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Foreword

Light has occupied a position of importance in our
attempt to understand the world around us. The
earliest studies going back to the dawn of civiliza-
tion related to our attempts to understand vision
and the properties of optical materials. The mod-
ern era in optics is rooted in the great work of Ibn
al-Haytham whose work on the nature of light and
its applications had a long-lasting impact. In our
generation, the discovery of laser has opened up
not only new areas of research but also had great
impact on a number of technologies. Lasers have
revolutionized the fields of communication, med-
icine, and biotechnology. It has influenced the art,

architecture, and printing. It is therefore befitting
that United Nations has declared 2015 as the
International Year of Light and Light-Based
Technologies to celebrate these great
achievements. Saudi Arabia is one of the sponsors
of this initiative that has ignited a number of
activities all around the world. This volume,
which covers the history of light and its
applications to many diverse branches of science,
contains articles by some of the leading scientists
who have played a key role in advancing the
frontiers in our own times.

Turki S.M. Al-Saud
King Abdulaziz City for Science and Technology,
Riyadh, Saudi Arabia
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Preface

Light and light-based technologies have played an
important role in transforming our lives via scien-
tific contributions spanned over thousands of
years. In this book, we present a vast collection
of articles on various aspects of light and its
applications in the contemporary world at a pop-
ular or semi-popular level. These chapters are
written by the world authorities in their respective
fields. This is therefore a rare volume where the
world experts have come together to present the
developments in this most important field of sci-
ence in an almost pedagogical manner.

This volume covers five aspects related to light.
The first presents two articles, one on the history
of the nature of light and the other on the scientific
achievements of Ibn al-Haitham (Alhazen), who is
broadly considered the father of modern optics.
These are then followed by an article on ultrafast
phenomena and the invisible world. The third part
includes papers on specific sources of light, the
discoveries of which have revolutionized optical
technologies in our lifetime. They discuss the
nature and the characteristics of lasers, solid-
state lighting based on the light emitting diode
(LED) technology, and finally modern electron
optics and its relationship to the Muslim golden
age in science. The book’s fourth part discusses
various applications of optics and light in today’s
world, including biophotonics, art, optical

communication, nanotechnology, the eye as an
optical instrument, remote sensing, and optics in
medicine. In turn, the last part focuses on quan-
tum optics, a modern field that grew out of the
interaction of light and matter. Topics addressed
include atom optics, slow, stored and stationary
light, optical tests of the foundation of physics,
quantum mechanical properties of light fields car-
rying orbital angular momentum, quantum com-
munication, and wave-particle dualism in action.

We are grateful to many individuals and
organizations whose contributions and cooperation
were invaluable in compiling this book. First and
foremost, we are grateful to all the authors who took
their time in writing these articles for the general
audience. We are very grateful to the leadership and
the staff at King Abdulaziz City for Science and
Technology (KACST) for their generous support in
the completion of this project. Khalid Al Zahrani
ought to be thanked with whom the idea of this
book was triggered over a cup of tea.

We have however one deep regret: one of the
authors, Nobel Laureate Ahmed Zewail, who
enthusiastically supported this volume and
contributed an important chapter passed away
on August 2, 2016, before the publication of this
book.

Mohammad D. Al-Amri
Riyadh, Saudi Arabia

Mohamed M. El-Gomati
York, UK

M. Suhail Zubairy
College Station, TX, USA
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15.1 Introduction

Since the experiments of Michelson and Morely and their brilliant explanation by
Albert Einstein more than 100 years ago which have laid the foundation for the
theory of relativity, we know that light propagates in empty space with the largest
possible velocity. This speed of about 300,000 km/s is so fast that we can have a
phone conversation around the globe without noticing that an electromagnetic
signal has to be transmitted for every bit of information. When we look through a
window or a prism of quartz we see that light gets refracted. Refraction is due to the
fact that light propagates in a transparent medium at a slightly lower speed than
allowed by the universal traffic laws of nature. This speed, called phase velocity
depends on the color of light and the variation of the phase velocity in media, is what
causes the beauty of a rainbow or the bright fan of colors produced by a prism. Yet
the change of the velocity of light in water, in glass or even in diamond is small, it is
typically less than a factor of 2. But what if this factor is 107, a ten with 6 extra zeros,
i.e. 10,000,000? Such light can truly be called ultra slow. As opposed to propagation
faster than the vacuum speed of light, this is not forbidden by Einstein’s theory of
relativity, but for a long time did not seem feasible. It did so until the late 1980s and
early 1990s, when Steve Harris from Stanford University pointed out that an effect
he termed electromagnetically induced transparency (EIT) [1, 2] can lead to a
massive reduction of the effective speed of pulsed light [3]. When we talk about
‘slow’ light we talk about the speed of pulses of light, called group velocity, which
needs to be distinguished from the phase velocity mentioned above.

Although a number of experiments have seen evidence of velocity reduction in
EIT media, it took until 1999 [4–6] that slow light received a great deal of
attention. In 1998 the group of Lene Hau at the Rowland Institute for Science
together with Steve Harris managed to decelerate the propagation of light in an
atomic gas to 17 m/s, i.e. almost 20 million times slower than in vacuum. The
cover page of the journal Nature (. Fig. 15.1), where this experiment was

. Fig. 15.1 Slow light: Cover page of the 18th February 1999 issue of the journal Nature
illustrating an experiment on slow light by the group of Lene Hau at the Rowland Institute for
Science. Using an ultracold gas of atoms the physicists managed to slow down a pulse of light to
a velocity of 17 m/s (Reproduced with permission of the journal Nature)
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published in 1999, illustrates the achievement showing that a trained cyclist could
even outrace such a light pulse. This is of course only a figurative way to
demonstrate how slow the light was compared to the usual. Actually there was
no cyclist involved in the experiment. The light was propagating in a tiny cloud of
ultracold atoms contained in a vacuum chamber over a very small distance, as one
can see by closer inspection of the figure. This spectacular result then triggered a
rapidly growing activity in the field leading to many fascinating applications.

So, what is slow light and what is it good for? How can we understand the
physics of it and how can we practically make light go so slow? These are the
questions we want to answer in the following using simple pictures, on the one
hand, and supplementing them with a little bit of details, on the other hand, for
those who want to go slightly deeper. Yet we will avoid math as much as possible
and refer those who seek more detailed information to the specialized literature
[7–11].

15.2 Slow Light, Stopped Light and Stationary Light:
A Simple Picture

How can one slow down light to such extremely low velocities? Imagine a fast
racing car (. Fig. 15.2). If a heavy trailer is attached to the car, its engine has now
also to pull the trailer. This slows down the car considerably. Something similar
happens with light in a specially arranged atomic medium used in EIT
experiments. Light is composed of photons—tiny particles which are very fast,
so one can visualize them as fast racing cars. When entering the atomic medium,
most of the photons are converted into a special kind of atomic excitations (which
we here call spin excitations) which cannot move on their own, and thus behave
like heavy trailers. The atomic excitations generated in this way are coupled to the
small number of remaining photons which have to pull a vast number of immobile
spin excitations while travelling in the medium. In this way, the propagation of the
whole pulse of light is slowed down dramatically. The possibility to convert ‘fast
cars’ into ‘immobile trailers’ is a small, but important difference to usual cars and
trailers we encounter in real life. When the crawling light pulse reaches the end of
the medium, the atomic excitations (trailers) are converted back to photons (fast
cars), so the light exiting the medium becomes fast again.

Now imagine that the number of photons converted into atomic excitations
(i.e. fast cars converted into trailers) can somehow be increased at will. This means
there is an even lesser number of remaining cars to pull the whole bunch of trailers.

. Fig. 15.2 A simple picture of slow light: Imagine a bunch of racing cars that enter a parking lot where heavy trailers get attached to them.
Since the racing cars have to pull the trailers, they get slowed down considerably. When they reach the end of the parking lot, the trailers get
detached, and the cars can move on with their full speed. Slow light is almost like this, except that cars get partially converted into trailers at
the entrance to the parking lot and converted back at the end
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And now imagine further that the conversion between cars and trailers can be
changed while the fast cars are going through the trailer park. What if all of them
are converted and no racing car is left to pull? The pulse would stop! This is the
essence of stopped, or more precisely stored light, theoretically predicted in [12]
and soon after experimentally verified in [13, 14]. The important difference of this
kind of light storing and using a black piece of paper, which just absorbs the light,
is that here the information carried by the photons is still present in the medium,
in our analogy in the form of heavy trailers. Thus in principle all information about
the original photons stored in the atomic excitations (trailers) can be converted
back into photons (fast cars) either completely or in part. When the slow-light
pulse reaches the end of the medium, the atomic excitations can no longer be
dragged along and are fully converted back into light. In this way the stored light
pulse can be fully retrieved.

Light storage is of particular interest in information technology especially in
quantum information science. Light is an ideal carrier of information be it classical
information which we use in every-day life or be it quantum information which
may encounter at some day in a quantum network. Yet in the second case it is
rather difficult to store information without loosing the quantum character,
referred to as quantum coherence. Here light storage is an extremely useful
method to build what is called a quantum memory for light. In fact first proof-
of-principle demonstrations of quantum memories for photons based on light
storage have already been made in a number of labs [15, 16].

It is noteworthy that by storing a light pulse all its photons (i.e. all the racing
cars) are converted into immobile atomic excitations (trailers). Yet there is another
way to make photons immobile where the photons are still present in the medium.
This is called stationary light. It is formed when two counter-propagating pulses of
light are driving the same spin excitations of a properly prepared atomic medium
[17–21]. This corresponds to having two types of racing cars, one going from the
left to the right, and another one from the right to the left. Both types of cars are
trying to pull the same immobile trailers in opposite directions, as illustrated in
. Fig. 15.3. The forces compensate, so the cars and the trailers remain at rest.
More precisely stationary light behaves like massive quantum particles with zero
average velocity. Note that in the quantum world physical quantities such as the
particle velocity fluctuate and thus we need to talk about averages here.

One can also produce a situation where two counter-propagating pulses of
light drive different spin excitations of the atomic medium. If the two types of spin
excitations are coupled to each other in the right way, two-component slow light is
formed which has a more complex structure resembling what is known in quan-
tum physics as a particle with a spin degree of freedom [22–25]. This is like having
two types of racing cars going in opposite directions, each pulling different types of

. Fig. 15.3 The principle of stationary light: Imagine racing cars entering a parking lot with heavy trailers from opposite sides. When attaching
trailers to the cars they are pulled in opposite directions with equal forces and thus don’t move at all. In this way the racing cars can be brought to
halt even without converting them completely into trailers as is the case for light storage
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trailers, as shown in . Fig. 15.4. If the trailers were not coupled to each other, the
two types of cars would slowly move in opposite directions pulling their respective
trailers independently from each other. Yet if there is a coupling between the two
sorts of trailers, the oppositely moving cars and trailers influence each other,
making a more complex dynamics, resembling that of a relativistic quantum
particle.

15.3 A Microscopic Picture of Light Propagation
in a Medium

In order to understand the mechanism behind slow light we first have to talk about
the microscopic physics of light propagation in a medium. In particular we will
discuss what the physical origin of absorption and refraction is, two phenomena
which we are familiar with in every-day life.

15.3.1 Absorption, Emission and Refraction

Light is nothing else than an electromagnetic wave build up from oscillating
electric and magnetic fields. The color of light is determined by the oscillation
frequencyω ¼ 2π=T , given by the inverse of the temporal period T of oscillations.
The electric field of a plane wave propagating along say the x axis of some
coordinate system has a sinusoidal form depicted in . Fig. 15.5. It is characterized
by the frequency ω, and a corresponding wavelength λ, which is the spatial period
of the wave. This can be written in the following form:

. Fig. 15.4 Multi-component slow light: When racing cares moving in opposite directions pull different types of trailers, both types of cars
would slow down independently of each other. However, when coupling the trailers together in a proper way a situation is created that
corresponds in physics to quantum particles with an internal degree of freedom

tim
e 

. Fig. 15.5 Light waves: Light are waves of the electric field oscillating in space with a certain
period, the wavelength λ. The ‘hills’ and ‘valleys’ of the wave, i.e. the points of maximum and
minimum wave amplitude propagate in space with phase velocity c, such that at a fixed
point in space the electric field oscillates in time with frequency ω ¼ 2πc=λ
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E ¼ E0 sin ðωt # 2πx=λÞ ¼ E0 sin ðϕÞ, (15.1)

where we have introduced the phase ϕ. The propagation velocity of such a wave
can be found by asking: What is the position change Δx in a time Δt for a fixed
value of the phase ϕ? One finds: c ¼ Δx=Δt ¼ ωλ=2π, which is called the phase
velocity.

Light carries energy, which, as figured out first by Max Planck in 1900, comes
in quantized units. So a beam of light is composed of particles called photons. The
amount of energy E contained in each of these photons is proportional to the
oscillation frequency ω, i.e. it depends on the color, E ¼ ℏω, where the constant ℏ
entering here is the famous Planck constant. High-frequency photons, such as
those of ultra-violet light or even X-rays, are very energetic, while low-frequency
photons such as infrared light or microwaves, which we cannot see with our eyes,
do contain much less energy per photon.

Matter, on the other hand, consists of atoms, which according to the laws of
quantum mechanics have a number of states characterized by discrete energies.
Very often it is sufficient to consider only two or three most relevant states. Atoms
are also small quantum oscillators which can ‘vibrate’ at different frequencies
corresponding to the energy differences between quantum states
ωab ¼ ðEa # EbÞ=ℏ. Many (but not all) of these ‘vibration’ modes are associated
with an oscillating electric dipole. In this way an atom can absorb or emit radiation
just like an antenna of a mobile phone. As we shall see later on, photons play the
role of the fast racing cars described in the introductory section, whereas properly
prepared atoms absorbing the photons play the role of the heavy trailers. When an
atom absorbs a photon it changes its quantum state from the low-energy state to
the high-energy state (see . Fig. 15.6) and vice versa if it emits a photon.

There are actually two types of emission of an excited atom. The most common
is spontaneous emission, where a photon is emitted in a random direction leading
to the loss of information on the state, the propagation direction and the polariza-
tion of the photon that excited the atom in the first place, see . Fig. 15.7a. The
other one is stimulated emission which takes place in the presence of other
identical photons and is pointed into the direction determined by these photons,
see . Fig. 15.7b. In addition to spontaneous emission there are a number of other
relaxation processes for excited states in atoms. As a consequence of these pro-
cesses and due to spontaneous emission, excited atomic states decay with some
rate γ. Thus when light shines on a cloud of atoms or atoms arranged in a crystal, it
can be absorbed by exciting some of the atoms into high-energy states which
subsequently decay. Clearly how much a medium absorbs depends on the density
of atoms, which in a gas is much less than, e.g., in a solid.

Still, why is it that some solids like diamond are transparent to visible light and
others like coal are pitch black? Both are just slightly different forms of carbon and
their density does not differ significantly. The reason is simple: In order for a
photon to be efficiently absorbed, its frequency has to be close to the frequency of
the atomic oscillator, i.e. the frequency should correspond more or less to the

a

b

. Fig. 15.6 Absorption: When an atom absorbs a photon it changes its quantum state from a
low-energy state to a high-energy one

364 M. Fleischhauer and G. Juzeliūnas

15



energy difference between some lower and higher state ωab ¼ ðEa # EbÞ=ℏ. When
this is the case, one talks about resonance. If the photon frequency is very different
from any of the vibration frequencies of the atomic oscillator, i.e. if the light is
off-resonant, not much can happen. It is like if you are trying to make a bridge
vibrate by jumping up and down but are doing it at the wrong pace. Only a tiny bit
of the photon energy is transferred to the atom, stored there for a very little
moment and then is reemitted into the stream of photons. In this process the
atom is actually not completely transferred from the lower-energy state to the
higher-energy state, as in . Fig. 15.6, and the subsequent emission process is a bit
different from the stimulated process shown in. Fig. 15.7b, but in essence it is like
this. A word of caution is needed here: This picture of absorption is a bit of an
oversimplification if applied to solids rather than to sparse atomic gases. The
quantum states and energies in a solid are not the same than those of isolated
atoms as they are affected by atom–atom interactions. Also even off-resonant
transitions can eventually lead to sizable absorption if there are very many of them.

As we have mentioned before, waves are characterized by a wavelength λ,
which gives the spatial period of a wave and is directly related to the frequency. In
vacuum the relation between the two is λ0 ¼ 2πc0=ω. Here c0 is the vacuum speed
of light, i.e. the fastest velocity allowed by the laws of nature. In a medium this
relation is changed, however. The short moment for which the photon is stored in
the atom causes a delay. The effect of the very many, tiny delays at every atom in
the medium makes light appear to propagate with a modified phase velocity

cðωÞ ¼ c0=nðωÞ: (15.2)

Here n(ω) is called the refractive index. In vacuum the refractive index is unity.
The name ‘refractive index’ stems from the fact that it characterizes the refraction
of light beams at an interface between say air and a piece of glass, as illustrated in
. Fig. 15.8. Refraction comes about since along with the change of the phase
velocity of a plane wave at frequency ω comes a change of the wavelength
λ ¼ λ0=nðωÞ. This is because the frequency of the wave remains the same in the
medium, giving ω ¼ 2πc0=λ0 ¼ 2πc=λ.

The influence of a medium on the propagation of light is characterized by the
susceptibility χ. In . Fig. 15.9 we have plotted both the absorption strength (red
line) represented by the imaginary part of the susceptibility Im½χ& ¼ χ00ðωÞ
together with its real part Re½χ& ¼ χ0ðωÞ (blue line) as function of the frequency
in the vicinity of an atomic resonance frequency ωab. The latter χ0 describes the
deviation of the index of refraction from unity, n ¼ 1þ χ0=2. One recognizes that
the absorption peaks on resonance and falls off quickly with increasing frequency
mismatch Δ ¼ ω# ωab, called detuning. The refractive index has a bit more

a

b

γ
a

b

(a) (b) 

. Fig. 15.7 Spontaneous and stimulated emission: An excited atom can loose its excitation energy either by spontaneously emitting a photon
in an arbitrary direction (a) or stimulated by an incoming photon (b) in which case the emitted photon has the same direction than the incident
one. In both cases the atom changes its quantum state from the high-energy to the low-energy one
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complicated anti-symmetric shape. For frequencies above the resonance, ω > ωab,
the medium leads to a reduction of the refractive index with respect to the
background value, while below resonance, ω < ωab, the refractive index is
enhanced. One notices the following from the figure: For large values of jΔj the
refractive index falls off much slower than the absorption, so for far off-resonant
light only refractive effects of the medium matter. This is why even transparent
media can still have a strong effect on the propagation of light. One of these effects

λ0 λ

. Fig. 15.8 Refraction of a wave: When a wave hits the surface of a medium with a different
phase velocity, the wavelength has to change as the electric field oscillates in time always with
the same frequency. This causes a change in the propagation direction of the wave

. Fig. 15.9 Absorption and dispersion of a two-level atom: An atomic oscillator described by a
two-level quantum systems leads to a strong absorption of light close to its resonance frequency.
This is shown by the red curve, representing the imaginary part χ0 0ðωÞ of the susceptibility as
function of frequency ω. The refractive index nðωÞ ¼ 1þ χ0ðωÞ=2, determined by the real part
of the susceptibility χ0ðωÞ, is shown as the blue curve
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is the refraction of a light beam at an interface between two media with different
refractive indices. Another one is the modification of the propagation velocity of
pulses, discussed in the following subsection.

15.3.2 Group Velocity

We have seen that the dependence of the refractive index on the frequency leads to
different wavelength of light in a transparent medium as compared to free space.
This dependence has another equally important effect, it determines the effective
propagation speed of photon wavepackets. As illustrated in. Fig. 15.10, one needs
to superpose light waves with slightly different wavelength in order to create a
wavepacket, i.e. a light pulse of finite length. In some sense we can envision
photons as such wavepackets.

What is the propagation speed of such a wavepacket which consists of plane
waves of different frequencies? In vacuum all frequency components propagate at
the fundamental speed of light c0, so wavepackets made of plane waves also
propagate at this speed. But what about a medium, where each component has a
different phase velocity cðωÞ ¼ c0=nðωÞ? It turns out that the slightly different
phase velocities of each constituting plane wave cause the envelope of the pulse to
move at the so-called group velocity vgr which can be very different from the phase
velocity c ¼ c0=nðωÞ. It is given by

vgr ¼
c0

nðω0Þ þ Δn
Δωω0

! " (15.3)

where ω0 is the average frequency of the different components. The group velocity
determines the effective speed of photons in a medium. When we talk about slow
light, what we mean is light with a very small group velocity compared to c0.

From Eq. (15.3) one recognizes that in addition to the refractive index itself,
contained in the phase velocity c ¼ c0=nðωÞ, also the slope Δn(ω)/Δω enters at
which the refractive index n(ω) changes by Δn(ω) when the frequency makes a
small change Δω. As can be seen from . Fig. 15.9 this slope is typically small far
off resonance and the second term in the denominator of Eq. (15.3) is irrelevant.
Thus in this frequency range the group velocity is essentially equal to the average

. Fig. 15.10 Wavepackets: In order to create pulses of light with a finite spatial length,
one needs to superimpose plane waves with slightly different wavelength in a proper way.
In a medium the phase velocity of these components can differ. As a consequence the effective
speed of the wavepacket is not given by the phase velocity but by the group velocity defined
in Eq. (15.3)
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phase velocity. One also recognizes that on either side of the resonance, provided
one is sufficiently far away from the resonance point, the slope of n(ω) is positive,
which is called ‘normal’ dispersion. Here the group velocity is slightly smaller than
the phase velocity. In order to see a dramatic difference between group and phase
velocity one has to go closer to resonance. We immediately notice the problem
with that: Whenever we are closer to resonance, the absorption of the medium
becomes large and light gets quickly absorbed. In the following section we will
explain how one can overcome this problem in an elegant way making use of an
effect called EIT.

But before we proceed with this let’s make a little side remark here: One notices
that the situation is completely different in a very narrow frequency range around
resonance: Here Δn(ω)/Δω is negative and large and the group velocity can
become larger than the phase velocity. In principle it can even become larger
than the vacuum speed of light c0! But don’t worry, this does not violate Einstein’s
principle of relativity as proven already by Arnold Sommerfeld [26]. One notices,
for example, that in the same spectral region there is large absorption. As a
consequence no signal can actually propagate faster than c0.

15.4 Electromagnetically Induced Transparency

How can we get around the problem that strong effects on the group velocity of
light seem to be always associated with large losses? The answer came from an
effect known as EIT [2, 27, 28]. To understand what EIT is all about let us start
with an analogy from mechanics [29]: Consider a mass m which can slide on a
surface and is attached to a wall with a spring, as shown in . Fig. 15.11a. This
system forms an oscillator with frequency ω0 ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
, where k is the spring

constant. Now assume that there is some friction, e.g. due to a rough surface on
which the mass slides. If the oscillator is excited by a periodic force with frequency

. Fig. 15.11 Coupled mechanical oscillators: (a ) A mechanical oscillator with resonance frequency ω0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
driven by a periodic force

F with frequency ω and subject to friction with energy loss rate γ generates a loss power spectrum similar to the absorption spectrum of a
two-level system shown in Fig. 15.9. (b ) If the mass is coupled to a second one with smaller friction (loss rate γ0 ( γ) a resonant periodic
drive causes only the second mass to move and thus the power loss is dramatically reduced. (c ) Loss power spectrum for γ0 ( γ. (d ) If
γ0 equals γ, the total loss power spectrum is that of two independent absorption spectra slightly shifted in frequency (Adapted from [29])
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ω close to the resonance frequency ω0, energy is transferred to the oscillator and
subsequently dissipated into heat due to the friction. The dissipated power P(ω)
depends on the frequency mismatch between oscillator and drive frequencyΔ ¼ ω
#ω0 and has a similar form as the absorption curve in . Fig. 15.9.

Now suppose we couple this oscillator to another mass oscillating with the same
frequency ω0 using an additional spring with spring constant K (. Fig. 15.11b).
Let us assume next that the second oscillator has little or no friction. If we now
drive the first mass with a periodic force something interesting happens: Looking
at . Fig. 15.11c, where we have plotted the dissipated power again as function of
frequency, one notices that if the driving frequency ω matches exactly the oscilla-
tor resonance frequency ω0 little or no energy gets dissipated!

The reason is that the first mass, i.e. the one with friction, does not move at all.
Only the second mass, the one with little or no friction, oscillates. It does this in
such a way that it produces a force on the first mass exactly opposite to the external
force F. The two forces compensate each other, and so the first mass stands still.
One can say that the system of oscillators is driven into a dark mode, i.e. a mode
without dissipation in which the lossy oscillator is not excited. Consequently the
effect of friction is reduced considerably and no or little energy is dissipated.

The situation changes if the second mass also experiences a substantial friction.
In particular, if the loss rates of both oscillators are the same, i.e. γ0 ¼ γ, the loss
power spectrum is just the addition of two simple loss curves slightly shifted in
frequency relative to each other, as shown in . Fig. 15.11d. As long as γ0 is not
too large, there are two maxima corresponding to the two eigenfrequencies of the
coupled oscillators. The splitting increases with

ffiffiffiffi
K

p
, i.e. with the strength of

the coupling. Most importantly if γ0 vanishes or is very small, one can make the
coupling very weak and still the dissipation essentially disappears when driving
the first mass. This creates a situation where one can be close to resonance while
there is almost no loss.

This principle can be translated to atomic oscillators. What is needed are two
oscillators, one of them almost lossless, another one lossy, and the two oscillators
need to be coupled by a ‘spring’. This can be realized in a 3-level Λ-type system
shown in . Fig. 15.12. The atom-light coupling scheme is called Λ-type scheme
because of the resemblance to the Greek letter Λ.

The first oscillator corresponds to the transition between the initially populated
ground state g and the excited state e, as shown in . Fig. 15.12a. This oscillator
dissipates energy because of decay of the excited state e with rate γ, e.g. due to

γ

(a) (b) 

s

g

e

γ0

γ

s

g

e

γ0

γ

s

g

e

γ0

(c) 

Ω

. Fig. 15.12 Principle of electromagnetically induced transparency: (a) A lossy atomic oscillator consisting of the initially populated ground
state g and an excited atomic state e is driven by a probe field (red arrow). (b) In a three-levelΛ-type system there exists a second atomic oscillator
between states g and s, which can be lossless or have very small losses, e.g. if s is a low-energy state. (c) Coupling the two oscillators
by a control laser with a strength characterized by the Rabi frequency Ω produces a situation similar to that shown in . Fig. 15.11b.
Consequently the medium becomes (almost) transparent to the probe field
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spontaneous emission. The oscillator is driven by the probe field (see
. Fig. 15.12a) corresponding to the external driving force in the mechanical
picture from above. The ground state g together with another metastable ground
state s forms the second oscillator (see . Fig. 15.12b). The latter state s can be, e.g.,
a long-lived hyperfine spin state in the atomic ground state manifold, i.e. a
low-energy state like g. Therefore the second oscillator is essentially lossless or
has very small losses. Finally the role of the spring coupling the two oscillators is
taken over by a coherent control laser field inducing transitions between the
excited state e and state s (see . Fig. 15.12c). The strength of this coupling is
directly proportional to the amplitude of the electric field of the control laser, and
the resulting splitting of the absorption peak (shown in . Fig. 15.13) is denoted as
Ω and is called Rabi frequency.

The absorption as a function of the probe field frequency ω relative to the
resonance, expressed by the detuning Δ ¼ ω# ω0 is shown in . Fig. 15.13a, b as
red lines. It consists of two absorption peaks like the spectrum of two coupled
mechanical oscillators in . Fig. 15.11c. Similar to the mechanical analog, the
absorption shown in . Fig. 15.13a, b vanishes exactly on resonance for γ0 ¼ 0,
or is insignificant for small γ0. This is quite remarkable since this means that
despite the fact that one is very close to the resonance frequencies of the coupled
system, the absorption is vanishingly small! Since a non-absorbing medium is
transparent and since this effect is induced by the coupling of the two atomic
oscillators by the drive laser, this phenomenon was called electromagnetically
induced transparency or in short EIT.

The phenomenon of EIT has a widespread application in atomic and molecular
physics and in optics. It can be used, for example, to make nonlinear optical
processes much more efficient as it allows to operate close to atomic resonance
without suffering from absorption. Some of the interesting applications will be
discussed in detail in the following section.

15.5 Slow Light, Stored Light and Dark-State Polaritons

15.5.1 Slow Light

As we have discussed in . Sect. 15.3 the absorption spectrum is associated with
the imaginary part of the susceptibility. . Figure 15.13a, b show the absorption
spectrum of the atomic medium at an EIT resonance. The spectrum consists of two
lines separated by an amount proportional to the strength of the driving field (Ω)

. Fig. 15.13 EIT versus two-level resonances: (a) Real (χ0) and imaginary (χ0 0) parts of the susceptibility of an EIT system characterizing the
refraction and the absorption, respectively. Figure (b) shows the same with a smaller Rabi frequency of the drive field. For comparison
we have shown in (c ) the total susceptibility spectrum of two independent two-level systems with slightly shifted resonance frequencies.
While χ0 , i.e. the index of refraction has a very similar shape in (a) and (c), there is an important difference in the absorption: In the EIT
case it vanishes in between the two maxima, while for two two-level resonances it remains large
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and in between these two peaks the absorption goes to zero. Also shown is the real
part of the susceptibility as a function of frequency, which is called dispersion. In
. Fig. 15.13c we have plotted the absorption and dispersion spectra of two
uncoupled oscillators with slightly different frequencies. We notice that the dis-
persion curves look qualitatively very similar in . Fig. 15.13a, c. In particular the
real part of the susceptibility, i.e. the refractive index, has a positive slope around
Δ ¼ 0. In the case of two uncoupled two-level systems this just results from
superposing the below-resonance tail corresponding to one oscillator with the
above-resonance tail of the other. The most important difference between the case
of two uncoupled resonances and EIT is that in the former case the absorption
does not vanish in between the two resonances.

The dispersion curve has a remarkable feature right on resonance. It has a
linear slope that can become very steep. In fact the closer the two absorption peaks
are, the steeper is the dispersion curve. From Eq. (15.3) we notice that a steep slope
of the index of refraction leads to a very large denominator in the expression for
the group velocity. This means close to resonance the medium is, on the one hand,
transparent due to EIT and at the same time the group velocity can be extremely
small. This is the origin of ultra-slow light in EIT.

The value of the group velocity in an EIT medium is determined by the general
equation (15.3) with the second term in the denominator being much larger than
the first one, giving

vgr )
c0

ω0
Δn
Δω

* Ω2

ρ
, (15.4)

where Ω is the Rabi frequency of the drive laser, and ρ is the density of atoms. By
turning down the intensity of the drive laser, i.e. by reducing Ω, or alternatively by
increasing the atom density ρ, one can reach very small values of the group
velocity. This can also be seen from . Fig. 15.13a, b: Reducing Ω the separation
between the absorption maxima decreases making the dispersion curve steeper in
the center and hence the group velocity smaller.

The first experiments measuring the group velocity reduction in EIT where
done by Harris et al. [3] in an atomic vapor cell reaching vgr ¼ c0=170. The
smallest group velocities achieved so far in experiments are obtained using very
cold and dense clouds of atoms such as in a Bose Einstein Condensate and are on
the order of 10 m/s, i.e. vgr ¼ c0=30, 000, 000 [4].

When a light pulse enters a medium with a small group velocity it will be
transmitted if its central frequency is close enough to the resonance and if its
spectral width, i.e. the spread of frequencies associated with any pulse of finite
duration, is much less than the distance between the two peaks in the absorption
spectrum shown in . Fig. 15.13. The very steep slope of the refractive index has
also a profound effect on the spatial shape of the pulse, as illustrated in
. Fig. 15.14. When the pulse just enters the medium its front end will propagate
with the group velocity vgr, while its back end still propagates with the vacuum
speed of light. As a consequence the pulse will be dramatically compressed in
length inside the medium. The compression ratio is given by

l=l0 ¼ vgr=c0: (15.5)

This resembles a situation where a number of vehicles moving fast on a highway
suddenly approaches the beginning of an area with restricted speed. At this point
the bunch of cars is compressed since when the first cars have already entered the
area of restricted velocity, the ones at the back still drive at full speed. If the velocity
of the vehicles is reduced by half, the distance between them becomes twice
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smaller, so the compression factor is 1/2. Since in the atomic media the light can be
slowed down to such extremely small velocities as vgr ) c0=30, 000, 000 ¼ 10 m/s,
the incoming pulse of fast light with original length l0 of about 1 km will be
compressed to a pulse of length l of about 30 μm (!). In this way even very long
pulses of light can be made to fit into a small-sized material, such as an elongated
(cigar shape) Bose Einstein Condensate of sodium atoms used in the 1999 experi-
ment by the group of Hau [4]. When the pulse leaves the medium the opposite
effect happens. The leading edge travels fast since it is in free space and the back
end lags behind as it is still inside the medium. At the end the outgoing pulse has
the same length as the incoming one, at least under ideal conditions. This is again
like the spatial decompression of a bunch of cars when leaving the area of
restricted speed on the highway.

15.5.2 Stopped Light and Quantum Memories for Photons

As can be seen from Eq. (15.4) the group velocity of slow light can be controlled by
the strength of the coupling laser or the density of the medium. So what would
happen if we turn the coupling laser off while the probe pulse propagates inside the
EIT medium? The medium becomes immediately opaque for the probe light and
thus we expect no probe field to survive. This is indeed the case. So does this mean
the probe pulse is lost? Surprisingly this does not happen!

At the entrance of the mediummost of the incoming photons are transferred to
atomic excitations during the slowing down. In this process the pulse is also
substantially compressed in space, so that it fits inside the medium. The atomic

∆l0
c0

∆l

vgr

c0

delay

. Fig. 15.14 Pulse compression: When a light pulse enters a medium with a reduced group velocity it becomes spatially compressed by the
ratio vgr/c0. When the front end is already in the medium it propagates with vgr, while the back end still moves with the much larger speed c0.
This causes the pulse to shrink in space. The opposite is happening when the pulse leaves the medium
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excitations, carrying information about the incoming pulse, travel together with
the remaining photons. If the control field is switched off while the compressed
pulse is still inside the medium the light disappears, i.e. no probe light survives. But
if the control field is switched on again at a later instant of time, the pulse
miraculously reappears! This is shown in the numerical simulation of
. Fig. 15.15. The right-hand side shows the propagation of the compressed light
pulse inside the medium when the control laser is switched off and on again as
illustrated on the left-hand side. So obviously we have somehow managed to stop
(or more specifically to store) the light pulse for a while and sent it off its way a
while later.

This remarkable phenomenon of light stopping (storing) was theoretically
predicted in 2000 [12] and experimentally demonstrated in 2001 by two groups
at Harvard University [13] and the Roland Institute of Science [14].. Figure 15.16
is a reproduction of the data obtained in one of these experiments from [14]. In
these experiments a storage time of up to half a millisecond was reached. In 2009
the group of Immanuel Bloch at the Max Planck Institute for Quantum Optics in
Garching, Germany in collaboration with colleagues from Israel has increased the
storage time to 240 ms using ultracold atoms in a Mott insulating state in a three-
dimensional optical lattice [30]. In the so-called Mott insulating phase atoms are
particularly protected from perturbations such as collisions and diffusion, which
leads to the prolonged storage duration. The current record for storage times is
1 min [31]. It has been obtained in doped glasses, where impurity atoms behave
almost like free atoms in a vapor with the advantage that they do not move as in
the Mott insulating state discussed above, and the atomic density is higher than in
a gas.

15.5.3 Slow-Light Polaritons

We have seen in. Sect. 15.3 that the microscopic picture of light propagation in a
transparent medium is that each atomic oscillator absorbs a tiny little bit of an
incoming photon, stores it for a short moment and releases it again with a small
time delay as electromagnetic energy. The amount of the time delay is determined
by the ratio of group velocity and vacuum speed of light. Furthermore the
reduction in the group velocity also leads to a spatial compression of a photon
pulse at the entrance to the atomic medium, as discussed in the previous subsec-
tion. If a light pulse is spatially compressed without increasing its amplitude, this

. Fig. 15.15 Light storage and retrieval: When the strength of the control field is switched off smoothly while the slow-light pulse is in the
medium (a ) the pulse stops but also all photons disappear (b ). If the control field is, however, switched on again at a later time, the pulse
miraculously reappears and continues to propagate as a slow-light pulse in the medium
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means that its content of photon energy decreases, i.e. the total number of photons
contained in the pulse must be reduced according to the spatial compression.
Where do these photons go if the medium is not absorbing? The answer is: They
are temporarily stored in the form of atomic spin excitations.

In an usual transparent medium, such as glass, the ratio between the number of
atomic excitations and photons is fixed and is very tiny. In an EIT medium this
ratio can be large and it can be dynamically modified by tuning the strength of the
control laser or by changing the atomic density. The best way to describe this is not
to think in terms of photons and atoms separately but in terms of a combined
quasiparticle, called polariton, containing a contribution due to both a photon and
an atomic spin excitation, i.e. the excitation of the atom from the initially
populated atomic ground states g to another ground state s [12, 32, 33]. The
polariton picture has been introduced in [12] to describe storing and releasing of
slow light following an earlier single-mode treatment [32] used to describe Raman
adiabatic passage between the atomic ground states which did not include pulse
propagation. We can visualize this polariton as a vector with two components, the

. Fig. 15.16 Light storage experiment: Reproduction from one of the first experiments on light
storage [14] (with permission of the journal Nature). Shown are the control field (dashed), the
input probe pulse (open circles and dotted line) as well as the output probe pulse ( full circles and
full line). The top curve shows the pulse delay when the control field is on all the time, the lower
curve shows the storage of the probe pulse when the control field is switched off and subse-
quently on again after some time
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electric field ℰ and an atomic excitation S indicated in . Fig. 15.17, where the
mixing angle θ determines the ratio between the photonic and atomic components
making up the polariton. Since the polariton is only partially a photon and only the
photons move, the propagation speed is determined by the fraction of photons
comprising the polariton:

vgr=c0 ¼ cos 2θ ¼ Ω2

αρþΩ2 : (15.6)

The group velocity vgr is evidently less than that of pure photons. (Here α is
some constant, which is not relevant for the present discussion.) When the probe
pulse is outside the medium, where ρ ¼ 0, it can be interpreted as a polariton with
cos 2θ ¼ 1 representing a pure photon without any atomic component. When it
enters the medium, e.g. the cloud of ultracold atoms in the BEC experiment of Hau
et al. [4], the density ρ increases smoothly in space. As a consequence the polariton
turns smoothly into a mixed atomic-photonic excitation, with a large atomic
component.

Since Ω, determining the group velocity in Eq. (15.6), is a tunable parameter,
the composition of the slow-light polariton can be modified further while the pulse
is propagating inside the medium. In the case of slow light, cos 2θ is much less
than unity already when the probe pulse has just entered the medium and most of
the excitations which were originally photons propagate as an atomic excitation.
By further reducing the strength of the control laserΩ from the initial value where
cos 2θ is finite (yet much smaller than unity) all the way to zero, the slow-light
polariton looses its photon component altogether and reduces to a pure atomic
excitation which does not move any more. By switching on the control laser again
at a later time, cos 2θ becomes finite again (yet much smaller than unity). The
slow-light pulse resumes its motion inside the medium until reaching the end of
the atomic cloud where it finally converts completely into a fast, purely photonic
pulse. This explains the reappearance of the light pulse, when the control field is
turned back on again. As shown in . Fig. 15.18, illustrating the stopping and
reacceleration of a slow-light pulse while inside the medium, the light storage and
retrieval sequence becomes very clear in terms of the polariton picture. The
polariton is there all the time. It only changes its character, first from fast light
to slow light, and then to a frozen atomic spin excitation and finally back to a slow
polariton and eventually to fast light again.

θ

E

S

Ψ

Ψ = cos θ E + sin θ S

+

. Fig. 15.17 Slow-light polariton: Slow and stored light can most easily be understood in
terms of quasiparticles called dark-state polaritons introduced in [12]. They are a superposition
of the electric field ℰ of the probe pulse and an atomic spin excitation S, like a vector in a
two-dimensional plane. The mixing angle θ depends on the strength of the control laser
and the atom density and thus can be changed. The angle θ also determines the
properties of the polaritons, such as their velocity, see Eq. (15.6)
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15.6 Stationary Light

We have seen in the last section that a light pulse can be brought to a complete stop
without loosing the information it contains by storing it in an atomic excitation.
When the light pulse is at a halt, no photon is left in the medium anymore, so the
polariton becomes entirely an atomic excitation. In the example of cars and trailers
this corresponds to the case when all cars are converted into trailers. Thus there is
no car left to pull and everything comes to a stop. There is, however, a way to keep
the cars from driving without converting all of them to trailers. If two cars driving
in opposite directions pull the same trailer, their forces can compensate and
neither of the two can move forward. This is exactly what is happening in a
situation called stationary light, which we will explain in the following.

A very interesting aspect of stationary light is that it mimics the behaviour of a
massive quantum particle described by the Schr€odinger equation for the amplitude
of the stationary light polariton Ψ ss:

iℏ
d

dt
Ψ ss ¼ # ℏ2

2m∗

d2

dx2
Ψ ss: (15.7)

Unlike photons in free space, which always propagate at the speed of light c,
massive particles can stand still, or more precisely, as we are talking about
quantum particles, can have a zero average velocity. Importantly the effective
mass m∗ of the stationary light polaritons is not a fixed quantity such as the
mass of an electron or a proton, but is a tunable parameter. It can be changed by
the strength of the control laser fields. This property makes stationary light an

. Fig. 15.18 Polariton picture of light storage: Light storage and retrieval, as shown in. Fig. 15.15. This time also the propagation of the polariton
(a) and the spin excitation (c) are shown. One recognizes that light storage is nothing else than a smooth conversion of the slow-light polariton from
a polariton containing an electric-field component into a pure atomic excitation and back
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interesting model system for analyzing fundamental properties of massive quan-
tum particles.

What is the physics behind stationary light? Suppose there are two (rather than
one) control laser beams of equal strength Ωþ ¼ Ω# ¼ Ω and two (rather than
one) probe fields ℰ+ inducing transitions in a three-level Λ-system or a four-level
system, as shown in . Fig. 15.19.

The four-level system can be viewed as two Λ sub-systems, one for fields
propagating in the forward direction (+), and another sub-system for the fields
propagating in the backward direction (#). Since the two control fields have the
same amplitude, so do the probe fields. In each of these Lambda systems the
respective pairs of control and probe fields induce a transition from the ground
atomic state g to the metastable state s (see . Fig. 15.19). In such a situation the
two counter-propagating probe beams drive the same atomic transition g ! s.
Since the amplitudes of both probe fields are the same, each photon propagating
forward has its counterpart, a photon propagating backward, and a stationary
pattern of light is formed, frozen in the medium. This is as if two racing cars
driving in opposite directions try to pull the same trailer but are not able to move it
since their forces compensate (see . Fig. 15.3).

For stationary light it is important that the counter-propagating probe fields
are coupled to each other by the atomic medium. To see this let us draw an analogy
with the string of a guitar: When a guitar player pulls the string at some place, two
waves of equal frequency are created which propagate along the string in opposite
directions. If two wavepackets of equal strength and opposite propagation
directions are superimposed, a standing wave forms, but only for the short period
of time for which they overlap. The two wavepackets would continue to propagate
each in its own direction. Soon they would not overlap anymore and would be two
spatially separated wavepackets. To prevent this another element is needed: At the
points where the string is fixed to the body of the guitar, the wavepackets get
reflected and the effect of this is a true standing wave that does not smear out. In a
similar manner, one could produce a standing wave of light by confining the
radiation in a resonator between parallel mirrors, so that the forward propagating
light is permanently reflected to the backward propagating direction and vice
versa. This principle is used, e.g., in a laser allowing the light to pass many times
the lasing medium.

Ψss = cos θ (E+ + E−) + sin θ S
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. Fig. 15.19 Stationary light: If two counter-propagating drive fields of equal strength couple a Λ system of atomic levels (a ), two counter-
propagating probe field components of equal strength are formed. These fields interfere with each other and form a stationary-wave
pattern. The same happens if the two drive fields have orthogonal polarizations and couple to two different transitions in a four-level
(doubleΛ) scheme (b ). In this case two counter-propagating probe fields are generated which also have orthogonal polarizations, but which
nevertheless form a stationary-wave pattern. In these ways an excitation wavepacket is created which does not move and has still a
non-vanishing electric-field component
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Stationary light also involves a permanent reflection of one component into the
other but with no mirrors, and one can think of a kind of a mirrorless resonator. So
what takes over the role of the fixing points of the guitar string or the mirrors
reflecting the light? In fact we have here a whole periodic sequence of ‘fixing’
points, which causes reflection. In the case of a simple Λ -scheme, shown in
. Fig. 15.19a, the control lasers form a stationary intensity pattern that oscillates
in space. Thus there is a periodic grating where the total control field intensity
vanishes, which also means that in a periodic spatial pattern there are points
without EIT for the probe light. This periodic array acts in a similar way as an
absorption grating and reflects the forward and backward propagating
components of the probe field. In the case of the four-level scheme, shown in
. Fig. 15.19b, the situation is somewhat different. Here the two control fields are
not only propagating in opposite directions, but they also have opposite circular
polarizations. Now, superimposing two light waves of equal intensity and with
opposite circular polarization results in constant total field intensity with a linear
polarization. Yet, since the two control beams propagate opposite to each other,
the linear polarization rotates in space, forming a polarization grating. This
polarization grating has the same effect as the intensity grating in the case of the
simple Λ-scheme, it reflects forward- and backward propagating components into
each other making the light stationary.

Stationary light has been first observed in 2003 by the group of Mikhail Lukin
at Harvard University [17] using aΛ-type atom-light coupling which involves pairs
of counter-propagating control (probe) beams with the same frequency, shown in
. Fig. 15.19a. One difficulty of these experiments is to make the ‘non-moving light’
visible. A trick used here is that the stationary light tends to excite also further
off-resonant transitions to other excited states with a small probability. These
excitations are then visible due to the spontaneous emission from these states.

Another form of stationary light, called bichromatic stationary light was
observed in 2009 by the group of Ite Yu at the National Tsing Hua University in
Taiwan [20] using a doubleΛcoupling scheme, as shown in. Fig. 15.19b. Here the
frequency (or color) of the two control fields and, respectively, the two probe fields
were different, thus the name ‘bichromatic’. Stationary light pulses maximize the
interaction time and thus can provide a considerable interaction efficiency even at
a single-photon level. Interaction of two stationary light pulses through the
medium was experimentally demonstrated by the same group 3 years later [21].

15.7 Multi-Component Slow Light

We have seen that slow light can be turned into something that behaves like a
massive quantum particle. It is known from quantum physics that certain particles
can show up in different forms, i.e. they can have different internal states.
Electrons, for example, possess two different spin states, spin-up and spin-down
states. In a bit oversimplified picture the spin of a particle can be viewed as a tiny
gyroscope resulting from rotation of the particle around its center. Such a rotation
is often accompanied with a magnetic dipole, so an electron represents a little
magnet pointing up or down depending on the spin state relative to the chosen
axis. More exotic particles can have not only spin but also other internal degrees of
freedom, such as isospin, colour or flavour. So an interesting question is: Can we
give slow light internal properties such that it mimics massive quantum particles
with, e.g., spin? The answer is yes, and this makes slow light an even more
interesting object for quantum physicists. We note that in quantum mechanics
the spin of, e.g., an electron is a relativistic effect, so slow light with spin can be
used to investigate relativistic quantum physics.
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Slow light as introduced in . Sect. 15.5 and the stationary light discussed in
. Sect. 15.6 both involve only one spin component associated with a transition
from the initially populated ground state g to one other ground state s, and
described by the amplitude S, as illustrated in . Fig. 15.20a, b. This represents a
single normal mode of oscillations of the coupled atom-light system (a single
polariton) even though there are two counter-propagating probe fields, as in the
case of the stationary light depicted in . Fig. 15.20b.

In order for stationary light to have two components, the counter-propagating
probe fields ℰ+ (together with a number of control beams) should drive two
different spin coherences described by two amplitudes S+. This is illustrated in
. Fig. 15.20c. Two-component stationary light can be implemented using a tripod
[23] or a double-tripod [24] atom-light coupling scheme, the latter shown in
. Fig. 15.21. Here one has two pairs of counter-propagating control fields with
Rabi frequenciesΩs+ andΩh+ inducing the atomic transitions s ! e+ and h ! e+,
respectively. Compared to the double Λ scheme used for stationary light
(. Fig. 15.19b) now there is an extra pair of counter-propagating control laser
beams Ωh+, as well as an extra atomic ground state h. This leads to EIT for a
pair of counter-propagating probe fields ℰ+ inducing transitions (together

(a) (b) 

E E+ E−

S−

S+S S E+

E−(c) 

. Fig. 15.20 Slow (a), stationary (b) and two-component (c) slow light: In (a ) a single probe field
ℰ is coupled to a single atomic coherence S. The radiation has to push the atomic coherence
forwards and thus the light slows down. In (b ) two counter-propagating probe beams ℰ+
drive the same atomic coherence characterized by the amplitude S. One probe field pushes
the atomic coherence forwards and the other backwards. The velocities of the probe
photons compensate leading to stationary light. In (c ) two counter-propagating probe
beams ℰ+ drive two different atomic coherences characterized by the amplitudes S+ and S#.
If there is a coupling between these coherences indicated by the green double arrow,
two-component stationary light is formed

g

E−

s

E+

e−

e+

h

Ωh+ Ωh−

Ωs−Ωs+

δh δs

. Fig. 15.21 Two-component slow light: Atom-light coupling scheme of the double-tripod type
for implementation of two-component stationary light adapted from [24]. The scheme involves
three atomic ground states g, s and h coupled to two excited states e+ by six fields: a pair of
counter-propagating probe beams ℰ+, as well as two pairs of counter-propagating control
beams Ωs+ and Ωh+
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with the control fields) from the initially populated ground state g to two
superpositions of the initially unpopulated atomic ground states s and h. Conse-
quently the fields ℰþ and ℰ# drive different spin coherences characterized by the
amplitudes S+ and S#.

If S+ and S# were not coupled to each other, the two probe beams would
propagate in opposite directions slowly and independently from each other.
The coupling emerges though a two-photon detuning δ ¼ δs ¼ #δh shown in
. Fig. 15.21. The corresponding two types of polaritons behave like particles with
positive and negative effective masses, i.e. like electrons and positrons representing
particles and antiparticles in the relativistic Dirac theory. Thus the two-component
(spinor) slow-light polaritons Ψ obey an effective one-dimensional Dirac equation

iℏ
∂
∂t

Ψ ¼ iℏvgrσz
∂
∂z

þ m∗c∗2σy

$ %
Ψ , Ψ ¼

Ψ 1

Ψ 2

$ %
, (15.8)

where σz and σy are the 2 , 2 Pauli matrices. For zero two-photon detuning δ, the
two polaritons propagate in opposite directions with an effective speed c∗ ¼ vgr
given by the slow-light group velocity. A non-vanishing two-photon detuning
introduces a coupling between the counter-propagating polaritons, providing a
particle–antiparticle type dispersion with a variable mass m∗ ¼ ℏδ=v2gr [24]. An
important feature of spinor slow light is that the relevant scales of velocity, energy
and length, where relativistic effects start to matter, are very different from
the values for say electrons. The effective ‘vacuum speed of light’ c∗ ¼ vgr can
now be a few meters per second instead of 300,000 km/s. The relativistic rest
energy m∗c∗2 ¼ ℏδ can be many orders of magnitude smaller than that for an
electron, making it possible to observe particle–antiparticle pair generation pro-
cesses in a conventional laser lab. Finally the relativistic length scale, called
Compton length λ∗C ¼ ℏ=m∗c∗, is now large enough to be resolved in laboratory
experiments as opposed to the value of 10#12 m for an electron. The possibility of a
locally adjustable mass allows furthermore to observe a number of other interest-
ing phenomena. For instance, if the mass m∗ of the Dirac particle suddenly
changes at a certain point in space from the value + jmj to # jmj , a localized,
topological mid-gap (zero-energy) state is created. If m∗ is a randomly varying
function of space with a vanishing mean-value, there exist mid-gap states with
unusual correlations [23, 34, 35].

Two-component slow light has been recently implemented in an experiment
[25] using the double-tripod coupling scheme, like the one shown in . Fig. 15.21
but with co-propagating rather than counter-propagating control and probe laser
fields. Oscillations due to an effective interaction between the two components of
the probe field have been observed revealing the two-component nature of the
slow light. It was demonstrated that the double-tripod scheme enables precision
measurements of frequency detunings. Furthermore a possible application of the
double-tripod scheme as quantum memory/rotator for a two-colour qubit was
experimentally demonstrated. This offers potential applications in quantum com-
putation and quantum information processing.

15.8 Quo Vadis Slow Light?

Light is fascinating! Light has very many uses and modern life would be unthink-
able without them. Thus there is plenty of reason for us to celebrate the Year of
Light. We believe that the applications of slow light based on EIT and its
generalizations, which we have discussed in this chapter of the book, are important
additions to this list of reasons. We have seen that coupling light to atomic media,
which are specially prepared by external laser fields, allows us to dramatically
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modify the property of photons. We can change their effective propagation
velocity, can store them or more precisely their information content with impor-
tant applications for quantum information networks based on light, and we can
turn them into massive quantum particles with tunable mass. Finally we can even
use them to model relativistic quantum particles with spin.

It is interesting to note that EIT and slow light are not restricted to light in the
optical frequency spectrum coupled to atoms. EIT can also be generated in other
type of coupled oscillators, such as meta-materials build up of periodic arrays of
small metallic antennas [36]. This allows to access the microwave part of the
electromagnetic spectrum. On the other hand, the storage and release of light can
also be carried out beyond atomic systems. Recently the conversion of light pulses
into mechanical excitations of a silica optomechanical resonator and the
subsequent retrieval of radiation using a method closely related to the EIT was
experimentally demonstrated [37].

All phenomena we have discussed so far in this chapter address the single-
particle properties of slow light, i.e. properties of individual photons. Yet it is also
highly desirable to make photons interact with each other sufficiently strongly.
Strong and controlled interactions between individual photons would, e.g., allow
to implement quantum logic operations in the so-called quantum gates, the second
important ingredient next to a quantum memory for photon-based quantum
information technology. Interactions are also crucial for most applications of
slow light to fundamental science. Several ideas have been put forward here to
exploit the properties of slow light for implementing strong interactions. For
example, the possibility offered by EIT to operate close to atomic resonances
without suffering from absorption can be exploited to enhance nonlinear optical
processes in atomic media [21, 38–44]. Another very promising direction is to
combine EIT with the so-called Rydberg atoms. Here the atomic state s populated
during the propagation and storage of light is not a hyperfine (spin) ground state
of an atom, but rather a Rydberg state corresponding to a very high atomic level
close to the ionization threshold. Such a state is metastable and has a very long
lifetime. Atoms in Rydberg states exhibit very strong and long-range dipole–dipole
interactions. This property is carried over to slow-light polaritons, whose spin
component contains the Rydberg state, thus making these Rydberg polaritons
strongly interacting [45]. The strongly nonlinear and nonlocal interaction between
Rydberg polaritons has been observed in a number of recent experiments [46–50].
This opens many more fascinating applications in fundamental science and in
quantum technology, and we anticipate a bright future for slow light.

15.9 Conclusions

In this chapter we have explained what slow light is and what it is good for, how to
understand the physics of it and how one can practically make light go so slow. To
answer these questions, we used simple pictures, on the one hand, and
supplemented them with a little bit of details, on the other hand, for those who
want to go slightly deeper into the field. Subsequently we discussed recent
generalizations of slow light, such as stationary and spinor slow light which are
interesting model system and can be used to understand more complex quantum
systems. The chapter also presents important applications of the slow light in
photon-based quantum information technology.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction
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author(s) and the source, a link is provided to the Creative Commons license and
any changes made are indicated.
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