up to a thousand atoms, featuring unidirectional coupling mediated by the waveguide mode.
The complexity arising from the large, multi-excited ensemble and the cascaded interactions between atoms
makes conventional simulation methods unsuitable for predicting the correlations of superradiant emission
beyond the first order. To address this challenge, we developed a simulation technique based on the truncated
Wigner approximation for spins. Our stochastic simulation tool can predict the second-order quantum coherence
function, g, along with other correlators of the light field emitted by a strongly excited cascaded system of
two-level emitters. This approach thus provides an effective and scalable method for analyzing cascaded quantum

systems with large numbers of particles.
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I. INTRODUCTION

Simulating the dynamics of a many-body system typi-
cally requires computational effort that scales exponentially
with the number of particles due to the exponential size
of the configuration space. Many problems, especially clas-
sical ones, can be efficiently approximated using various
simulation techniques, such as Monte Carlo sampling. For
dynamical quantum many-body problems, however, Monte
Carlo methods can not always be applied. One significant
example of such a system is an ensemble of two-level atoms
with dipoles coupled through the quantized electromagnetic
field [1]. In a typical experimental setup, effective two-level
atoms are prepared in a well-defined initial state and probed
using resonant or near-resonant light. Under certain experi-
mental conditions, the large Hilbert space can be truncated,
enabling efficient calculation of the ensemble dynamics. For
instance, in the weakly driven regime where the atoms are
mostly in the ground state, the ensemble behaves as a linear
system of harmonic oscillators, which can be solved effi-
ciently [2-5]. However, even in the few-excitation regime, it
remains challenging to predict correlations beyond the Gaus-
sian approximation, such as intensity-intensity correlations
of the radiated or scattered field, as a mean-field theory is
not sufficient [6,7]. Another notable case is a very dense
ensemble. As Dicke demonstrated, N two-level atoms with
pairwise distances much smaller than the wavelength of the
emitted light explore only a small number of N 4 1 symmetric
Dicke states [8,9]. In such cases, realizable in solid-state sys-
tems [10] or, effectively, by using a waveguide or an optical
cavity to mediate the coupling between the atoms, a fully
inverted ensemble emits its stored energy in a superradiant
burst of light [11,12].

Interestingly, recent theoretical [13] and experimental [14]
studies have revealed that superradiant bursts also occur in
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cascaded quantum systems [15,16]. In such systems, which
can be realized through chiral atom-waveguide coupling [17],
information flows unidirectionally through the ensemble. Un-
like the Hamiltonian studied by Dicke, which is symmetric
under particle exchange, the Hamiltonian of a cascaded
atomic system lacks this symmetry [18-20]. Consequently,
the Hilbert space cannot be truncated similarly, making the
problem of a driven-dissipative cascaded quantum system be-
yond the weak drive limit intrinsically exponentially complex.
Current state-of-the-art experiments with chirally coupled
two-level systems typically involve either a small number of
atoms (N < 10) [21-24] or weak coupling to the waveg-
uide [25,26]. In the former scenario, numerical tools such
as QuTiP can solve the full dynamics. In the latter case,
the cascaded system is sufficiently coupled to an external
reservoir, which allows for a semiclassical description that
accounts for leading-order quantum effects while being nu-
merically inexpensive even for a large number of particles.
For example, some of the authors have recently introduced a
model with linear computational complexity which quantita-
tively predicts the intensity radiated by an atomic ensemble
that is weakly chirally coupled to a waveguide [14]. How-
ever, this model cannot compute higher-order correlations,
even in the case of weak coupling. Notably, this includes
the second-order quantum coherence function, g'*, which has
been explored in a recent experiment measuring the intensity-
intensity correlations of a superradiant burst of light [27].
Here we apply another semiclassical model to a cascaded sys-
tem of weakly coupled quantum emitters subject to drive and
losses. This model has recently been put forward by some of
the authors [28,29] and extends the discrete truncated Wigner
approximation for spins [30].

The paper is structured as follows. In Sec. II we review
the master equation for an ensemble of waveguide-coupled
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FIG. 1. Schematic of the setup. N two-level atoms are coupled
to a waveguide. The coupling constant to the waveguide mode
is direction-dependent, and we assume BT >> B~, where B and
B~ determine the coupling to the forward and backward direction,
respectively. This realizes a cascaded quantum system. We are in-
terested in correlators of the output mode doy, such as the output
power P(t) = (&), fou) and Glauber’s second-order quantum corre-
lation function G® (¢, t) = (&} ,4! Goudiow). In Ref. [27] this model
is implemented using the D2 transition of nanofiber-coupled cold
cesium atoms (excited state lifetime 30 ns). In the bottom panel, we
show experimental data from Ref. [27] of P(¢) (blue shaded area)
and g?(t,1) = GP(t,1)/P(t)* (black data points) for the ensemble
decaying from the fully inverted state |e - - - ¢). The blue and purple
solid lines are the corresponding theoretical predictions, which we
calculated using a truncated Wigner approximation approach, as laid
out in this work.

two-level atoms, focusing on the cascaded system. We discuss
its relation to the dissipative Dicke model and show that a
cascaded quantum system cannot be reduced to the latter.
In Sec. Il we model the system using a set of quantum
Langevin equations in the Heisenberg picture, which assume
a particularly simple form. In our main Sec. IV, following a
brief review of the truncated Wigner approximation for spins,
we derive the stochastic differential equations describing the
cascaded system. In Sec. V we present an efficient method
to compute relevant correlators of the field radiated by the
cascaded system. In Sec. VI we specifically calculate the time-
dependent power, intensity-intensity correlation, and total
angular momentum for up to 1000 atoms, which are initialized
in the fully inverted state. Beyond its general significance,
our model has been successfully employed for the theoretical
analysis of the measurement results presented in the afore-
mentioned experimental work [27]. In Fig. 1 we present a
sample set of experimental data along with its theoretical
prediction.

II. WAVEGUIDE QED: MASTER EQUATION

The system under consideration is sketched in the middle
panel of Fig. 1. An ensemble of N two-level atoms with
energy spacing w,, is coupled to the modes of a single-mode
waveguide. We label the atoms with indicesn =1,..., N in
ascending order of their nonoverlapping positions z; < z <
-+ < zy along the waveguide. As is commonly considered
in the literature [31-33], we treat the interaction between
the atoms and their surrounding electromagnetic field within
dipole and rotating wave approximations, we trace out the
light field, and we eliminate it using a Born-Markov approxi-
mation. This results in a Lindblad master equation for just the
atomic degrees of freedom (we set i = 1) [34,35]:

%i) = —ilA. p1+ ) rmn(énﬁ&; - %{a,iﬁn, /3}), (1a)

mn

N e 1 . .
H=-— Z Anoja,, + 3 Z(Qnoj + Q6,)
n n

+ > Jun6,i6n- (1b)
mn

Here {A, B} = AB + BA denotes the anticommutator, 6, =
|gn) {en| is the spin-lowering operator of the nth atom, and
|gn) and |e,) are, respectively, the ground and excited states
of the nth atom. Further, 2, is the Rabi frequency due to a
classical driving field and A, denotes the detuning between
the atoms and the field. The radiative interactions J,,, =
—1(Vyun — V,,)/2 and collective decay rates Iy, = Vi + V3,
are respectively given as the Hermitian and anti-Hermitian
part of the matrix V,,,. The latter is given by the matrix
element [35]

Vi < d%, - Gz 2n» 0gg) - iy 2)

where we omitted a real-valued prefactor. Here G is the elec-
tromagnetic Green’s tensor in the presence of the waveguide,
and d, is the atomic dipole moment of the nth atom. If
a transversal magnetic field is applied to the atoms, their
preferred direction of emission into the waveguide can be con-
trolled by tuning their polarization. More specifically, linearly
polarized light results in a bidirectional emission, whereas
circularly polarized light leads to unidirectional propagation
of light into either direction +z. With a closer analysis of
the Green’s tensor [36-38], the matrix element V,,, can be
approximated in practice by

1

an 7 A m=n
1"7 — ﬂ+elk22mn’ m>n, 3)
0 Be tkim m < n

where k; = nefrw,,/c is the wave number of the guided mode
with effective refractive index neg, and z,,, = Z» — 2, is the
signed distance between atoms m and n. Furthermore, Ty
is the inverse life time of the excited state of a single
atom coupled to the waveguide, and 8™ and B~ are the
coupling strengths of an atom to the forward- and backward-
propagating waveguide mode, respectively. A single excited
atom emits a photon into the forward-propagating waveguide
mode with probability 8%, into the backward-propagating
waveguide mode with probability 87, and into the free space
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with probability 1 — 87 — B~ ; see Fig. 1 for a depiction. Here
we assume that the atoms do not interact through free space,
thus effectively assuming a separation between atoms that is
large enough. The explicit expressions for the rates are then

S 880(Zmn)
Ty 2i

an _ l, m=n,
o = /3+elk;zmn + Igfeﬂkzzmn’ m#n’

with the signum function sgn(x). When 8" = 8~ =0, the
atoms only independently emit into the free space, whereas
BT =1, B~ = 0 indicates that every photon is emitted into
the +z direction of the waveguide.

Let us now turn to the experimentally realized case [14,27]
of partial coupling to a unidirectional waveguide, i.e., B~ ~ 0
and B < 1. To simplify notation, we will omit the superscript
+ in the following, i.e., 8 = B*. Additionally, a resonant,
time-dependent coherent field with amplitude «(¢) propagat-
ing through the waveguide can be included by substituting
A, =0 and Q, = 2a(t)/BLoe’* into (1b). The complex-
valued field amplitude o is scaled such that |e|? is the photon
flux through the waveguide at the input. In the following we
measure time in units of the excited state lifetime, such that
I'p = 1. The master equation of the chiral waveguide thus
reads [13,18,19,39,40]

(ﬁ—‘-eikzzm,l _ ,B_e_ikzz'”"), (43)

(4b)

d oA A N N N
7)6 = _1[H0 + Hcasc» ;0] + Ecoll[p] + »CO[)O] (5)

dt
with (H.c. stands for Hermitian conjugate)
Hy= /B (a(t)6] +H.c), (62)
N i
Hese = =B ; ;m(a,,tan —H.c), (6b)
~ A oAat L, fa oA
Lenlpl = B (8108} = S16)60. D} ). (6¢)

1
Lolpl = (1 — ﬂ)an (anw; - 5{6,16”, fo})- (6d)

Decay to free space modes is described by the Lindblad term
Lo[p], while the (cascaded) interaction Hamiltonian H..e as
well as the collective decay Lindblad term L[] are respon-
sible for the collective dynamics in this cascaded quantum
system. Here we applied the transformation e %4, — 6,,
which simplifies the expressions and which is equivalent to a
co-rotating frame of reference. Note that this is possible only
in the case of unidirectional coupling.

The goal of this work is to find numerical predictions for
time-dependent correlators of the output of the waveguide,

fon(t) = a(t) —=iy/B Y _ 6a(1), (7)

such as the field E(t) = (Gou(?)), the output flux P(¢) =
(@l ()aou(1)), and the second-order correlation G®(r, 1) =
(&;m(t)&gm(t)&om(t)&om(t)). In principle, one could directly
solve the master equation (5) and then derive the output corre-
lators. In practice, however, the numerical solution of Eq. (5)

is not accessible for N > 10 due to the exponentially large
Hilbert space.

Various possibilities to obtain approximate solutions have
been put forward. Since for weakly driven ensembles the
dynamics depend on only the optical density of the ensemble,
which is proportional to the product of the number of atoms
N and the coupling constant 8, one can reduce the complexity
by decreasing N while increasing 8. While this method ceases
to work in principle for strongly driven ensembles, it has been
used with some success in a free-space system in Ref. [41].
There the authors approximate their ensemble consisting of
some thousands of atoms with finite distances by a model
system of about 10 atoms with perfect particle-exchange sym-
metry, as envisioned by Dicke [8]. This reduces the dynamics
to 4p=—ia()8+38", p1+8p8" — {878, p}/2, with the
totally symmetric lowering operator § = >, 6n, such that
the system stays in a small part of the Hilbert space and the
above mentioned correlators can be efficiently computed. In
a cascaded quantum system, however, even in the absence of
free space decay, the cascaded contribution of Eq. (6b) results
in the excitation of less cooperative states and thus impedes a
numerically inexpensive treatment along the above mentioned
lines.

II1. HEISENBERG-LANGEVIN EQUATIONS

As a first approach, let us express the master equation (5)
equivalently as a set of quantum Langevin equations for the
individual spin operators &, [42]. In Appendix B, we show
explicitly that for a cascaded quantum system these take the
particularly simple and intuitive form (n = 1, ..., N)

d(;” = —%6” —i(1 = 26/ 6,)(v/Ban + /T = ™). (8)
Here a, and f)il“ are field operators of, respectively,
the waveguide and the free-space modes impinging on
the nth atom. These fulfill the bosonic commutator
relations [a,(t), & ()] = [d"(¢), (DM (t')] = 8(t — '), and
[a,(1), (f)}I“)T (t")] = 0. For the first atom in the chain, a;(r) =
«(t) is the coherent input field. Because of the unidirectional
waveguide, the field operator a,.(¢), which appears in the
quantum Langevin equation for atom n + 1 as an input mode,
is identified with the output mode of atom 7. This relationship
is given by the input-output equation (n = 1, ..., N) [42]

g1 = Gy — 1/ B6. ©)

Equations (8) and (9) represent a complete description of
the cascaded quantum system. Note that the second term of
Eq. (8) is nonlinear and is responsible for making the solution
to these equations difficult to obtain, in general. In the limit of
weak atomic excitation, one can neglect the term 6; 6, ~ 0,
resulting in linear equations of motion, which can be solved
analytically [5,43].

Here we assume that the first atom is driven by a coherent
state, effectively obtaining the optical Bloch equations for
the first atom. Importantly, we cannot assume any other of
the fields a,, with n > 2 to be coherent, as the field radiated
by a two-level atom is famously not coherent in general.
In Ref. [14] some of us presented a heuristic model, where
the photonic state of the field a, is approximated by a
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classical mixture of coherent states with the complex am-
plitude o, (¢p) = \/P<(t) + el? Pinc(¢), where the angle ¢ is
drawn from a uniform distribution on the interval (0, 27).
This model, in which the field @, has both a coherent and an
incoherent contribution with respective flux PS(¢) and P,i“c (1),
accurately predicts low-order correlators such as the output
field E(¢) and flux P(¢) with a linear computational complex-
ity in the number of atoms. Importantly, this method cannot,
by design, predict higher-order correlators, such as G®(t, 1).
In the following, we will therefore introduce an approximative
model of a cascaded quantum system, based on the truncated
Wigner approximation, which is both computationally simple
and able to predict higher-order correlators.

IV. TRUNCATED WIGNER APPROXIMATION

In this section, we give a short introduction to the truncated
Wigner approximation method for spins. For more details,
we refer the reader to Refs. [28,29]. The main result of this
section is given by the stochastic differential equations (22),
which can be evaluated numerically. A reader who is mainly
interested in implementing this solver may jump to Eq. (22)
directly.

Let us consider a linear transformation from the Hilbert
space spanned by N two-level atoms to the Wigner phase
space [44,45]. In particular, the elements of the Hilbert space,
which are operators A, transform into their corresponding
Weyl symbol W;(£2) by expanding A into an overcomplete
basis

N

n 1 —idn j
b =@ (e YR o
with @ = (61, ¢y, - - - On, ¢n). This yields
A= /dSZWA(SZ)A(Sl), (11)
where
de :ﬁwd@,dm. (12)
i 2

The Weyl symbols W;(2) are elements of the Wigner phase
space and can be represented as complex-valued functions on
N spheres, i.e., 2 — W;(R) € C.

Note that the kernel A() is given by a superposition of
the spherical harmonics Y,"(6,, ¢,) with [ =0, 1. Since the
spherical harmonics are orthogonal, all spherical harmonics
with / > 2 in W;(€2) map to the zero operator 0. Therefore,
the Weyl symbol of some operator A is not uniquely defined;
i.e., it possesses a gauge freedom. Specifically, one can add
any spherical harmonic with / > 2 to a Weyl symbol; without
changing the operator it maps to [28]. The Weyl symbol
corresponding to A, which consists of only / =0 and [ =1
spherical harmonics, is given by

W;i(R) = Ti[AA(R)]. (13)

For example, the single-atom operators 1,, 6,,, and 6,;"6,1 are
transformed to their corresponding Weyl symbols as

W (R) =1, (14a)

W;, () = ?ﬂf’n sin(6,), (14b)
nga,,(g) — M' (14c)

2

Furthermore, for two single-atom operators A, and A,,
which act on different atoms n # m, we have

Wi, i, (82) = Wi (@)W, (2), 5)

while such a factorization is in general not true for two arbi-
trary operators.

Let us now define the Wigner function W (£2) = W, () as
the Weyl symbol of the density operator p, such that

D= /dﬂW(sz)A(sz). (16)

Taking the trace of Eq. (16) and considering the normalization
conditions of density matrix and kernel, Tr[p] = Tr[A(Sl)] =
1, yields [dRQW ()= 1. From the Hermiticity of p and
A(SZ), it follows that W (£2) € R. Thus, W (£2) is a quasiprob-
ability function. The difference to a proper probability density
function (PDF) lies in the fact that W (£2) can be negative for
some values of €2.

Now, one can map the master equation (ME), Eq. (5), to
the Wigner phase space, where it takes the form

%W(Sl,t) =DW(R,1), a7
with some high-order differential operator D. This is achieved
by using the so-called correspondence rules or Bopp operators
which translate the action of an operator on the density matrix
p(t) to a differential operator acting on the Wigner function
W (L, t) [45]. Their exact form for the SU(2) spin operators
was first derived in Ref. [46]. Since the transformation (11) is
linear, we can find the individual differential operators for all
terms on the right-hand side of Eq. (5) before adding them up.
So far, this transformation of the ME is exact, and thus finding
a solution W (2, t) is as hard as finding the solution of p(z).
An approximate solution of W(£,¢) can, however, be ob-
tained efficiently if the following two conditions are fulfilled.
First, we require that at some point in time ¢ = 0, W(, 0) is
positive-semidefinite on the whole domain, such that it can be
interpreted as a proper PDF. In fact, it is sufficient if W (£2, 0)
is positive after some gauge transformation; see the discussion
before Eq. (13). Second, we approximate the differential op-
erator D by Dgp ~ D, where the operator Dgp only consists of
first and second derivatives with respect to 6,, and ¢, in such a
way that Eq. (17) becomes a Fokker-Planck equation [47]. The
explicit truncated correspondence rules for coupled individual
spins are derived in Ref. [28] and for collective operators in
Ref. [29]. Note that there are different truncation approxi-
mations depending on the specific application. In contrast to
bosonic fields, where the inverse occupation number of rele-
vant modes serves as an expansion parameter, there is not such
a general smallness parameter here and a case-by-case discus-
sion is needed. One can perform an a posteriori assessment of
the quality of the truncation approximation by calculating the
coefficients of the non-Fokker Planck terms in the equation of
motion of the Wigner function and checking their smallness.
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For the truncation approximation for collective operators, a
more detailed discussion of its validity is made in Ref. [29].
As a rule of thumb, one finds that whenever the physics is
dominated by collective modes with large cooperativity the
TWA works well. In particular, Dicke superradiance is ac-
curately reproduced for not too small of a number of atoms,
while the collective TWA does not describe subradiance [29].

If the above requirements are fulfilled, one can first gen-
erate a set of angles € according to the PDF W (£, 0), and
then propagate these in time according to a set of coupled
stochastic differential equations (SDE),

N
d2, = f,(R)dr + Z Gun(S2) dBy (). (18)

m=1

Here dB,,(t) are Wiener increments with dB,,(t) =0 and
dB,(t)dB,(t) = 8y, dt, f,() are functions describing the
drift of the system, and G,,,(£2) are functions describing the
diffusion. The overline denotes stochastic averaging. Both
f(R2) and G,,,(R) follow from Dgp of the Fokker-Planck
equation. These SDEs are numerically solved to produce a
large set of trajectories 2(¢). Finally, in order to find a specific
atomic correlator (A(7)) at some time ¢, consider the identity

(A)) = Tr[Ap()] = /dSl W (R, HTr[AA(R)]

= /dSZ W (R, 1)W;i(R). (19)

Therefore, (A(t)) is given by the phase space expectation
value of the function W;(S2). This can be directly evaluated
on the numerically simulated sample set $2(¢),

(A@)) ~ Wi(R)). (20)

Let us now detail these steps for our cascaded quantum sys-
tem. First, we note that any product state p = (), P, maps to
a Wigner function, which factorizes as W () = [, W,.(€2,).
Using the aforementioned gauge freedom, the states |g,) and
le,) are represented by the positive Wigner functions

! §| 6 (:H) 21
Sn,) [n—arccos NG ], 21

where the plus (minus) sign is taken for the excited (ground)
state. Positive Wigner functions corresponding to arbitrary
other single-particle states characterized by the Bloch vector
(u, v, w) can be found in Appendix D. At t =0, we thus
generate a random sample of vectors 2, where the compo-
nents 6,, ¢, are drawn from the PDF W,(2,). The SDEs
corresponding to our ME are described in Ref. [29] and Ap-
pendix C and read withn =1, ..., N:

6, = f0dt + Re[ f“’“dt + g=dz],
dp, = gdB, — cot 6,Im[ f:°"dr + g&"dZ].

Wi (€2,) =

(22a)
(22b)

Here the independent atomic decay is modeled by the terms

ﬁmzu_ﬁ(waﬁfj?) (23a)
(0)—\/7\/ —|—200t9n cot@,l-i— «/§> (23b)

together with N independent Wiener increments dB,,. In fact,
these terms follow exactly from the Lindblad term Ly[p] of
the ME without approximation [28]. The collective terms,
Hease and Lo [0] of the ME, give rise to a drift and a diffusion
term. These terms have been approximated as indicated above,
reading

feoll = & 5 (cot 6, +/35in6,) + 2iy/Be”W,, (R), (24a)

coll \/> el¢,,

together with the complex-valued Wiener increment dZ, for
which dZ2 =0, |dZ|? = 2d¢. Importantly, dZ is the same
Wiener increment for all atoms # as it describes the collective
coupling to a single guided mode. Because of the cascaded
interaction, £ depends only on W, (€2), the Weyl symbol
of the field before the nth atom. This can be solved iteratively
according to

(24b)

Wa, (@) — iV/BWs, (), n>1
an+|(ﬂ) {Ol(t), n=0"

which follows directly from the input-output equation (9) and
substantially simplifies the calculations.

Summarizing the working principle of this stochastic simu-
lation, we first generate a random set of vectors £ according to
the PDF (21), which represents the initial product state of the
atoms. These vectors are then propagated in time according
to Egs. (22) to Eq. (25). Notice that the number of compu-
tations required for accommodating one additional atom is
constant, rendering the simulation time a linear function of N.
Once the simulation is performed, one obtains the output field
directly as

(25)

E(t) ~ Wa,,, (). (26)

Similarly one could then derive expressions for P(¢) and
G (z,t). However, a naive implementation of these would
lead to a sum over N2 and N* terms, respectively, spoiling the
linear scaling of the computation time. In the following we
provide an iterative method, which allows the calculation of
these (and other) correlators in linear number of computation
steps.

V. HIGHER-ORDER CORRELATORS

At the core of the cascaded interaction lies the input-output
equation (9), which relates the field operator after the nth atom
to the field operator before it. Based on this equation, we find
the following iterative expressions for higher-order correlators

of the field after the nth atom:
al s = ala, +iy/B(6,a, — He) + B66,, (27a)

A2F A2

a1 lyyy = &?&34'21\/3( fajay —Hec )+4/3 4,6, 6nan,
(27b)

al, a2, = ala —iyB(2ala.6, — 6,a2) + 26, 6,
(27¢)
an,y = ay — 2iy/BSudn, (27d)

6} = 0and [6,, &,] = 0[42]. Note that

. . ~ . 1 A
since the waveguide operator &, = o — iy/B Y_;_, 6% does not

where we made use of
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act on the nth atom, Eq. (15) yields W, ,, = W5, W,,. With this,
the above expressions transform to iterative equations for the
corresponding Weyl symbols as

Wy +iV/BWi W, —cc) + Wy, . (28a)

At A =
ay [

= 2iy/B(W; Wy —cc.)

A2F A2
Ay 141
+ W&ﬁ*&}, + 4[3Waz&n W&,f&,, s (28b)
Waz Y _i\/B (2%:&,,W5n - WQW&%)
+ W&: P + ZﬁW&: s Wa,, (28¢c)
Wa = W — 2/ BW;s, W, (28d)
For the input field of the first atom, we have W,:, = lee|?,

alay
Witz = loe|*, Wiz = P, and Wy = o, These iterative
expressions demonstrate that one can compute the Weyl sym-
bols Wa},a,,(ﬂ) and Wa/zxi 1 &5+|(9) in linear time complexity,
since for each atom a constant number of computations is
added. Finally, using Eq. (20), we approximate the optical flux

and second-order correlation as
Pot) ~ Wy, (R0), (292)
GP(t, 1) ~ Wi (R(1)). (29b)

The normalized second-order coherence function can then be
computed as

GP,1) _ Warp(R01)
PO W @)

gP 1) = (29¢)

The above arguments can be extended to the calculations of
other single-time correlators.

VI. RESULTS

In Fig. 2 we show some simulations which we performed
using the truncated Wigner approximation for spins (TWA). In
particular, we compute the output correlators P(¢) in Fig. 2(a),
G?(t,t) in Fig. 2(b), and gP(t,1) = GP(t,1)/P(t)* in
Fig. 2(c) for an ensemble of N cascaded atoms as explained
above. In Fig. 2(d) we compute the total angular momentum

(87) = (S + 87+ 82) = = > (606, + 6267 + 6567)

(30)
in analogy to the other correlators. Here 87, 6;, 67 are the
Pauli matrices associated with the nth atom. Initially, the
system is fully excited, and we show in blue the TWA simula-
tions of N = 10, 100, 1000 atoms with a coupling constant of
B =1,0.1,0.01, such that the product SN = 10 is constant.
For comparison, we show an exact calculation of the master
equation for N = 10 atoms using QuTiP (dark red dashed).
It can be seen that especially the initial dynamics is well
captured by the TWA. Note that while the TWA’s simulation
time is linear in N, the QuTiP-simulation time is exponential
in N, making it impossible to compare them to the TWA
simulations with N > 10. Notably, the dynamics of the cas-
caded quantum system is qualitatively different from that of an
ensemble which remains in the symmetric Dicke states [8,9]

(light red dashed). This is most clearly visible in Fig. 2(d),
since <S2> is maximal and constant for the symmetric Dicke
states with (82) = (N/2)(N/2 4 1) [9]. In stark contrast, (S%)
decays in a cascaded quantum system, because the system
leaves the symmetrically excited states, even in the lossless
caseof 8 = 1.

In Appendix A, we numerically compare the predictions
for P(1), G@(t,1), g¥(t, 1), and (S%(1)) by the TWA and the
master equation for N = 10. We find that for 0 < 'y < 1, the
relative error stays typically below 10%. As a general trend,
the accuracy of the TWA increases as § is decreased. This
is because individual decay can be modeled exactly using
Eqgs. (23). We note that, while the TWA captures the early
dynamics well, it can fail at large times. There some of the
predictions become even unphysical yielding, e.g., a negative
value of g® (¢, t). This happens once the optical power in the
waveguide is close to vacuum. In this limit, the truncation
approximation for collective processes used in the TWA sim-
ulations becomes inaccurate [29]. For this reason, we define
the time i by

o0 N
/ &P = oo G1)

limit
i.e., the integrated flux after fj; is equivalent to less than
N/1000 photons. For t > fi;m;r, we expect a large systematic
error on the TWA predictions and indicate this by the dotted
lines in Figs. 2(a) to 2(e) and by the black solid line in
Fig. 2(f). It can be seen that the unphysical predictions only
happen for ¢ > tjjpi.

In Figs. 2(e) and 2(f), we show TWA simulations of
the second-order coherence function g®(¢, ¢) for a coupling
strength of 8 = 0.01. This is motivated by recent experimen-
tal results with these parameters [27]. In Fig. 2(e) the initial
state is the fully inverted state |yg) = |e---e), for which
the initial value of g®(0,0) is 2(1 — 1/N), reminiscent of
a thermal source [48]. For a small number of atoms (N <
1/8 = 100, blue lines), g?(¢,¢) = g?(0, 0) stays constant
as a function of time because the atoms remain in a product
state. However, for a large atom number (N > 1/8 = 100,
red lines), second-order coherence builds up as g®(¢, ¢) tends
towards unity and the ensemble becomes entangled. Impor-
tantly, this effect, which was measured experimentally in
Ref. [27], is a consequence of the collective emission process,
for which the same threshold of N 2 1/8 = 100 is known;
see Ref. [14].

Finally, in Fig. 2(f), we show g® (¢, t) as a color plot for
N = 1000 atoms and 8 = 0.01. Here the initial state of the
ensemble is the product state

N A A
o) = ) [cos (2) |gn) — isin (2) |en>], (32)

n=1

which is characterized by the Rabi-pulse area A. When A is
sufficiently different from 7 (JA — | 2 27/ VN =~ 0.067),
the ensemble has a sizable dipole moment, making the emitted
light coherent, i.e., g (0, 0) ~ 1. Interestingly, in that regime
of superradiance the TWA simulation predicts a sharp peak
of g (¢, ) for a finite time ¢ > 0, where the second-order
coherence function can reach values much larger than 2. This
peak happens well before the time #jn;, i.e., for times where
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FIG. 2. Dynamic simulation of the correlators P(1), G®(t, 1), g2 (t, 1), and (§2(¢)) of a cascaded quantum system as indicated. In the left
panels (a) to (d), we have g = 10/N, such that the product SN = 10 is fixed. The initial state is the fully inverted state |e---¢),i.e., A =1
in Eq. (32). In blue, TWA predictions from N = 10, 8 = 1 (light blue) to N = 1000, 8 = 0.01 (dark blue). TWA predictions are shown as
solid lines for ¢ < #;m;; and as dotted lines for ¢ > fjyy,,. The time ;. is the time when the remaining radiated energy is less than N/1000
photons; see main text. For comparison, we show the corresponding predictions of the Dicke model for N = 10 atoms (dashed light red) and
the numerical solution of the full cascaded master equation using QuTiP for 8 = 1, N = 10 (dashed dark red). In (e), we compare g (¢, t)
for different atom numbers as indicated with 8 = 0.01. For more than 1/8 = 100 atoms (red colors), second-order quantum coherence builds
during the emission, indicated by the decrease of g (z, t). For fewer than 1/8 = 100 atoms (blue colors), g (¢, t) is constant. In (f) we show
as a color plot g (t, t) for initial states parameterized by the pulse area A according to Eq. (32). In (a)—(e), the shaded gray areas indicate
the (one-sigma) uncertainty due to a finite number of simulated trajectories. The number of trajectories was 278 000 for g = 0.01, 15,000 for
B = 0.1, and 595 000 for 8 = 1. For (f) we simulated 37 000 trajectories.

we expect the TWA predictions to be accurate. This effect
may be used for realizing a source of highly bunched pulses
of light [49].

Let us finally remark that in our simulations we assume
the idealized situation of homogeneous atom-waveguide cou-
pling and of exact preparation of the initial state (32). For
the TWA simulations in both Ref. [27] and Fig. 1, however,
we extended our simulations to incorporate experimental non-
idealities. First, we simulated the resonant Rabi pulse with
finite pulse length 7 ~ 0.13/I'g and pulse area A, which
is sent through the waveguide [14]. Second, we included

inhomogeneous coupling, i.e., each atom features its own
coupling strength B,, which is randomly drawn from an ap-
propriate distribution [26]. We note that the modeling of these
experimental nonidealities is necessary to achieve quantitative
agreement between simulation and experiment and can be
readily incorporated into the TWA simulations.

VII. CONCLUSIONS

In this case study, we applied the truncated Wigner ap-
proximation for spins to a cascaded quantum system initially
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prepared in a highly excited state, such as the fully inverted
state |e - - - e). We began by reviewing the master equation of
the system and the equivalent Heisenberg-Langevin equa-
tions, emphasizing that a cascaded quantum system cannot be
reduced to the celebrated dissipative Dicke model, even in the
limit of a lossless system. Using the TWA, we demonstrated
that the cascaded nature of the system allows for stochastic
simulation with a time complexity that scales linearly with
the number of atoms in the ensemble. This is thus much more
efficient than computing the dynamics of an arbitrary atomic
configuration, which scales quadratically with the number of
atoms for the TWA [29]. We presented simulations of various
correlations beyond first order, such as the second-order quan-
tum coherence function g of the output field, for a range of
ensemble sizes and coupling strengths. To estimate the error
introduced by the TWA, we compared its predictions to a full
calculation of the master equation, which takes exponential
time in N, for sufficiently small ensembles. This error is
vanishingly small for weak atom-waveguide coupling, 8 < 1,
making this simulation method valuable for current experi-
ments involving thousands of nanofiber-coupled atoms [27].
In the opposite limit of strong coupling, 8 = 1, the error
remains surprisingly small, indicating that our method is ap-
plicable to a broader range of experiments. To our knowledge,
this is the only computational method in the literature that
can handle simulations of intensity-intensity correlations for
thousands of atoms in a cascaded quantum system within a
feasible timeframe. Future work will involve testing the appli-
cability of this method for even higher-order correlators, such
as three- and four-photon coincidences [50,51]. Additionally,
applying the quantum regression theorem to the TWA could
enable access to multiple-time correlators like G® (¢, t,) with
1) # tp, which is an experimentally accessible quantity. We
expect TWA-based simulations to be useful for many other
waveguide QED experiments with large atom numbers, where
solving the master equation is infeasible.
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APPENDIX A: NUMERICAL ERROR ANALYSIS
OF TWA PREDICTIONS FORN = 10

In this Appendix, we evaluate the error made by the TWA
by comparing the prediction of specific correlators to the
prediction of the master equation (ME), evaluated using
QuTiP. Since the latter method takes an exponential sim-

ulation time in N, we have no access to simulations with
N > 10 and we fix N = 10 for this analysis. In particular,
we compute the relative error of the predicted optical power,
ep(t) = |Pue(t) — Prwa(?)|/Pue(t), and show it for 8 = 0.01
(dark blue), 0.1 (blue), 1.0 (light blue) in Fig. 3(a). We show
the corresponding relative error for G® (¢, t) Fig. 3(b), for
¢@(t,t) in Fig. 3(c), and for (S2(t)) in Fig. 3(d). Note that
at the sharp features, where the error goes to zero, the TWA
prediction switches from overestimating the true result to un-
derestimating it, or vice versa. It can be seen that in general
the error stays largely below 10% for the initial dynamics
(0 < T'gt < 1) and that it increases as a function of time. In ad-
dition, the error decreases for decreasing coupling strength 8.
This is because the individual decay of atoms, which happens
with a rate that is proportional to 1 — §, is treated accurately
by the TWA with Egs. (23).

APPENDIX B: EQUIVALENCE OF LANGEVIN EQUATION
APPROACH AND MASTER EQUATION

In this Appendix, we show that for our cascaded quantum
system, the combination of the quantum Langevin equa-
tions (8) and the input-output equations (9) are equivalent
to the master equation (5). We mainly apply the formal-
ism put forward by Gardiner and Collett [42] to a cascaded
quantum system. For the special case of two atoms cou-
pled in a cascaded fashion, we refer also to Gardiner’s
work in Ref. [15]. First, let us consider an arbitrary atomic
operator ), of a single atom n, which can be written
as

On = co+ 16, + 26, + ¢366, (B1)
with arbitrary complex numbers ¢y, c1, ¢3, ¢3. From Eq. (8),
we find the quantum Langevin equation of Q, as

1 ~ a
+(Za,j - i(bﬁ’)*)[&n, Qn]],

where b" = \/B,a, + /T — B, 0" is the input mode of the
atom. Compared to the main text, in this Appendix we treat the
slightly more general case where the coupling stregth of the
atoms can be inhomogenous, i.e., each atom has an individual
coupling constant 8,,. Let us now consider an arbitrary atomic
operator of the form A = X, On, Wthh we rewrite as A =
AL ® 0, ® AR, where AL = ®),_, Ox only acts on atoms
w1th indices k < n, while AR ®k>n Oy acts only on atoms
with indices k > n. Note that AL and AR commute with both &,
and 6 an , and that the terms in the parantheses, 6,,/2 + 11721 and
61 /2 —i(h™, commute with all system operators, including
AL and AR [42]. Using the product rule, the quantum Langevin

(B2)
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Relative error e, (t) for N =10, e, (t) = |.Z’ME(t) — ITWA(t)VxME(t)
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FIG. 3. Error of TWA predictions as function of time ¢ for N = 10 and 8 = 0.01 (dark blue), 0.1 (blue) 1.0 (light blue). From (a) to (d),
we analyze the correlator of the corresponding panel in Fig. 2, (a) P(t), (b) G2(t, 1), (c) g2 (t, 1), and (d) (82(¢)). We define the error as the
normalized absolute difference of the correlator computed with the TWA and with the master equation (ME), as indicated in the title. Note the
logarithmic scale of the y axis. It is apparent that the error generally increases as a function both of time and of 8.

equation for A thus reads

d . afd oA\ A « a1 A 1 A
—A = AL - UYn AR = G, 5A ~ An ‘bln bln A7 An ) B3
oo e pa(e 8 (o))

By turning from the Heisenberg to the Schrédinger picture, we find

cd . d . (1 N | .
TipA] = - () = Trl:,bthj| - ZT{,@[[&;,A](Z(&” +ib‘,{‘> + (26,; - i(blnn)f>[A, 6,1]]}

- ZTr[[&ﬂﬁAJ = 6160 Y~ (657 — 067 — P64+ 6, () )]A]

R 1 . TR A o
=ZTr[[aan (6160, Y = i/, tnp — a6 pa,ian+anpa;>]A]. (B4)

In the last two steps, we respectively used the cyclic property of the trace and assumed that the free-space input modes are
vacuum, i.e., D"p = 0 and thus b‘“ p = /B0, p. Now we make use of the input-output equation (9), and we expand the input
fieldasd, = o —i) ,_ k:1 B61, where « is the coherent input field. Since Eq. (B4) is correct for arbitrary atomic operators A,
we can find the master equation of the cascaded quantum system as

d . an it a . ata A A A ata A Am
7= Z[ 6,06, {GTcrn,p} — iy/Bu(6, D — 4,8 — pajé, +c7npa,§)]
n

n—1
> [m&,; - 5{&,16,,, pY —iv/Bulas) +He., pl = > \/BuBi(6)6cp — 61p6,) + Hee. )}
k=1

n

—i[Ho, p1+ Lolp] + Z VBBi6ip6,) — [ Z Bul6, 60, DY+ YV BuBi6, 6k + D v/ BuPihS,) ak}

k<n k>n

= _1[H0 + Hcasm pl+ KO[,O] + Leonlpl, (B5)
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TABLE I. Transformation of the cascaded master equation to a stochastic differential equation.

. . d A
Term in master equation, 0 =

Term in SDE, (d@,,) =

dd)ﬂ
—ilHo, p1 = —i[¥, av/B,6; +He., p] Loy, mietel g
o, P = n nOy € P "\ Re[e'?«] cot 6,
’ e (1= Bu)(coth, + =2)dr
ol = 1- n AnAA‘ffA‘AmA y
0[Pl = X2, (1 = B,)(6.08, — 316,64, }) T—% ﬁ,,\/l T 2016, (cotb, + =)ds,
Lelpl =3, T, (6406, — 316,164, P}) 5 (VB cotO, + /3 Y, v/Bu sin(6,,) cos(¢y)ldt — 2Re[e*dZ]
with 2 = /BB 2\ V3cot(8,) > A B SINB,,) sin(y )dt + 2 cot(8,)Im[e? dZ]
7i[ﬁca§ca /A)] 71[2,,, n J, ng Gus ] . BB cos(¢m”)
with J,,, = Y£ubn B’"ﬂ" sgn(m — n) V3 X, sin(6) 5 sgn(m n)<cot(c9,,) sin(¢m,,)>dt

with
Hy =« Z VB.6 +He., (B6a)
Hee = —= Z\/ﬂkﬂnw & —Hc),  (B6b)
k<n
1
Lean[p] = anj\/ﬁkﬂn (akw; — 516, ﬁ}), (B6c)
Lolpl =) (1 =By (onpo,l - f{a*an, i)}>. (B6d)

n

For homogeneous coupling, i.e., 8, = B, one regains the mas-
ter equation (5) from the main text. By performing each step
in reverse, one can also turn the master equation into the quan-
tum Langevin equations. This shows that both descriptions are
equivalent.

APPENDIX C: FROM MASTER EQUATION TO
STOCHASTIC DIFFERENTIAL EQUATIONS

The derivation of the stochastic differential equa-
tions (SDEs) from the master equation is detailed in Ref. [29].
The rules described therein can almost directly be applied
here, with one exception. There it was assumed that the
coherent coupling coefficients J,,, between atoms are real
valued. In our case, the chiral atom-waveguide coupling
leads to complex-valued J,,,. The modification due to the
imaginary part of J,, is as follows: in the SDEs (49) of
Ref. [29] one needs to replace J,, sin(¢,,,) by Im(J,,,e%m)
and J,,,, cos(¢,n) by Re(J,,e'%). With this modification, the
SDEs of the main text, Eqs. (22), follow from Ref. [29]. In
Table 1, we summarize the transformation of all terms in the
cascaded master equation (5) to the corresponding terms in the
SDE. In Ref. [29], these rules can be found in Egs. (16), (49),
and (51). For the last rule concerning the cascaded-interaction
term H.,s., one needs to use the slight modification as laid
out above. The SDEs in the right column can be rephrased
iteratively, as shown in Eqgs. (22) to (25).

APPENDIX D: INITIAL STATE

The discussion around Eq. (21) demonstrates a possible
positive semidefinite Wigner function W (€2) for a single atom
polarized to either its ground state |g) or its excited state |e).
In this Appendix, we provide a positive semidefinite Wigner
function W (2) for an arbitrary single-particle state

~

p =11 +ub, + vé, + wé,), (D)

where (u, v, w) = ((6,), (6y) , (6;)) is the Bloch vector and
6x, 6y, 6, are the Pauli matrices. Since for any product state
of the ensemble, the Wigner function factorizes to W () =
['1, W, (2), all such product states can be sampled. In Ref. [28]
a possible implementation for any single-particle pure state,
i.e., spin-coherent state, is shown, which can be generated
from a rotation of the two states |g), |e). However, since
the Wigner function is not uniquely defined, there are other
possible implementations. Here we present a rather simple
one, which allows to simulate even mixed states, i.e., states
where the length of the Bloch vector is less than one. We
remind the reader that a simple evaluation of Eq. (13) for the
state p does yield a corresponding Wigner function, which,
however, is not positive semidefinite, and can thus not serve
as a PDF from which one can sample particular values of €.
Consider the Wigner function

A
W(Q) = 78(9 0y)

14—
n(0) *

( lucos¢+vs1n¢)
A J3—w?

(D2)

with 6, = arccos(w/+/3) and A = L1+ 1 -282y

3—w
Note that A is real-valued and positive, which follows vuv1th

w+4v —|—w2<1from
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From this it can be checked straightforwardly that W (€2) > 0 is positive semidefinite. Finally we have

1 1 1

Ws ()| V3sin@)cos(@) | _ | u
/dQW(Q) W () _/dQW(Q) Ssin@sing) | = | v | (D3)

Ws, (€2) V3 cos(9) w

which shows that W (€2) transforms to an arbitrary single-atom state p by Eq. (16).
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