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We consider a single impurity atom confined to an optical lattice and immersed in a homoge-
neous Bose-Einstein condensate (BEC). Interaction of the impurity with the phonon modes of the
BEC leads to the formation of a stable quasiparticle, the polaron. We use a variational mean-field
approach to study dispersion renormalization and derive equations describing non-equilibrium dy-
namics of polarons by projecting equations of motion into mean-field (MF) type wavefunctions. As
a concrete example, we apply our method to study dynamics of impurity atoms in response to a
suddenly applied force and explore the interplay of coherent Bloch oscillations and incoherent drift.
We obtain a non-linear dependence of the drift velocity on the applied force, including a sub-Ohmic
dependence for small forces for dimensionality d > 1 of the BEC. For the case of heavy impurity
atoms we derive a closed analytical expression for the drift velocity. Our results show considerable
differences with the commonly used phenomenological Esaki-Tsu model.

PACS numbers: 67.85.-d,71.38.Fp,05.60.Gg

I. INTRODUCTION

The problem of an impurity particle interacting with
a quantum mechanical bath is one of the fundamental
paradigms of modern physics. Such general class of sys-
tems, often referred to as polarons, is relevant to un-
derstanding electron properties in polar semiconductors,
organic materials, doped magnetic Mott insulators and
high temperature superconductors, see e.g.[1–3]. The po-
laron problem is closely related to the questions of macro-
scopic quantum tunneling [4–6]. In the standard model of
high energy physics, the way the Higgs field gives mass
to various particles is also often given in terms of po-
laron type dressing [7, 8]. While the polaron problems
have attracted considerable theoretical and experimental
attention during the last few decades, many questions,
especially addressing nonequilibrium dynamics, remain
unresolved. In the present paper we study theoretically
a polaron system that consists of an impurity atom con-
fined to a species-selective optical lattice and a homo-
geneous BEC. The rich toolbox available in the field of
ultracold atoms has already made possible a detailed ex-
perimental study of Fermi polarons [9–14] and stimulated
active theoretical study of both Fermi [14–18] and Bose
polarons [19–33]. First experiments have also started to
explore physics connected to the Bose polaron [34–38].
Additionally, cold atomic ensembles are well suited to
the investigation of non-equilibrium phenomena [39–43]
since they are very well isolated from the environment
and their parameters can be tuned dynamically. There
is thus a growing interest in out of equilibrium polaron
problems [23, 37, 38, 44–49] which remained out of reach
in solid-state systems due to short equilibration times.

We consider the system shown in Fig.1(a) consisting

FIG. 1. (Color online) (a) An impurity (blue) is immersed in
a homogeneous 3D BEC (red) and constrained to the lowest
band of a 1D optical lattice. Strong interactions with the
Bose gas lead to polaron formation and a modified dispersion.
(b) Applying a constant force to the impurity alone results in
polaron Bloch oscillations (BO). Although the speed of sound
c is never exceeded, BO are superimposed by a constant drift
velocity vd as well as diffusion of the polaron wavepacket.

of a single impurity atom, confined to the lowest Bloch
band of an optical lattice (hopping J , lattice constant a),
immersed in a weakly interacting Bose-Einstein conden-
sate (BEC). The BEC hosts gapless Bogoliubov phonons
which can scatter off the impurity, leading to polaron for-
mation [19, 27–30, 32, 33]. We subject the impurity to a
constant force and examine in detail how the dynamics
of the impurity will be affected by its interaction with
the surrounding phonons. This is the central focus of the
present article.

While it is well known that an isolated quantum me-
chanical particle in a lattice will undergo coherent Bloch
oscillations (BO) when subject to a constant force, it is
less obvious that a composite quasiparticle, i.e. an impu-
rity coupled to a phonon bath, will display coherent BO.
Here we establish that the Bose polaron can indeed un-
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dergo BO. Next, by calculating the renormalized shape
of the dispersion relation of the polaron, we show that
phonon dressing has a pronounced effect on BO, which
can be observed in experiments by measuring the real
time dynamics of impurity atoms. Such experiments can
be done using recently developed quantum gas micro-
scopes with single atom resolution [50–52], but it should
be noted that single-site resolution in the optical lattice
is not a necessary requirement to observe polaron BO.

Polarons in optical lattices were considered earlier by
Bruderer et al. [23, 25], however, in contrast to our work,
they considered the strong coupling limit of the so-called
“small” polaron where impurity hopping is sub-dominant
to phonon coupling. This regime was further studied in
[26], and is indeed the traditional approach to lattice po-
larons [53, 54] in solid state systems. We use an alterna-
tive approach which is flexible enough to describe both
limits of weakly coupled “large” polarons and heavy im-
purities, which can both be achieved in experiments with
cold atomic Bose-Fermi [55–60] or Bose-Bose [36, 61–65]
mixtures. Our approach is based on a variational mean-
field (MF) ansatz [66, 67], which we generalized earlier to
study spectral properties of unconfined impurities in Bose
gases [33]. By extending this approach to lattice impu-
rities, we calculate the full non-equilibrium dynamics of
polaron BO. In particular, we find that polaron formation
takes place on a timescale ξ/c set by the BEC (ξ is the
healing length, c the speed of sound), and subsequently
we observe pronounced BO, see FIG.1 (b). Addition-
ally, to gain insight into the nature of the coherent po-
laron dynamics, we introduce an analytic “adiabatic ap-
proximation” which correctly predicts the predominant
characteristics of the polaron trajectory in the subsonic
regime, e.g. overall shape, and frequency of oscillations.
As an added advantage of our approach, in contrast to
the strong coupling polaron approximation, we can ap-
proach the supersonic regime, near which we find strong
decoherence of the BO in connection with a large drift
velocity vd, i.e. a net polaron current. Such incoher-
ent transport can only be sustained in the presence of
decoherence mechanisms, and indeed we observe phonon
emission in this regime.

Historically, the study of the interplay between coher-
ent BO and inelastic scattering (e.g. on phonons) was
pioneered in the solid state context by Esaki and Tsu
[68], who derived a phenomenological relation between
the driving force F and the net (incoherent) current vd,
and proposed a generic Ohmic regime for weak driving,
i.e. vd ∼ F . The precision of ultra-cold atom exper-
iments allowed a detailed verification of the Esaki-Tsu
model in thermal gases [69], and thus triggered theoret-
ical interest in this topic [70, 71]. While all these works
focused on non-condensed gases, Bruderer et al. [23] con-
sidered a 1D BEC where the phonons provide an Ohmic
bath (see e.g. [72]) and established a finite current (i.e.
vd 6= 0) even for subsonic impurities, with a current-
force relation vd(F ) of a shape similar to that predicted
by Esaki and Tsu.

In this article we address the question how polaron BO
decohere, and in particular how the polaron drift velocity
depends on the driving force, for condensates in arbitrary
dimensions d = 1, 2, 3, .... In the weak driving regime, we
find that the drift current strongly depends on dimen-
sionality d and deviates from the Ohmic behavior pre-
dicted by the phenomenological Esaki-Tsu relation. We
show that a quantitative description of polaron drift can
be obtained by applying Fermi’s golden rule to calculate
the phonon emission of oscillating impurity atoms. This
analysis correctly reproduces the current-force relation
vd ∼ F d observed in our numerics for weak driving.

The paper is organized as follows. In Sec.II we intro-
duce our model and employ the Lee-Low-Pines unitary
transformation to make use of the discrete translational
invariance (by a lattice period) of our problem. Then
in Sec.III we discuss the ground state of the impurity-
Bose system in the presence of a lattice, and calculate the
renormalized polaron dispersion. We also present the MF
phase diagram which shows where the subsonic to super-
sonic transition takes place. In Sec.IV we discuss polaron
BO within the adiabatic approximation. We also show
that direct imaging of real-space impurity trajectories
reveals the renormalized polaron dispersion. How non-
adiabatic corrections modify BO is studied in Sec.V us-
ing a time-dependent variational wavefunction. In Sec.VI
we discuss incoherent polaron transport and present nu-
merical as well as analytical results for its dependence on
the driving force. Finally in Sec.VII we summarize our
results.

II. THE MODEL

In this section we present our theoretical model, start-
ing from the microscopic Hamiltonian in Subsection II A.
We subsequently simplify the latter by applying Bogoli-
ubov theory for the BEC as well as nearest-neighbor
tight-binding approximation for the free impurity. Then
we derive the corresponding impurity-boson interaction,
which requires careful treatment of the two-particle scat-
tering problem in order to derive correct system param-
eters. Having established the connection to microscopic
properties, we discuss realistic numbers and introduce a
dimensionless polaron coupling constant. In the second
part II B we apply the Lee-Low-Pines transformation to
our model, which is at the heart of our formalism and
makes conservation of the polaron quasimomentum ex-
plicit.

Here, as well as in the subsequent three sections, we
will focus on the case of a three dimensional BEC (d = 3),
but an analogous analysis can be done for dimensions
d = 1, 2. We will discuss the difference in dynamics of
systems of different dimensionality in Section VI.
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A. Microscopic origin

We start by considering weakly interacting bosons of
mass mB in three spatial dimensions (d = 3) and at zero
temperature, which will be described by the field opera-

tor φ̂(r). Next we introduce a single impurity of mass mI,

which can be described by a second field operator ψ̂(r).
The impurity is furthermore confined to a deep species-
selective optical lattice which is completely immersed in
the surrounding Bose gas. For concreteness we assume
the lattice to be one-dimensional (pointing along ex), but
our analysis can easily be carried over to arbitrary lat-
tice dimensions. The bosons and impurity interact via
a contact interaction of strength gIB. Since we wish to
study transport properties of the dressed impurity, we
will also consider a constant force F acting on the impu-
rity alone. In experiments this force can e.g. be applied
using a magnetic field gradient[73–75]. The microscopic
Hamiltonian of this system reads (~ = 1)

Ĥ =

∫
d3r

{
φ̂†(r)

[
− ∇

2

2mB
+
gBB

2
φ̂†(r)φ̂(r)

]
φ̂(r)

+ψ̂†(r)

[
− ∇

2

2mI
+ VI(r) + gIBφ̂

†(r)φ̂(r)

]
ψ̂(r)

}
. (1)

Here VI(r) denotes the optical lattice potential seen by
the impurity and gBB is the boson-boson interaction
strength. The impurity is confined to a spatial region
y2 + z2 . (λ/2)

2
, where the optical potential is assumed

to have a form

VI(r) = V0

[
sin2 (k0x) + sin2 (k0y) + sin2 (k0z)

]
− Fx,

(2)
including a linear potential −Fx describing the constant
force acting on the impurity. Here k0 = 2π/λ is the
optical wave vector used to create the lattice potential.

1. Free Hamiltonians

We will assume the optical lattice to be sufficiently
deep to employ nearest-neighbor tight-binding approxi-

mation. The operator ĉ†j (written in second quantization)
creates a particle at site j. The corresponding Wannier
functions can be approximated by local oscillator wave-
functions,

wj(r) =
(
π`2ho

)−3/4
e−(r−jaex)2/(2`2ho), (3)

where `ho = 1/
√
mIω0 is the oscillator length in a micro

trap and ω0 = 2
√
V0Er the corresponding micro trap

frequency, given by the recoil energy Er = k2
0/2mI [76].

This gives rise to an effective hopping J between lattice
sites, such that – after inclusion of the uniform force –
the free impurity Hamiltonian reads

ĤI = −J
∑
j

(
ĉ†j+1ĉj + h.c.

)
− F

∑
j

ja ĉ†j ĉj . (4)

In the absence of the impurity, bosons condense and
form a BEC. In the spirit of Refs. [23, 25, 30], we will
assume that the impurity-boson interaction does not sig-
nificantly alter the many-body spectrum of the bath, al-
lowing us to treat the bosons as an unperturbed homo-
geneous condensate within the Bogoliubov approxima-
tion [77]. Consequently, the BEC is fully characterized
by the speed of sound c, the healing length ξ and its den-
sity n0. The elementary excitations of the system are
gapless (Bogoliubov) phonons âk, the dispersion relation
of which reads

ωk = ck

√
1 +

1

2
ξ2k2. (5)

Here k ∈ R3 is the 3D phonon momentum (with k denot-
ing its absolute value), and the free boson Hamiltonian
is given by

ĤB =

∫
d3k ωkâ

†
kâk. (6)

In this paper
∫
d3k =

∫∞
−∞ dkxdkydkz denotes the inte-

gral over all momenta from the entire k-space.

2. Impurity-Boson interaction

In the discussion of the interaction Hamiltonian de-
scribing impurity-boson scattering, we restrict ourselves
to the tight binding-limit. This allows us to expand the
impurity field in terms of Wannier orbitals,

ψ̂(r) =
∑
j

ĉjwj(r). (7)

Using this decomposition, Eq.(1) yields the following ex-
pression for the impurity-boson Hamiltonian,

ĤIB = gIB

∑
j

ĉ†j ĉj

∫
d3r |wj(r)|2φ̂†(r)φ̂(r), (8)

where we neglected phonon-induced hoppings (the valid-
ity of this approximation will be discussed further below).

An important question is how the interaction strength
gIB in the simplified model (8) above relates to the mea-
surable impurity-boson scattering length aIB. While
for unconfined impurities this relation is usually derived
from the Lippmann-Schwinger equation describing two-
particle scattering, it is more involved for an impurity
confined to a lattice. In this case the new scattering
length aeff

IB has to be distinguished from its free-space
counter part, and can even be substantially modified due
to lattice effects [78, 79]. Furthermore, also the effective
range reff

IB of the interaction between a free boson and an
impurity confined to a lattice can be modified by the lat-
tice. We can take this effect into account in our model
by choosing a proper extent `ho of Wannier functions in
Eq.(8).
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In the follwing we will not calculate the numerical rela-
tion between aeff

IB (or reff
IB) in the lattice and its free-space

counterpart aIB. Instead we assume that these numbers
are known – either from numerical calculations [78, 79]
or from an experiment [80] – and work with the effective
model Eq.(8). In the Appendix A we discuss in detail
how aeff

IB and reff
IB relate to our model parameters gIB and

`ho, in the tight-binding case.

3. Polaron Hamiltonian

Next, in order to derive a simplified Hamiltonian, we

replace bare bosons φ̂(r) by Bogoliubov phonons âk. In
doing so, we will assume sufficiently weak interactions be-
tween the impurity and the bosons, thus causing negligi-
ble quantum depletion of the condensate. This allows us
to neglect two-phonon processes corresponding to terms
like âkâk′ in the full Hamiltonian. As shown in [25] and
– via a different approach – in the Appendix B of this
paper, it is justified for

|gIB|ξ−3 � 4c/ξ. (9)

Under this condition, and provided that phonon-
induced hopping can be neglected, we arrive at a Hamil-
tonian which is closely related to the one derived by
Fröhlich [81],

Ĥ =

∫
d3k

{
ωkâ

†
kâk +

∑
j

ĉ†j ĉje
ikxaj

(
â†k + â−k

)
Vk

}
+ gIBn0 − J

∑
j

(
ĉ†j+1ĉj + h.c.

)
− F

∑
j

ja ĉ†j ĉj , (10)

as we show in a more detailed calculation in Appendix
B. Here the phonon-impurity interaction is characterized
by

Vk = (2π)−3/2√n0gIB

(
(ξk)2

2 + (ξk)2

)1/4

e−k
2`2ho/4, (11)

where `ho is the oscillator length in the tight-binding
Wannier function, see Eq.(3). The second term in the

first line of Eq.(10)∼ ĉ†j ĉj describes scattering of phonons

on an impurity localized at site j (with amplitude Vk).
This term thus breaks the conservation of total phonon
momentum (and number), and we stress that phonon mo-
menta k can take arbitrary values ∈ R3, not restricted to
the Brillouin zone (BZ) defined by the impurity lattice 1.

Phonon induced tunneling, which in the nearest neigh-
bor case has the form

ĤJ−ph =
∑
j

ĉ†j+1ĉje
ikxaj

(
â†k + â−k

)
V

(1)
k + h.c., (12)

1 When the host BEC atoms are subject to a lattice potential, the
phonon momenta k appearing in Eq (10) should be restricted to
the BZ. In this paper we consider only the case when BEC atoms
are not affected by the optical lattice.

can be neglected when |V (1)
k | � |Vk|. Using the result for

V
(1)
k from Eq.(B19) in Appendix B, this condition reads

in terms of Wannier functions

|〈wj+1|eik·r|wj〉| � |〈wj |eik·r|wj〉|. (13)

It is automatically fulfilled for a sufficiently deep lattice,
or provided that ka� 1 for typical phonon momenta k.
In the latter case we may expand eik·r ≈ 1 + ik · r in
the overlap above. The zeroth order term thus vanishes
because of orthogonality of Wannier functions, and the
leading order term is |〈wj+1|k · r|wj〉| . ak � 1.

4. Coupling constant and relation to experiments

As we discussed earlier, in contrast to Refs. [23, 25] we
want our analysis to be applicable to the case of ”large”
polarons, characterized by a phonon cloud with radius
exceeding the impurity lattice spacing, ξ > a. Such po-
larons are typical when interactions are weak compared
to impurity hopping, leading to a loosely confined phonon
cloud. Indeed, it is convenient to measure the strength of
interactions by defining the following dimensionless cou-
pling constant,

geff =

√
n0g2

IB

ξc2
, (14)

which appears naturally in our formalism. It describes
the ratio between characteristic impurity-boson interac-

tions EIB = gIB

√
n0ξ−3 and typical phonon energies

Eph = c/ξ, geff = EIB/Eph. Let us note that Tem-
pere et al. [30] introduced an alternative dimension-
less coupling constant α = 2

πm
−2
redn0g

2
IB, where mred =

1/ (1/mI + 1/mB) is the reduced mass. It is related to
our choice by

α =
1

π

[
1 +

mB

mI

]−2

g2
eff. (15)

Because in this expression the impurity mass enters as an
additional parameter, which is not required to calculate
geff, we prefer to use geff instead of α in this work.

For experimentally realized Bose-Bose [36, 61, 63] or
Bose-Fermi mixtures [60, 62] we find that background
interaction strengths are of the order geff ∼ 1, but us-
ing Feshbach resonances values as large as geff = 15 [33]
should be within reach. For standard Rubidium BECs
characteristic parameters are ξ ≈ 1µm, c ≈ 1mm/s and
for Rubidium in optical lattices one typically has hop-
pings J . 1kHz [76].

B. Lee-Low-Pines transformation

To make further progress, we will now simplify the
Hamiltonian (10). To this end we make use of the Lee-
Low-Pines transformation, making conservation of po-
laron quasimomentum explicit, and include the effect of



5

the constant force F acting on the impurity. To do so,
we apply a time-dependent unitary transformation,

ÛB(t) = exp

iωBt
∑
j

jĉ†j ĉj

 , (16)

where ωB = aF denotes the BO frequency of the bare
impurity. In the new basis the (time-dependent) Hamil-
tonian reads

H̃(t) = Û†B(t)ĤÛB(t)− iÛ†B(t)∂tÛB(t), (17)

and we introduce the quasimomentum basis in the usual
way,

ĉq := (L/a)
−1/2

∑
j

eiqaj ĉj , (18)

where L denotes the total length of the impurity lattice
and q = −π/a, ..., π/a is the impurity quasimomentum
in the BZ. The transformation (16) allows us to assume
periodic boundary conditions for the Hamiltonian (17),
despite the presence of a constant force F .

In a second step, we apply the Lee-Low-Pines unitary
transformation [82], described by

ÛLLP = eiŜ , Ŝ =

∫
d3k kxâ

†
kâk

∑
j

ajĉ†j ĉj . (19)

The new frame, obtained by applying the transformation
ÛLLP to our system, will be called polaron frame in the
following. Here kx = k · ex denotes the x-component of
k 2. The action of the Lee-Low-Pines transformation on
an impurity can be understood by noting that it can be

interpreted as a displacement in quasimomentum space.
Such a displacement q → q+δq (modulo reciprocal lattice
vectors 2π/a) is generated by the unitary transformation

eiδqX̂ , where the impurity position operator is defined

by X̂ =
∑
j ajĉ

†
j ĉj . Comparing this to Eq.(19) yields

δq =
∫
d3k kxâ

†
kâk, which is the total phonon momentum

operator. Thus we obtain

Û†LLPĉqÛLLP = ĉq+δq. (20)

For phonon operators, on the other hand, transforma-
tion (19) corresponds to translations in real space by the

impurity position X̂ and one can easily see that

Û†LLPâkÛLLP = eiX̂kx âk. (21)
Now we apply the Lee-Low-Pines transformation to the

Hamiltonian Eq.(10). To this end, we first write the free
impurity Hamiltonian in quasimomentum space,

ĤI = −2J
∑
q∈BZ

ĉ†q ĉq cos(aq). (22)

Next we make use of the fact that only a single impurity
is considered, i.e.

∑
q∈BZ ĉ

†
q ĉq = 1, allowing us to simplify

ĉ†j ĉje
ikxX̂ = ĉ†j ĉje

ikxaj . (23)

Note that although the operator X̂ in Eq.(23) consists of
a summation over all sites of the lattice, in the case of a

single impurity the prefactor ĉ†j ĉj selects the contribution
from site j only.

We proceed by employing Eqs.(20) - (23) and arrive at
the Hamiltonian

Ĥ(t) = Û†LLPH̃ÛLLP =
∑
q∈BZ

ĉ†q ĉq

{∫
d3k

[
ωkâ

†
kâk + Vk

(
â†k + âk

)]
− 2J cos

(
aq − ωBt− a

∫
d3k′ k′xâ

†
k′ âk′

)
+ gIBn0

}
.

(24)

Let us stress again that this result is true only for a single
impurity, i.e. when

∑
q∈BZ ĉ

†
q ĉq = 1. We find it conve-

nient to make use of this identity and pull out
∑
q∈BZ ĉ

†
q ĉq

everywhere to emphasize that the Hamiltonian factorizes
into a part involving only impurity operators and a part
involving only phonon operators. Notably the Hamilto-
nian (24) is time-dependent and non-linear in the phonon
operators. From the equation we can moreover see that,

2 In practice, when doing calculations, we find it convenient to
introduce spherical coordinates around the x-axis, such that kx =
k cosϑ with ϑ the polar angle. In these coordinates rotational
symmetry around the direction of the impurity lattice ex is made
explicit, and all expressions are independent of the azimuthal
angle ϕ.

in the absence of a driving force F = 0 (corresponding
to ωB = 0), the total quasimomentum q in the BZ is
a conserved quantity. We stress, however, that the to-

tal phonon-momentum
∫
d3k kâ†kâk of the system is not

conserved.
Even in the presence of a non-vanishing force F 6= 0

the Hamiltonian is still block-diagonal for all times,

Ĥ(t) =
∑
q∈BZ

ĉ†q ĉqĤq(t), (25)

and quasimomentum evolves in time according to

q(t) = q − Ft, (26)

i.e. Ĥq(t) = Ĥq(t)(0). This relation has the following
physical meaning: if we start with an initial state that
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has a well defined quasimomentum q0, then the quasimo-
mentum of the system remains a well defined quantity.
The rate of change of the quasimomentum is given by F ,
i.e. q(t) = q0 − Ft. Thus states that correspond to dif-
ferent initial momenta do not mix in the time-evolution
of the system.

III. POLARONS WITHOUT THE DRIVE:
DISPERSION RENORMALIZATION

Before turning to the nonequilibrium problem of po-
laron BO in the next section, we discuss the equilibrium
properties at F = 0. Because we employed the Lee-Low-
Pines canonical transformation above, quasimomentum
q is explicitly conserved in the Hamiltonian (24). This
enables us to treat every sector of fixed q separately for
the characterization of the equilibrium state.

We begin the section by introducing the MF polaron
wavefunction in Subsection III A, where we also minimize
its variational energy. This readily gives us the renor-
malized polaron dispersion, the properties of which we
discuss in Subsection III B. There we moreover present
the MF polaron phase diagram.

A. Model and MF ansatz

To describe the polaron ground state we apply the vari-
ational ansatz of uncorrelated coherent phonon states,
which has been used successfully for polarons in the ab-
sence of a lattice [1, 33, 67],

|ΨMF
q 〉 =

∏
k

|αMF
k 〉. (27)

Here |αMF
k 〉 denotes coherent states with amplitude

αMF
k ∈ C,

|αMF
k 〉 = exp

[
αMF
k â†k −

(
αMF
k

)∗
âk

]
|0〉. (28)

We note that the wavefunction (27) is asymptotically ex-
act in the limit of a localized impurity, i.e. when J → 0.
However, from the case of unconfined impurities it is
known that the MF ansatz (27) is unable to capture
strong coupling physics [83] corresponding to the regime
of very large interaction strength geff [20, 25, 29, 30].

To obtain self-consistency equations for the polaron
ground state we minimize the MF variational energy
HMF,

HMF = 〈ΨMF
q |Ĥq|ΨMF

q 〉
!
= min. (29)

As shown in Appendix C, the MF energy functional can
be written as

H [ακ] = −2Je−C[ακ] cos (aq − S[ακ])

+

∫
d3k

[
ωk|αk|2 + Vk (αk + α∗k)

]
, (30)

where we introduced the functionals

C[αk] =

∫
d3k|αk|2(1− cos(akx)), (31)

S[αk] =

∫
d3k|αk|2 sin(akx). (32)

Eq.(29) together with (30) then yields the MF self-
consistency equations for the polaron ground state,

αMF
k = −Vk/Ωk[αMF

κ ], (33)

where we defined yet another functional

Ωk[ακ] = ωk + 2Je−C[ακ]
[
cos (aq − S[ακ])

− cos (aq − akx − S[ακ])
]
. (34)

This frequency Ωk[αMF
κ ] can be interpreted as the renor-

malized phonon dispersion at total quasimomentum q.
Importantly for numerical evaluation, Eq.(33) reduces

to a set of only two self-consistency equations for CMF =
C[αMF

k ] and SMF = S[αMF
k ]: Plugging αMF

k from (33)
into the definitions (31), (32) readily yields

CMF =

∫
d3k

∣∣∣∣ Vk
Ωk(CMF, SMF)

∣∣∣∣2 (1− cos(akx)
)
, (35)

SMF =

∫
d3k

∣∣∣∣ Vk
Ωk(CMF, SMF)

∣∣∣∣2 sin(akx). (36)

Moreover, from the analytic form of Ωk Eq.(34) we find
the following exact symmetries of the solution under spa-
tial inversion q → −q,

CMF(−q) = CMF(q), SMF(−q) = −SMF(q). (37)

B. Results: equilibrium properties

In FIG.2 we show the solutions CMF and SMF of the
self-consistency equations (35), (36) as a function of total
quasimomentum q for different hoppings. For weak in-
teractions and not too close to the subsonic to supersonic
transition we find SMF(q) ≈ 0 while CMF(q) ≈ const. In
this limit the MF polaron dispersion becomes

ωp(q) ≈ Eb − 2J∗ cos(qa), (38)

cf.(30). Here J∗ = Je−C
MF

describes the renormalized
hopping of the polaron, and we obtain a similar expo-
nential suppression as reported in [23]. Eb describes the
binding energy of the polaron.

In FIG.3(a) we show the full polaron dispersion re-
lation. For substantial interactions geff = 10 chosen in
FIG.3 we find a transition from a subsonic to a super-
sonic polaron around Jc ≈ 0.8c/a. For hoppings close
to this transition point the renormalized dispersion devi-
ates markedly from the cosine shape familiar from bare
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FIG. 2. (Color online) The MF polaron ground state at total
quasimomentum q is characterized by CMF(q) (upper thin
lines) and SMF(q) (lower thick lines). These quantities are
plotted for various hoppings J , all in the subsonic regime.
When approaching the transition towards supersonic polarons
(which takes place slightly above J = 0.8c/a in this case)
the phase shift SMF(q) develops a strong dispersion around
q = π/a. At the same point a pronounced local minimum of
CMF(q) develops. We used ξ = 5a, `ho = a/

√
2 and geff = 10.

impurities, and we observe strong renormalization at the
edge of the BZ, q = ±π/a. At the same time the overall
energy is shifted substantially as a consequence of the
dressing with high-energy phonons.

In FIG.3(b) we show the MF phase diagram. To this
end we calculated the critical hopping Jc where the max-
imal polaron group velocity in the BZ exceeds 90% of the
speed of sound c. (We only went to 90% because close
to the transition to supersonic polarons, solving the MF
equations for C[αMF

k ] and S[αMF
k ] becomes increasingly

hard numerically.) We observe that for large interactions
the polaron is subsonic, even for bare hoppings J one or-
der of magnitude larger than the non-interacting critical

hopping J
(0)
c = c/2a. This is in direct analogy to the

strong mass renormalization predicted for free polarons,
see e.g. [30, 33, 67]. Interestingly we observe different be-
havior for weakly and strongly interacting polarons; We
fitted the critical hopping to the curve

Jc(vg = 0.9c) = 0.9J (0)
c + g2

effC1

(
1 +

(
geff

gceff

)4
)
, (39)

varying parameters C1, g
c
eff. In this way we obtain a cross-

over at gceff = 14.2 for the parameters from FIG.3.
We also consider the the quasiparticle weight Z, which

is another quantity characterizing the polaron ground
state. Z is defined as the overlap between the bare and
the dressed impurity state,

Z = |〈0|Ψq〉|2, (40)

and can e.g. be measured using radio-frequency absorp-
tion spectoscopy of the impurity [32, 33]. Within the MF
approximation (27) |Ψq〉 = |ΨMF

q 〉, Z is directly related
to the number of phonons in the polaron cloud,

ZMF = exp

(
−
∫
d3k |αMF

k |2
)

= e−〈Nph〉. (41)

FIG. 3. (Color online) (a) MF polaron dispersion HMF(q)
for different impurity hoppings J , where the BEC MF shift
gIBn0 was neglected (it depends not only on the coupling
strength geff but also on the BEC density n0 which we did
not specify here). For larger J & 0.8c/a ≈ Jc the group ve-
locity vg = ∂qHMF(q) exceeds the speed of sound c for some
quasimomentum q. The interaction strength was geff = 10.
(b) Critical hopping J where the maximal group velocity
maxq vg(q) is 90% of c, as a function of interaction strength
squared g2

eff. For large interactions geff � 1 the hopping where
the polaron becomes supersonic is much larger than in the
non-interacting case (dashed line). Errorbars are due to the
finite mesh-size used to raster parameter space. In both fig-
ures we have chosen ξ = 5a and `ho = a/

√
2.

Note, however, that this relation between the quasiparti-
cle weight and the number of excited phonons is specific
to the MF wavefunction and originates from its Poisso-
nian phonon number statistics.

In FIG.4 the dependence of the MF quasiparticle
weight on quasimomentum is shown. For the relatively
strong coupling we have chosen, Z � 1 and the corre-
sponding number of phonons is Nph = − log(ZMF), tak-
ing values betweenNph = 5 andNph = 9 in the particular
case of FIG.4. Importantly, we observe that the polaron
properties are strongly quasimomentum dependent. Es-
pecially close to the subsonic to supersonic transition (i.e.

FIG. 4. (Color online) Dependence of the quasiparticle weight
Z of the polaron on quasimomentum q. We used the static MF
polaron ground state to calculate Z = ZMF, which according
to Eq.(41) is related to the average number of phonons in the

polaron cloud, ZMF = e−〈Nph〉. We have chosen ξ = 5a, `ho =
a/
√

2 and geff = 10 as in FIGs.2 and 3 (a).
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for larger hopping J), we find an abrupt change of the
quasiparticle weight close to the edge of the BZ. This
is related to the peak observed in the renormalized po-
laron dispersion in FIG.3 (a). We interpret both these
features as an onset of the subsonic to supersonic transi-
tion, which takes place at the edges of the BZ for strong
impurity-boson interactions like in FIG.3.

IV. POLARON BLOCH OSCILLATIONS AND
ADIABATIC APPROXIMATION

In this section we discuss how a uniform force acting
on the impurity affects coherent polaron wavepacket dy-
namics. To this end we derive the equations of motion
of a time-dependent variational state, and give an ap-
proximate solution using the adiabatic principle. From
the latter we calculate real-space impurity trajectories.
We close the section by pointing out how these trajec-
tories can be used to measure the renormalized polaron
dispersion in an experiment. In the following section we
will check the validity of the adiabatic approximation by
solving full non-equilibrium dynamics.

A. Time-dependent variational wavefunctions

We now treat the fully time-dependent Hamiltonian
from Eq.(24), allowing us to solve for polaron dynamics.
Our logic is as follows: we decompose the wavefunction of
the impurity-BEC system into different quasimomentum
sectors, and use the conservation of quasimomentum of
the polaron, which we established in Sec. II B, to treat
each quasimomentum sector independently.

To this end, at time t = 0, we consider a general ini-
tial wavefunction ψin

j of the impurity3 when the force is
switched off, and for simplicity we assume complete ab-
sence of phonons. Thus, the initial quantum state reads

|Ψ(0)〉 =
∑
j

ψin
j ĉ
†
j |0〉c ⊗ |0〉a, (42)

where |0〉c and |0〉a denote the impurity and phonon vac-
uum respectively. Note that Eq.(42) is true not only in
the lab frame, but also in the polaron frame, i.e. after ap-
plying the Lee-Low-Pines transformation (16); Because

in the absence of phonons we have â†kâk|Ψ(0)〉 = 0, for

the initial state from Eq.(42) it holds Ŝ|Ψ(0)〉 = |Ψ(0)〉.
The initial state (42) considered in most of the remain-

ing part of this paper can be realized experimentally by
different means. For instance, if Feshbach resonances are
used to realize strong impurity-boson interactions one

3 To be precise, ψin
j denotes the projection of the initial impurity

wavefunction ψin
I (r) onto the jth Wannier basis function wj(r),

i.e. ψin
I (r) =

∑
j ψ

in
j wj(r)

can quickly change the magnetic field strength from a
value far away from the resonance to a value very close
to it at time t = 0. Therefore an initially non-interacting
impurity, immersed in a cold BEC, suddenly starts to
interact strongly with the surrounding phonons as the
magnetic field approaches the Feshbach resonance.

Alternatively, if a different internal (e.g. hyperfine)
state of the majority bosons is used as an impurity like
e.g. in [37], the initial state can be prepared by applying
a microwave pulse, which is possible also in combina-
tion with local addressing techniques [37, 84]. In this
case, however, the preparation of a phonon vacuum state
like in Eq.(42) is hard to achieve since a spin-flip always
comes along with a local excitation of the BEC. Nev-
ertheless, the true initial state for this situation can be
calculated exactly if after a local spin-flip the impurity
is tightly confined by an addressing beam [37, 84] until
the dynamic evolution is started at time t = 0. In fact, a
sufficiently tight local confinement of the impurity corre-
sponds to vanishing hopping J = 0, and in this case the
MF ansatz Eq.(27) yields the exact phonon ground state

with coherent state amplitudes α
(J=0)
k . Therefore, as-

suming the system has enough time to relax to its ground
state after preparation of the tightly confined impurity
on the central site j = 0, the initial state reads

|Ψ(0)〉 = ĉ†0|0〉c ⊗
∏
k

|α(J=0)
k 〉. (43)

Like the state from Eq.(42) this wavefunction is invariant
under the Lee-Low-Pines transformation (16), but in this
case because of a trivial action of the impurity position
operator, X̂|Ψ(0)〉 = 0.

Next, focusing on Eq.(42) again for concreteness, we
decompose the initial state into its different quasimo-
mentum sectors, which is achieved by taking a Fourier-
transform of the impurity wavefunction,

fq =
1√
L/a

∑
j

eiqajψin
j . (44)

When the force is switched on at time t = 0, all quasi-
momentum sectors evolve individually without any cou-
plings between them. As a consequence the amplitudes
fq defined above are conserved, and we may write the
time-evolved quantum state in the polaron frame as

|Ψ(t)〉 =
∑
q∈BZ

fq ĉ
†
q|0〉c ⊗ |Ψq(t)〉. (45)

At given initial quasimomentum q(0) = q and for finite
driving force F we can make a variational ansatz for the
phonon wavefunction similar to the MF case Eq.(27), but
with time-dependent parameters,

|Ψq(t)〉 = e−iχq(t)
∏
k

|αk(t)〉. (46)

To derive equations of motion for αk(t) we use Dirac’s
time dependent variational principle and arrive at (for
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details see Appendix D)

i∂tαk(t) = Ωk[ακ(t)] αk(t) + Vk. (47)

Here Ωk[ακ(t)] is the renormalized phonon dispersion,
see Eq.(34), but evaluated for time-dependent ακ(t).
Note that Ωk explicitly depends on q(t) = q − Ft. In
Appendix D we also derive an equation describing the
dynamics of the global phases χq(t),

∂tχq =
i

2

∫
d3k (α̇∗kαk − α̇kα∗k) +

∏
k

〈αk|Ĥq(t)|αk〉.

(48)

B. Adiabatic approximation

Before presenting the full numerical solutions of
Eqs.(47), (48), we first discuss the adiabatic approxi-
mation. It assumes that the polaron follows its ground
state without creating additional excitations, i.e. with-
out emission of phonons. We may thus approximate the
dynamical phonon wavefunction by

|Ψq(t)〉 ≈ e−iχq(t)|ΨMF
q(t)〉. (49)

The intuition here is that the time-scale for polaron for-
mation is much faster than the dynamics of BO. In par-
ticular, |ΨMF

q(t)〉 is simply the equilibrium polaron MF solu-

tion for quasimomentum q(t) obtained in Sec. III, which
changes in time according to

q(t) = q(0)− Ft. (50)

Additionaly, we allow for a time-dependence of the global
phase, which we obtain from Eq.(48),

χq(t) =

∫ t

0

dt′ HMF(q(t′)). (51)

C. Polaron trajectory

Next, we derive the real-space trajectory of the po-
laron. To this end we calculate the impurity density,
which can be expressed as〈

ĉ†j ĉj

〉
=

1

L/a

∑
q2,q1∈BZ

eia(q2−q1)jAq2,q1(t)f∗q2fq1 . (52)

This formula is derived in Appendix E, and it requires
knowledge of the time-dependent overlaps

Aq2,q1(t) = 〈Ψq2(t)|Ψq1(t)〉. (53)

They consist of two factors, Aq2,q1 = Aq2,q1Dq2,q1 ; The
phases obey |Aq2,q1 | = 1 and are given by

Aq2,q1(t) = exp [i (χq2(t)− χq1(t))] , (54)

whereas the amplitudes Dq2,q1 , determined by phonon
dressing, are

Dq2,q1 =
∏
k

〈αk(q2, t)| αk(q1, t)〉 . (55)

Within the adiabatic approximation we set αk(q, t) =
αMF
k (q(t)). For non-interacting impurities the phases

alone give rise to BO, while the amplitude is trivial
D = 1. When interactions of the impurity with the
phonon bath are included, |D| < 1 and interference is
suppressed.

To get an insight into the BO of polarons we begin
by discussing a special case of a polaron wavepacket pre-
pared with narrow distribution in quasimomentum space.
In particular we will consider an initial ground state po-
laron wavepacket centered around q = 0, which is de-
scribed by

|Ψ(0)〉 =

√
2LI√

2π

∑
q∈BZ

e−q
2L2

I ĉ†q|0〉c ⊗ |ΨMF
q 〉, (56)

and where LI denotes its width in real space. We
will assume LI � a in the analysis below, such that
all wavepackets carry a well-defined quasimomentum.
Therefore, in Eq. (52) only neighboring momenta |q2 −
q1| � 2π/a contribute, allowing us to expand the expo-
nent of Aq2,q1 to second order in |q2 − q1|. In this way
we obtain the adiabatic impurity density (the detailed
calculation can be found in Appendix F)

n(x, t) = e
− (x−X(t))2

2(L2
I
+Γ2(t)) [2π (L2

I + Γ2(t)
)]−1/2

. (57)

Note that due to the large spatial extent assumed for the
polaron wavepacket we treated aj = x as a continuous
variable here.

The center-of-mass coordinate of the polaron is deter-
mined by Aq2,q1 and it reads

X(t) = X(0) + [HMF(Ft)−HMF(0)] /F. (58)

The amplitude Dq2,q1 , meanwhile, leads to reversible
broadening of the polaron wavepacket,

Γ2(t) =

∫
d3k

(
∂qα

MF
k

∣∣
q=−Ft

)2

. (59)

From Eq.(58) we thus conclude that a measurement of
the polaron center X(t) directly reveals the renormal-
ized polaron dispersion relation. Although derived from
a simplified theory, we expect that this result holds
more generally beyond MF approximation of the polaron
ground state.

V. NON-ADIABATIC CORRECTIONS

In this section we study the full non-equilibrium dy-
namics of the driven polaron by numerically solving for
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the time-dependent MF wavefunction Eq.(46). We start
from the phonon vacuum and some initial impurity wave-
function ψin

j , see Eq.(42), mostly chosen to be a Gaussian
wavepacket with a width LI of several lattice sites and
vanishing mean quasimomentum q = 0. After switching
on the impurity-boson interactions at time t = 0, we find
polaron formation and discuss the validity of the adia-
batic approximation for a description of the subsequent
dynamics (in V A). We also briefly discuss the case of
initially localized impurities (in V B).

To solve equations of motion (47) we employ spherical
coordinates k, ϑ, φ and make use of azimuthal symmetry
around the direction of the impurity lattice. We intro-
duce a grid in k−ϑ space (typically 170×40 grid points)
and use a standard matlab solver for ordinary differential
equations. From the so-obtained solutions αk,ϑ(t) and
χq(t) we calculate Aq2,q1(t) using Eqs.(54), (55), giving
access to impurity densities for arbitrary impurity initial
conditions, see Eq.(52).

A. Impurity dynamics beyond the adiabatic
approximation

To extend our analysis beyond the assumption that
the system follows its ground state adiabatically, we now
consider the full dynamical equations (47) and (48). We
assume that the system starts in the initial state (42)
with the phonons in their vacuum state, and at time
t = 0 interactions between the impurity and the bosons
are switched on abruptly. We chose the initial impurity
wavefunction ψin

j to be a Gaussian wavepacket (standard
deviation LI) like in the discussion of the adiabatic ap-
proximation, see Sec. IV C. Thus the amplitudes fq read

fq = e−(qLI)
2

(2LI)
1/2(2π)−1/4, as in Eq.(44). The global

phases vanish initially, i.e. we set χq(0) = 0 for all quasi-

FIG. 5. (Color online) Impurity density 〈ĉ†j ĉj〉 (color code)
with ja = x for a heavily dressed impurity. The polaron
dynamics, starting from phonon vacuum, is compared to the
result from the adiabatic approximation (red, dashed) as well
as the trajectory of a non-interacting impurity wavepacket
(blue, dashed-dotted). The parameters are J = 1.7c/a, F =
0.1c/a2, geff = 17.32, `ho = a/

√
2 and ξ = 5a.

FIG. 6. (Color online) Impurity density 〈ĉ†j ĉj〉 (color code)
with ja = x for a weakly driven polaron. For comparison the
trajectory of a non-interacting impurity wavepacket is shown
(dashed-dotted). The polaron dynamics is well described by
the adiabatic approximation (dashed), which in turn is given
by the polaron dispersion relation, see Eq.(58). Thus direct
imaging of the impurity density allows a measurement of the
polaron dispersion. The parameters are J = 0.4c/a, F =
0.06c/a2, geff = 10, `ho = a/

√
2 and ξ = 5a.

momenta q.
In FIG.5 the evolution of the impurity density is shown

for a strongly interacting case. Although the impurity

hopping J = 1.7c/a exceeds the critical hopping J
(0)
c =

0.5c/a where a bare particle becomes supersonic by more
than a factor of three, we observe well defined BO with
group velocities of the wavepacket below the speed of
sound c. By investigating the mean phonon number we
moreover find that polaron formation takes place on a
time-scale ξ/c after which a quasi steady state is reached.

Along with the plot in FIG.5 we show the result of the
adiabatic approximation. Although the latter can not
capture the initial polaron formation, it is expected to
be applicable once a steady state is reached 4. In the
case shown in the figure, however, non-adiabatic correc-
tions play an important role and we observe a pronounced
polaron drift in the direction of the force F . Moreover
irreversible broadening of the polaron wavepacket takes
place. Nevertheless the shape of the BO trajectory, in-
cluding its pronounced peaks and the amplitude of os-
cillations, can be understood from the adiabatic result.
For smaller hopping and smaller interactions the adia-
batic approximation compares even better with the full
numerics, as is shown in FIG.6.

To perform a more quantitative analysis when adia-
baticity may be assumed, we determine the center-of-

mass X(t) =
∑
j j〈ĉ

†
j ĉj〉 of the impurity wavefunction

4 After the quench there is excess energy which will however be car-
ried away by phonons. When tracing out these emitted phonons,
we expect the remaining state to be well described by a ground
state polaron, provided that equilibration mechanisms are avail-
able.
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FIG. 7. (Color online) The impurity center-of-mass X(t) ob-
tained from our time-dependent variational calculation can
be fitted to the expression from Eq.(60). The dependencies
of the fitting parameters vd, vfit

g as well as Ω on the hop-
ping strength J are shown in this figure. In the subsonic
regime (J . 1.2c/a) the fitted maximum group velocity vfit

g

(red bullets) is compared to the result obtained from the adi-
abatic approximation (solid line). To this end we fitted the
polaron trajectory obtained from the adiabatic approxima-
tion to the same curve from Eq. (60) and plotted the so-
obtained velocity vfit

g |adiab.. The observed deviations of our
data from the adiabatic theory can be explained by the ini-
tial quench: when starting the dynamics from the MF polaron
ground state (instead of a non-interacting impurity) the re-
sulting trajectory vfit

g |MF ini. is in excellent agreement with
our theoretical prediction (triangles4). The parameters were
F = 0.2c/a2, geff = 10, ξ = 5a and `ho = a/

√
2.

from the full variational calculation and fit it to

X(t) =
vfit

g

Ω
cos (Ωt+ ϕ) + vdt+X0. (60)

Here vfit
g denotes the maximum polaron velocity in the

absence of a drift. In FIG.7 the resulting fit parame-
ters are shown as a function of the bare hopping J . We
compare the value of vfit

g to the polaron group velocity

expected from adiabatic approximation vfit
g |adiab.. The

latter is obtained by fitting Eq.(60) to the adiabatic tra-
jectory. While the adiabatic theory captures correctly
the qualitative behavior, on a quantitative level it over-
estimates the group velocity. This, however, is related
to our initial conditions and not to a shortcoming of the
adiabatic approximation in general. When starting the
dynamics from the MF polaron state Eq.(56) instead of
considering an interaction quench of the impurity, we find
excellent agreement, with deviations below 1%. This is
demonstrated by a few data points in FIG.7. The quench,
on the other hand, leads to the creation of phonons,
which are also expected to contribute to the dressing of
the impurity in general [25].

Close to the subsonic to supersonic transition around
Jc ≈ c/a, the polaron drift velocity takes substantial val-
ues of ≈ 0.2c. We also note that, in the entire subsonic
regime, the fitted BO frequency Ω is precisely given by
the bare-impurity value ωB (to within < 0.5% in the nu-
merics). However, once the polaron becomes supersonic

FIG. 8. (Color online) Impurity density 〈ĉ†j ĉj〉 (color code)
with ja = x for an initially localized state on a single lattice
site (x(0) = 20a in this concrete example). (a) Weak driving
F = 0.06c/a2 and (b) stronger driving F = 0.2c/a2. Other
parameters are J = 0.3c/a, geff = 10, ξ = 5a and `ho = a/

√
2

in both cases.

we observe a decrease of the frequency to Ω < ωB. We at-
tribute this effect to the spontaneous emission of phonons
in regions of the BZ where the polaron becomes super-
sonic. Along with phonon emission comes emission of net
phonon momentum ∆qph, which has to be replenished by
the external driving force, ∆qph = F∆t. Thus an extra
time ∆t is required for each Bloch cycle and as a con-
sequence we expect the BO frequency of the polaron to
decrease.

Within the adiabatic approximation we have shown
that the wavepacket trajectory X(t) allows a direct mea-
surement of the renormalized polaron dispersion. We
found that even when non-adiabatic effects are appre-
ciable, the polaron dispersion can be reconstructed. BO
can therefore be used as a tool to measure polaronic prop-
erties, which are of special interest in the strongly inter-
acting regime. We emphasize that our scheme does not
rely on the specific variational method used above. As
long as the ground state of the impurity interacting with
the phonons of the surrounding BEC, is described by a
stable polaron band, the real-space BO trajectory maps
out the integrated group velocity, i.e. the band structure
itself.

B. Beyond wavepacket dynamics

Motivated by their possible application for measure-
ments of the renormalized dispersion, we focused on po-
laron wavepackets so far. Our variational treatment,
however, is applicable to any initial wavefunction. In
FIG.8 we show two examples starting from an impurity
which is localized on a single lattice site, still assum-
ing phonon vacuum initially. Since all momenta are oc-
cupied, we first observe interference patterns which are
symmetric under spatial inversion x → −x. For large
enough interactions and sufficiently strong driving how-
ever, we observe diffusion of the polaron and the interfer-
ence patterns disappear. The maximum impurity density
drops substantially and the symmetry under spatial in-
version is lost. Moreover we observe a finite drift velocity
of the polaron.
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VI. POLARON TRANSPORT

In this section we discuss the polaron drift velocity
vd, which is the most important non-adiabatic effect and
can also be interpreted as a manifestation of incoher-
ent transport. After some brief general remarks about
the problem, we present our numerical results for the
current-force relation vd(F ). These are obtained, like in
the last section, from the time-dependent variational MF
ansatz Eq.(46), requiring numerical solutions of Eqs.(47),
(48). Next we derive a closed, semi-analytical expression
for the current-force relation vd(F ) from first principles

in the limit of small polaron hopping J∗ = Je−C
MF

and
show that our predictions are in good quantitative agree-
ment with the full time-dependent MF numerics. As a
result, we find that the polaron drift in the weak-driving
limit strongly depends on the dimensionality of the sys-
tem. At the end of this section we discuss the connection
between our results and the Esaki-Tsu relation, which
originates from a purely phenomenological model of in-
coherent transport in a lattice potential. We find that, in
the polaron case, this simplified model is unable to cap-
ture many key features of our findings. In particular it
completely fails in the weak-driving regime and predicts
a wrong dependence on the hopping strength J .

A. General observations

The fundamental Hamiltonian (10) is manifestly time-
independent, and thus total energy is conserved. When
the impurity slides down the optical lattice, the loss of
potential energy Ėpot = −Fvd requires a gain of radiative

energy Eγ in the form of phonons, Ėγ = Fvd. (This rela-
tion can also formally be derived from Eq.(17).) There-
fore the non-zero drift velocity of the polaron wavepacket
observed e.g. in FIG.1(b) comes along with phonon emis-
sion, albeit its velocity never exceeds the speed of sound
c. Such phonon emission is not in contradiction to Lan-
dau’s criterion for superfluidity, which is appropriate only
for impurities (or obstacles in general) in a superfluid
moving with a constant velocity. However, the system
considered here is driven by an external force F which
gives rise to periodic oscillations of the net quasimomen-
tum of the system q(t). We thus expect phonons to be
emitted at multiples of the BO frequency ω = nωB, with
rates γph(nωB). Using Ėγ =

∑
n nωBγph(nωB), we can

express the drift velocity as

vd = a
∑
n

nγph(nωB). (61)

B. Numerical results

In FIG.9 we present numerical results for the current-
force dependence at different hopping strengths J , in
linear (a) and double-logarithmic scale (b). These

curves were obtained by solving for the variational time-
dependent MF wavefunction (46). Like in the last sec-
tion, we started from phonon vacuum and assumed
a zero-quasimomentum impurity wavepacket extending
over a few lattice sites. The center-of-mass X(t) of the
resulting polaron trajectory was then fitted to Eq.(60)
from which vd was obtained as a fitting parameter.

All curves have a similar qualitative form: For small
force ωB . c/ξ the polaron current increases monotoni-
cally with F . Somewhere around ωB ≈ c/ξ the curvature
changes and the polaron drift velocity takes its maximum
value vmax

d for a force FNDC. For even larger driving ωB

we find negative differential conductance, defined by the
condition dvd/dF < 0. The maximum is also referred to
as negative differential conductance peak. Previously all
these features have been predicted by different polaron
models for impurities in 1D condensates [23, 45].

From the double-logarithmic plot in FIG.9 (b) we ob-
serve a sub-Ohmic behavior in the weak driving regime.
For the smallest achievable forces F , we can approximate
our curves by power-laws vd ∼ F γ . The observed expo-
nents in FIG.9 (b) are in a range γ = 3.0 (for J = 0.3c/a,
geff = 3.16) to γ = 1.5 (for J = 0.5c/a, geff = 3.16).
While this behavior is clearly sub-Ohmic, it is hard to
estimate how well these power-laws extrapolate to the
limit F → 0. Going to even smaller driving is costly nu-
merically, because the required total simulation time for
a few Bloch cycles T ∼ 1/F becomes large.

To our knowledge, the sub-Ohmic behavior in the
weak-driving regime was not previously observed. As
we discuss at the end of this section, it goes beyond the
phenomenological Esaki-Tsu model for incoherent trans-
port in lattice models. We show in the following that
it is moreover tightly linked to the dimensionality d of
the condensate providing phonon excitations. For 1D
systems, which were studied in some depth in the liter-
ature [23, 45, 46], we do in fact expect Ohmic behavior
for F → 0. This is in agreement with the results of
[23, 45, 46].

C. Semi-analytical current-force relation

Now we want to extend our formalism used to describe
the static polaron ground state in Sec.III by including
quantum fluctuations. To this end we apply the following
unitary transformation

Û(q) =
∏
k

exp
(
αMF
k (q)â†k −

(
αMF
k (q)

)∗
âk

)
, (62)

where in the new frame âk describes quantum fluctua-
tions around the MF solution in the absence of driving,
F = 0. In the case of a non-vanishing force F 6= 0, we can
analogously obtain corrections to the adiabatic MF po-
laron solution Eq.(46). To this end we have to make the

transformation (62) time-dependent, Û(t) := Û(q(t)),
where q(t) = q(0)− Ft (see Eq.(50)).
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FIG. 9. (Color online) (a) Dependence of the polaron drift velocity vd (obtained from the fit Eq.(60)) on the driving force F ,
for interaction strength geff = 3.16 and various hoppings (top: J = 0.5c/a, middle: J = 0.3c/a, bottom: J = 0.1c/a). All
curves show the same qualitative features: for small force F the polaron current increases with F , it reaches its maximum vmax

d

at the negative differential conductance peak at FNDC and for stronger driving F > FNDC negative differential conductance
dvd/dF < 0 is observed. For each J we also show the result from our analytical model Eq.(64) of polaron transport (solid lines),
free of any fitting parameters. We find excellent agreement for J = 0.3c/a and J = 0.1c/a. We also plotted the prediction of
an extended model (dashed lines, solution of the truncated Hamiltonian Eq.(63)), which for J = 0.5c/a yields somewhat better
results. In (b) we show the same data (legend from (a) applies), but in double-logarithmic scale. In the lower left corner we
indicated an Ohmic power-law dependence ∼ F (thin solid line). Comparison to our data shows a sub-Ohmic current-force
dependence in the weak driving regime (the approximate power-laws have exponents in a range between 1 and 3). It starts
roughly when ωB = aF < c/ξ, which is indicated by a dashed vertical line in (b). For all curves we used ξ = 5a and `ho = a/

√
2

and simulated at least three periods of BO assuming an initial Gaussian impurity wavepacket with a width LI of three lattice
sites.

By applying Û(q(t)), defined by Eq.(62) above, to
the polaron Hamiltonian Eq.(17) we obtain the following
time-dependent Hamiltonian describing quantum fluctu-
ations around the adiabatic MF polaron solution in the
case of a d-dimensional condensate,

H̃(t) =

∫
ddk Ωk(q(t))â†kâk +O(J∗â2)

+ iF

∫
ddk

(
∂qα

MF
k (q(t))

) [
â†k − âk

]
. (63)

Here we introduced J∗(q(t)) := J exp
(
−CMF(q(t))

)
and

O(J∗â2) denotes terms describing corrections to the adi-
abatic solution beyond the MF description of the po-
laron ground state. The leading order terms have a form
∼ J∗âkâk′ and can be treated following ideas by Kagan
and Prokof’ev [85]. In the rest of this paper, however,
we will discard such terms and assume that the MF po-
laron state provides a valid starting point to calculate
corrections to the adiabatic approximation. Note that
the time-dependent ansatz (46) used for our calculations
of non-equilibrium dynamics includes corrections due to
the additional terms of order O(J∗â2). As a side remark
we also mention that from Eq.(63) it becomes apparent
why, in the absence of driving, Ωk describes the renor-
malized phonon dispersion in the polaron frame.

1. Results: analytical current-force relation

In the following we will employ Fermi’s golden rule
to calculate non-adiabatic corrections, corresponding to
phonon excitations due to the terms in the second line of
Eq.(63). To leading order in J∗ we will derive (in VI C 2)
the following expression for the current-force relation,

vd(F ) = Sd−28π
J∗20

aF 2

kd−1V 2
k

(∂kωk)
(1− sinc(ak)) +O(J∗0 )3,

(64)
where k is determined by the condition that ωk = ωB.
Here J∗0 := limJ→0 J

∗(q) is the renormalized polaron
hopping in the heavy impurity limit (which is indepen-
dent of q), and Sn = (n+1)π(n+1)/2/Γ(n/2+3/2) denotes
the surface area of an n-dimensional unit sphere. sinc(x)
is a shorthand notation for the function sin(x)/x.

Importantly, our model yields the closed expression
(64) for the current-force relation, at least for heavy po-
larons. Although this limit has been considered before
[23], we are not aware of any such expression describing
incoherent polaron transport and derived from first prin-
ciples. Our result is semi-analytic, in the sense that the
prefactor J∗0 has to be calculated numerically from an
integral, see Eq.(72) below.

In FIG.9 we compare our numerical results to the semi-
analytical expression (64). We obtain excellent agree-
ment for both cases of small and intermediate hopping
J = 0.1c/a and J = 0.3c/a. For large J = 0.5c/a very
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close to the subsonic to supersonic transition, larger de-
viations are found in the weak-driving limit aF . c/ξ,
which in view of the fact that our result Eq.(64) is per-
turbative in the hopping strength J∗, does not surprise
us. Interestingly, for large force aF & c/ξ, our semi-
analytical theory yields good agreement for all hopping
strengths. We will further elaborate on the conditions
under which our model works in Subsection VI C 3.

From Eq.(64) we can furthermore obtain a number of
algebraic properties of the polaron’s current-force rela-
tion. To begin with, let us discuss the dependence of the
drift velocity on system parameters. Because Vk ∼ geff

and J∗0 = J +O(g2
eff) we obtain

vd ∼ g2
eff +O(g4

eff). (65)

Moreover, the leading order contribution in the hopping
strength scales like

vd ∼ J2 +O(J3). (66)

In FIG.10 we investigate the position of the negative dif-
ferential conductance peak, obtained from the full time-
dependent variational simulations of the system. For
small hopping J and weak interactions geff we identify
power-laws whose exponents agree well with our expec-
tations (65), (66) derived above.

Next, we investigate the behavior in the weak-driving
regime. A series expansion of Eq.(64) around F = 0
yields

vd = F dg2
eff (J∗)

2
ξ2 a3+dSd−2

cd+16
√

2π2
+O(F d+1, J∗30 ). (67)

This explains the strong sub-Ohmic behavior we found in
Subsection VI B, and furthermore shows that the latter
strongly depends on the dimensionality d of the conden-
sate. In particular, for d = 1, we arrive at Ohmic be-
havior as found in [23, 45, 46]. The numerical results for
J ≤ 0.3c/a in FIG.9 are also consistent with the power-
law vd ∼ F 3 predicted in Eq. (67). Note however that
for larger J a comparison of the exponents is difficult be-
cause, even for the smallest numerically achievable driv-
ing F , some residual curvature is left and, more impor-
tantly, higher orders in J∗ can not simply be neglected.

For large driving, on the other hand, we arrive at
the following asymptotic behavior in the continuum limit
`ho = 0 of the impurity lattice,

vd =
2d/4−1

π2
Sd−2

(a
c

)d/2−2

ξ1−d/2g2
eff (J∗0 )

2
F−3+d/2

+O(F−4+d/2, J∗30 ). (68)

We can not compare our results in FIG.9 to this power-
law, because non-vanishing `ho 6= 0 was considered there.
Interestingly from a theoretical perspective, as a conse-
quence of Eq.(68), in d ≥ 6 dimensions we expect the
negative differential conductance peak to disappear. For
non-vanishing `ho it reappears of course, but its position

FIG. 10. (Color online) Dependence of the negative differen-
tial conductance peak position, characterized by FNDC and
vmax

d , on the system parameters; In (a) and (b) the hopping
J is varied while the coupling geff = 3.16 is fixed. In (c) and
(d), in contrast, the interaction strength geff is varied while
keeping J = 0.4c/a fixed. In (b) and (d) a double-logarithmic
scale is used, allowing us to read off the indicated power-
law dependencies from best fits to the data (dashed lines),
vmax

d ∼ J2 and vmax
d ∼ g2

eff (for small geff). The position
FNDC, in contrast, is only weakly J-dependent (a) and we
can not observe any clear interaction dependence in (c). The
dashed horizontal line in (c) shows the mean of our data. The
indicated error bars in (a), (c) are due to the finite mesh used
for sampling the underlying current-force relations.

may be located at very large F . This effect, however, is
simply connected to the absence of interacting phonons
at the Bloch frequency. Therefore in more than six
spatial dimensions coherent Bloch oscillations can never
overcome incoherent scattering, in contrast to what we
find in lower-dimensional systems.

In the following (VI C 2) we will derive Eq.(64), be-
fore we discuss its range of validity as well as possible
extensions (in VI C 3).

2. Derivation of the current-force relation

To derive Eq.(64), we start by noting that the driving
term in Eq.(63), i.e. F

(
∂qα

MF
k (q(t))

)
, is TB = 2π/ωB

periodic in time. We can thus expand it in a discrete
Fourier-series,

∂qα
MF
k (q(t)) =

∞∑
m=−∞

A
(m)
k eiωBmt, (69)

where the Fourier coefficients read

A
(m)
k =

a

2π

∫ π/a

−π/a
dq
(
∂qα

MF
k (q)

)
eiamq. (70)
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Using partial integration and a series expansion of αMF
k

in J∗, we find for m ≥ 0

A
(m)
k = iδm,1aJ

∗
0

Vk
ω2
k

(
eikxa − 1

)
+O(J∗)2. (71)

Here we employed that CMF(q) = CMF
0 + O(J∗) and

SMF(q) = O(J∗) and we used J∗0 = Je−C
MF
0 , where

CMF
0 =

∫
d3k

V 2
k

ω2
k

(1− cos(akx)) . (72)

The coefficients for m < 0 can be obtained from symme-

try, A
(−m)
k = A

(m)∗
k .

Next, we want to apply Fermi’s golden rule to cal-
culate phonon emission due to the driving term ∼
F
(
∂qα

MF
k (q(t))

)
in Eq.(63). Before doing so, we notice

that the renormalized phonon frequency Ωk(q(t)) has a
time-dependent contribution. However, we can treat the
latter as a perturbation itself and find that to leading or-
der in time-dependent perturbation theory (from which
Fermi’s golden rule is obtained), it has a vanishing ma-

trix element, 〈0|â†kâk|0〉 = 0. Then, from Fermi’s golden
rule we obtain

γph =

∞∑
m=1

2πF 2

∫
ddk

∣∣∣A(m)
k

∣∣∣2 δ (ωk −mωB) . (73)

Plugging in Eq.(71) yields our result Eq. (64) if we make
use of the fact that (to the considered order) phonons are
emitted only on the fundamental frequency ωB, and using
Eq.(61), vd = aγph. In Appendix G a somewhat simpler
derivation is presented, which, however, only works in the
weakly interacting regime where J∗ = J and provided
that F is sufficiently small.

3. Discussion and extensions

In this paragraph we will further discuss under which
conditions our analytical result (64) is valid. In particu-
lar, we try to understand FIG.9 (b) in more detail. To
this end we suggest an extension of our model, beyond
the expression (73) obtained from Fermi’s golden rule.

To begin with, we investigate the effect of higher or-
der contributions in the polaron hopping J∗. While an
analytical series expansion is cumbersome, we note that
the truncated Hamiltonian (63), from which we started,
is integrable. Since it does not couple different phonon
momenta k 6= k′, we only have to solve dynamics of a
driven harmonic oscillator at each k. This can be done
numerically using coherent phonon states, and takes into
account all orders in the renormalized hopping J∗. Com-
pared to a solution of the full time-dependent MF dynam-
ics, which includs couplings between different momenta,
it is still cheaper numerically.

In FIG.9 (b) we also compare our results to such a
full solution of the truncated Hamiltonian (63) (dashed

FIG. 11. (Color online) Phonon energy density ε(k, t) in units
of c of the truncated Hamiltonian (63) as a function of time
and radial momentum k = |k|. We integrated over the entire
momentum shell of radius k and included the measure in the
density, i.e. the total phonon energy is Eph(t) =

∫
dk ε(k, t).

The results were obtained by solving full dynamics of the
truncated Hamiltonian Eq.(63) and starting from vacuum.
Parameters are F = 0.048c/a2 and J = 0.5c/a in (a),
F = 5.4c/a2 and J = 0.5c/a in (b), F = 0.048c/a2 and
J = 0.1c/a in (c) and F = 5.4c/a2 and J = 0.1c/a in (d). Po-
sitions of the first four resonances ωk = nωB for n = 1, 2, 3, 4
are indicated by dashed horizontal lines. Other parameters
are geff = 3.16, ξ = 5a and `ho = a/2 in all cases.

lines). While for the smallest hopping J = 0.1c/a only
small corrections to the result (64) from Fermi’s golden
rule are obtained, we find large corrections for J = 0.3c/a
and J = 0.5c/a in weak driving regime aF ≤ c/ξ (devia-
tions by up to two orders of magnitude are observed).

To understand why this is the case, we first recall
that to leading order (i.e. vd ∼ J∗20 ) only phonon emis-
sion on the fundamental frequency ωB contributes, see
Eq.(71). A higher order series expansion moreover shows
that to third order in J∗0 , only phonons with frequen-
cies ωk = 2ωB on the second harmonic contribute to vd.
Therefore we expect higher order contributions in J∗0 to
lead to phonon emission on higher harmonics. In FIG.11
we plot the energy density of emitted phonons, calculated
from the truncated Hamiltonian (63). Indeed, for large
hopping J = 0.5c/a and weak driving F = 0.048c/a2 we
observe multiple resonances in FIG.11 (a). For the same
force but smaller hopping J = 0.1c/a in contrast, only
the fundamental frequency is relevant, see FIG.11 (c).

From the comparison in FIG.9, we moreover observe
that the result Eq.(64) from Fermis golden rule, which is
perturbative in J∗, works surprisingly well in the strong
driving regime (aF & c/ξ), even for hoppings as large
as J = 0.5c/a close to the transition to the supersonic
regime. To understand why this is the case, we analyze
the energy density of phonons for large force F = 5.4c/a2

in FIG. 11 (b) and (d). We find that in both cases of large
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and small hopping, J = 0.5c/a in (b) and J = 0.1c/a
in (d), only emission on the fundamental frequency con-
tributes. This is generally expected in the strong driving
regime aF > cξ, as can be seen from a simple scaling
analysis. Using Eq.(73) we expect the rate of change of
the energy density ε(k, t) for driving with fixed frequency
ωB (in d = 3 dimensions) to scale like

∂

∂t
ε(k, t) ∼ k2|A(m)

k |
2 1

∂kωk
. (74)

Estimating A
(m)
k ∼ ∂qα

MF
k (q) ∼ Vk/ωk we find the fol-

lowing scalings with momentum,

∂

∂t
ε(k, t) ∼

{
k if k � 1/ξ,
1
k3 if k � 1/ξ.

(75)

Thus for ωB > c/ξ, i.e. for k > 1/ξ, phonon emission
on higher harmonics ωk = nωB with n ≥ 2 is highly
suppressed.

Finally, emission on the fundamental frequency ωk =
ωB is captured by Fermi’s golden rule (64) up to correc-
tions of order J∗60 , as can be shown using a series expan-

sion of A
(m)
k to second order in J∗0 . Thus in the strong

driving regime, where mostly the fundamental frequency
contributes, only weak J-dependence can be expected.
This is fully consistent with FIG.10 (d) showing how
the negative differential conductance peak varies with
J . Hardly any deviations from the power-law Eq.(66)
derived from Fermi’s golden rule can be observed there.

D. Insufficiencies of the phenomenological
Esaki-Tsu model

In this subsection we discuss the relation of our results
to the phenomenological Esaki-Tsu model [68]. While
the latter explains some of the qualitative features of the
observed current-force relations, we find that it is insuf-
ficient for their detailed understanding. Nevertheless, a
comparison to this model clarifies how an impurity atom
in an optical lattice immersed in a thermal bath [69] dif-
fers from a particle immersed in a superfluid, as discussed
in this paper. In the former case, the Esaki-Tsu relation
is valid [69] and can even be rigorously derived from mi-
croscopic models [70, 71].

We begin by a brief review of the Esaki-Tsu model and
derive its basic predictions for the polaron case. After-
wards we compare these expectations to our numerical
results and discuss the differences.

1. Phenomenological Esaki-Tsu model

Esaki and Tsu considered an electron in a periodic lat-
tice, subject to a constant electric field. Using nearest-
neighbor tight-binding approximation, the dispersion re-
lation reads ωq = −2J cos (qa). Because of the external

field the particle undergoes Bloch oscillation, so long as
incoherent scattering is absent. To include decoherence
mechanisms with a rate 1/τ , the relaxation time approx-
imation is employed and the following closed expression
for the resulting drift velocity was derived [68],

vd = 2Ja
ωBτ

1 + (ωBτ)
2 . (76)

We will not re-derive this result here, however it is in-
structive to consider the limiting cases F → 0,∞. The
essence of the relaxation time approximation is the as-
sumption that a wavepacket evolves coherently for a time
τ . Then, incoherent scattering takes place and instantly
the particle equilibrates in the state of minimal energy,
i.e. at q = 0. In the mean-time the distance traveled in
real-space is

∆x =

∫ τ

0

dt ∂qωq =
2J

F
(1− cos(ωBτ)) . (77)

In the weak-driving limit ωB � 1/τ we can expand the
cosine and find vd = ∆x/τ = Jτa2F , which explains
the Ohmic behavior in Eq.(76). In the strong driving
limit ωB � 1/τ on the other hand, we can average out
the coherent part of the evolution and set cos(ωBτ) ≈ 0.
Then we obtain vd = ∆x/τ = 2J/(Fτ), which captures
the large-force limit in Eq.(76).

Now we can naively adapt the Esaki-Tsu model to the
polaron case, without specifying the origin of the relax-
ation mechanism. It makes the following predictions for
the current-force relation.

(i) For weak driving F → 0, Ohmic behavior vd ∼ F
is expected.

(ii) For strong driving, negative differential conduc-
tance vd ∼ 1/F is predicted.

(iii) For intermediate force, a negative differential con-
ductance peak appears, where dvd/dF = 0.

(iv) The polaron drift should depend linearly on the ef-
fective hopping strength vd ∼ J∗, at least for small
hopping J∗ → 0 (for larger hopping, τ might in-
clude J∗-dependent corrections).

In the following we will investigate our numerical results
more carefully, and show that many of them are not con-
sistent with the simple Esaki-Tsu model, despite the fact
that this model has been applied in numerous polaron
models before [23, 45, 46]. However, all these points are
correctly described by our analytical model of the polaron
current.

2. Comparison to numerics

As discussed in Subsection VI B the Esaki-Tsu relation
correctly predicts (ii) the existence of negative differen-
tial conductance and (iii) a corresponding peak at which
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FIG. 12. (Color online) Best fit of the Esaki-Tsu relation
(dashed black line) to our numerically obtained current-force
relation vd(F ) (red squares), where both J and τ were treated
as free parameters in Eq.(76). We also show our analyt-
ical result Eq.(64) (solid orange line), which was obtained
from first principles and without any free fitting parameters.
While the Esaki-Tsu model can reproduce the negative differ-
ential conductance peak, it fits less well in the strong-driving
regime. In the inset the same data is shown, but using a
double-logarithmic scale. Here the complete failure of the
Esaki-Tsu model in the weak-driving limit becomes appar-
ent. The parameters are J = 0.3c/a, geff = 3.16, ξ = 5a and
`ho = a/

√
2 and from the best-fit we obtain τ = 1.34a/c and

J |fit = 0.0065c/a.

vd takes its maximum value. This is a direct manifesta-
tion of the interplay between coherent transport, which
dominates for large F , and its incoherent counterpart re-
sponsible for the weak-driving behavior. However, we
also pointed out already that (i) is inconsistent with the
sub-Ohmic behavior observed in our numerics.

In FIG.12 we fitted Eq.(76) to the results of our full
solution of the semiclassical dynamical equations (47),
(48). While for moderate driving F & c/a2 the shape of
the curve can be reproduced by the fit, the comparison
for small force (in the inset of FIG.12) clearly shows that
the Esaki-Tsu relation can not capture the weak driv-
ing regime. Importantly, to get reasonable quantitative
agreement, one should treat not only the relaxation time
τ , but also the hopping strength J as a free parame-
ter [23]. The resulting best fit J |fit always yields effec-
tive hoppings exceeding the renormalized polaron hop-

ping J∗ = Je−C
MF

. For instance, in the case shown in
FIG.12 (geff = 3.16, J = 0.3c/a) we find from fitting
J |fit/J = 0.022 whereas J∗/J ≈ 0.96 is almost two or-
ders of magnitude larger. Therefore, on a quantitative
level, the Esaki-Tsu model completely fails here.

To get a better understanding why the quantitative
result from the Esaki-Tsu relation is so far off, we now
investigate in detail how the current-force relation vd(F )
depends on our system parameters geff and J . To this
end we consider the position of the negative differential
conductance peak, which is characterized by FNDC and
vmax

d . From the Esaki-Tsu relation (76) we would expect

FNDC = 1/τa and vmax
d = J∗a, see (iv).

In FIG. 10 (a), (b) we show how FNDC and vmax
d de-

pend on the hopping strength J . While the effect on
FNDC is rather weak, a power-law very close to vmax

d ∼ J2

is observed in (b). This is in contradiction to the Esaki-
Tsu model, which suggests vmax

d ∼ J∗, since to leading
order J∗ ∼ J . It shows that not only τ , but also J
should be considered as a fitting parameter in order to
describe the numerical curves by the Esaki-Tsu relation
(76). Physically, however, it is not clear why J should be
a free parameter in this equation. Meanwhile, from our
analytical model we obtain the correct power-law vd ∼ J2

for small J , see Eq.(66).
In FIG. 10 (c), (d) we show the dependence of the

negative differential conductance peak on the interaction
strength. While no dependence of FNDC can be iden-
tified (c), we obtain a power-law vmax

d ∼ g2
eff for suffi-

ciently weak interactions. From Esaki-Tsu in contrast,
we would expect a decrease of the polaron drift with the
interaction strength, because the latter suppresses the
polaron hopping J∗. Again, our analytical model can
explain the observed power-law, see Eq.(65). It also pre-
dicts vd ∼ J∗20 , such that we do indeed expect to find
indications of the polaronic dressing for sufficiently large
interaction strength. This effect can be observed in (c),
where for large geff the incoherent polaron current reaches
a maximum value before it becomes strongly suppressed
by interactions.

Thus, we have seen that on a quantitative level the
Esaki-Tsu model is insufficient for understanding the in-
coherent polaron current. We attribute the reasonable fit
to our data in the moderate driving regime simply to the
fact that the Esaki-Tsu relation works on a qualitative
level, in the sense that it predicts a negative differential
conductance peak.

VII. SUMMARY

In summary we investigated polarons, i.e. mobile im-
purities dressed by phonons, confined to 1D optical lat-
tices and immersed in a d-dimensional BEC. In particular
we considered Bloch oscillations of these quasiparticles,
which can be observed when a constant force is applied to
the impurity. We showed (using an adiabatic approxima-
tion) that real-space trajectories of polaron wavepackets
provide a tool to measure the renormalized polaron dis-
persion. By means of a variational MF ansatz we pointed
out that the latter is strongly modified at the BZ edges
for large impurity-phonon interactions and close to the
subsonic to supersonic transition of the polaron.

Driven by the external force, the phonon cloud has
to adjust to the new Bloch wavefunction of the polaron.
Since it can not follow its lowest-energy eigenstate com-
pletely adiabatically, phonons are emitted. This effect
leads to a drift of the polaron along the applied force,
and we investigated its dependence on the strength of
the driving in detail. In particular, we derived a closed
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semi-analytical expression for the incoherent polaron cur-
rent by expanding around the MF polaron solution and
employing Fermi’s golden rule. A comparison to full
time-dependent MF dynamics yields good agreement.
From our findings we conclude that the phenomenological
Esaki-Tsu model is insufficient for a detailed understand-
ing of the current-force relation, and we pointed out that
it completely fails in the weak-driving regime. There, for
condensates of dimensionality d > 1, we find sub-Ohmic
behavior instead of the Ohmic prediction by Esaki and
Tsu.
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Appendix A: Derivation of model parameters
characterizing impurity-boson interactions

In the main text we mentioned that both the scatter-
ing length aeff

IB and the effective range reff
IB of the impurity-

boson interaction are modified due to lattice effects, see
[78, 79, 86]. In the following we discuss in detail how our

model parameters gIB and `ho (entering ĤIB implicitly
via the Wannier function w(r) in Eq.(8)), which charac-
terize the impurity-boson interaction within our simpli-
fied model Eq.(8), relate to the two universal numbers
aeff

IB and reff
IB. Since both aeff

IB and reff
IB can be accessed

numerically (see e.g.[78, 79]) or experimentally (see e.g.
[80]), this allows us to make quantitative predictions us-
ing our model. Our treatment is analogous to that of
[87], where a similar discussion can be found.

To understand the connection between effective model
parameters, like gIB, and universal numbers characteriz-
ing inter-particle interactions at low energies, like aeff

IB, let
us first recall the standard procedure when both the im-
purity and the boson are unconfined [76]. For instance,
already when writing the microscopic model in Eq.(1),
we replaced the complicated microscopic impurity-boson
interaction potential by a much simpler point-like inter-
action of strength gIB. The philosophy here is as fol-
lows: when two-particle scattering takes place at suffi-
ciently low energies k → 0, the corresponding scattering
amplitude fk takes a universal form which is character-

ized by only a hand-full of parameters – irrespective of
all the microscopic details of the underlying interaction.
In particular, for the smallest energies only the asymp-
totic value of fk matters, defining the (s-wave) scattering
length as = − limk→0 fk.

In an effective model describing low-energy physics
only, it is sufficient to capture only the s-wave scatter-
ing correctly. To this end one may replace the micro-
scopic impurity-boson potential by a simplified pseudo
potential, characterized by only a single parameter gIB.
Next, one can calculate the scattering amplitude fk(gIB)
expected from this pseudo potential, and to be con-
sistent one has to choose gIB such that as(gIB) =
− limk→0 fk(gIB). This is an implicit equation defining
the relation between as and gIB.

In the case when one of the partners (in our case the
impurity) is confined to a local oscillator state (a tight-
binding Wannier orbital), two body-scattering can be
substantially modified. For example, the possibility of
forming molecules bound to the local trapping poten-
tial gives rise to confinement induced resonances with
diverging scattering length, quite similar to Feshbach res-
onances [78, 79, 86]. Importantly for us, this case can be
treated in complete analogy to the scenario of free par-
ticles described above. The scattering amplitude in the
low energy limit is universally given by [78]

fk = −
[
1/aeff

IB + ik − reff
IBk

2/2 +O(k3)
]−1

, (A1)

where aeff
IB denotes the s-wave scattering length and reff

IB
is the effective range of the interaction. These two pa-
rameters can be calculated from the scattering lengths of
unconfined particles, as shown by Massignan and Castin
[78], which however requires a full numerical treatment
of the two-body scattering problem. Doing so, these au-
thors showed in particular that by varying the lattice
depth V0, both parameters can be externally tuned.

Now, instead of going through the complicated micro-
scopic calculations, we introduce a simplified pseudo po-
tential. Motivated by our derivation in the main text,
we chose the impurity-boson interaction from Eq.(8). It
can be characterized by two parameters, firstly the in-
teraction strength gIB, and secondly the extent `ho of
the involved Wannier functions. In the following both
will be determined in such a way that the universal scat-
tering amplitude Eq.(A1) is correctly reproduced. To
this end we calculate the latter analytically in Born-
approximation and obtain

fk = −mBgIB

2π

(
1− k2`2ho/2

)
+O(k3, g2

IB). (A2)

Comparing Eq.(A2) to the universal form Eq.(A1)
yields the following relations (valid within Born-
approximation),

gIB =
2π

mB
aeff

IB, `2ho = −reff
IBa

eff
IB, (A3)

which define our model parameters (see also [87]).
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To derive Eq.(A2) we assumed the impurity to be lo-
calized on a single Wannier site, giving rise to a potential
VIB(r) = gIB|w(r)|2 seen by the bosons. This is justified
in the tight-binding limit, when the hopping J can be
treated as a perturbation after handling the scattering
problem. Then solving the Lippmann-Schwinger Equa-
tion of the scattering problem for a single boson on VIB(r)
(perturbatively to leading order in gIB) yields our result
Eq.(A2). In order to assure that in the scattering process
no higher state in the micro trap is excited, we require
the involved boson momenta k to be sufficiently small
[78],

k2

2mB
� ω0, (A4)

where ω0 is the micro-trap frequency. Since the involved
boson momenta are limited by k . 1/`ho from Eq.(A3)
we obtain a condition for the interaction strength,

1

|reff
IB|aeff

IB

� 2mBω0. (A5)

A comment is in order about the use of the tight-
binding approximation in this context. Firstly, to study
also cases with stronger hopping along the lattice, the
full scattering problem for this case has to be solved.
Extending the calculations of [78, 79] to this case, we ex-
pect to obtain the same universal form (A1) of the scat-
tering amplitude fk in the low-energy limit, with mod-
ified values for aeff

IB and reff
IB. Nevertheless, the relation

Eq.(A3) can still be used to link the the new parameters
to the effective model parameters. Secondly, we note
that when we discuss approaching the subsonic to super-
sonic transition in the main text of the paper, this is not
necessarily in contradiction to the tight-binding approx-
imation; In fact, the subsonic to supersonic transition
takes place around the critical hopping Jca = c, which is
determined solely by properties of the Bose-system. In
concrete cases, whether or not tight-binding results may
be used, has to be checked for each system individually.

Appendix B: Effective Hamiltonian

In this appendix we give a self-contained derivation
of the effective Fröhlich type Hamiltonian Eq.(10) from
the main text. It is similar to the derivations given in
[23, 30, 33]

1. Free phonons

We start from the microscopic Hamiltonian (10) from

the main text, describing the bosonic field φ̂ and the

impurity field ψ̂. In the Bose-condensed phase the or-
der parameter is given by the homogeneous BEC den-
sity n0. The Bose field operator can be written as

φ̂(r) =
√
n0 + Φ̂(r) where Φ̂(r) describes quantum fluc-

tuations around the condensate. We calculate the BEC
excitation spectrum using standard Bogoliubov theory
and write for quantum fluctuations in momentum space

Φ̂k = ukâk + vkâ
†
−k. (B1)

The mode functions uk, vk are given by

uk =
1√
2

√
1 + (kξ)2

kξ
√

2 + (kξ)2
+ 1 (B2)

and

vk = − 1√
2

√
1 + (kξ)2

kξ
√

2 + (kξ)2
− 1, (B3)

where we introduced the BEC healing length

ξ = (2mBgBBn0)
−1/2

. (B4)

The excitation spectrum of the BEC is given by

ĤB =

∫
d3k ωkâ

†
kâk, (B5)

and we have chosen the overall energy scale such that the
BEC in the absence of the impurity has energy E = 0.

The phonon frequency is ωk = ck
√

1 + 1
2 (ξk)

2
and the

speed of sound reads

c =
√
gBBn0/mB. (B6)

Note that, provided they are sufficiently weak, boson-
boson interactions can be parametrized by their s-wave
scattering length aBB as [76]

gBB =
4πaBB

mB
. (B7)

2. Free impurity

The free impurity problem can straightforwardly be
solved using nearest-neighbor tight-binding approxima-
tion. To this end we expand the impurity operator

ψ̂(r) =
∑
j

w (r − jaex) ĉj (B8)

in terms of Gaussian tight-binding Wannier functions
w(r) (see Eq.(3)) with

|w(r)|2 =
(
π`2ho

)−3/2
e−r

2/`2ho . (B9)

This yields the impurity Hamiltonian

ĤI = −J
∑
j

(
ĉ†j+1ĉ

†
j + h.c.

)
− F

∑
j

ja ĉ†j ĉj . (B10)
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3. Impurity-phonon interactions

Finally we turn to the impurity-boson interaction,
which after using the expansion (B8) is described by
Eq.(8) from the main text. Replacing also quantum fluc-
tuations around the BEC by phonons, see Eq.(B1), we
obtain

ĤIB =

∫
d3k

∑
j

ĉ†j ĉje
ikxaj

(
â†k + â−k

)
Vk+

+ n0gIB + ĤJ−ph + Ĥph−ph. (B11)

Here ĤJ−ph denotes phonon induced hoppings (terms of

the form ĉ†j+nĉj âk with n 6= 0), while Ĥph−ph stands

for two-phonon processes (terms of the form ĉ†j ĉj âkâk′).

The interaction strength in Eq.(B11) is determined by
the form factors uk, vk and the Wannier function w(r),

Vk =

√
n0

(2π)3
gIB

(
(ξk)2

2 + (ξk)2

)1/4 ∫
d3reik·r|w(r)|2.

(B12)
Using the Gaussian Wannier function Eq.(B9) from
above we obtain

Vk = (2π)−3/2√n0gIB

(
(ξk)2

2 + (ξk)2

)1/4

e−k
2`2ho/4. (B13)

The relation between gIB and a measurable scattering
length was discussed in Appendix A.

To obtain the final polaron Hamiltonian Eq.(10), we
neglect phonon induced tunneling as well as two-phonon
processes. In the following two paragraphs we discuss
under which conditions this is justified.

a. Two-phonon processes

Neglecting two-phonon processes is justified if the
phonon density nph is much smaller than the BEC den-
sity, i.e. for

nph � n0. (B14)

In this case scattering events involving a boson from the
condensate dominate over phonon-phonon terms.

In order to estimate the phonon density due to quan-
tum depletion δN0 of the condensate around the impu-
rity, let us calculate the latter perturbatively from the
term linear in phonon operators in Eq.(B11),

δN0 ≈
∫
d3k

(
Vk
ωk

)2

. (B15)

Assuming that the typical length scale associated with
the Wannier function `ho/

√
2 ≤ ξ is smaller than the

healing length we find that Vk saturates at k ≈ 1/ξ, see
(B13), while ωk changes from linear ∼ k to quadratic

∼ k2 behavior. Therefore only momentum modes with
k . 1/ξ contribute substantially to quantum depletion
in the vicinity of the impurity. Consequently depletion
takes place on a spatial scale set by ξ and we require

nph ≈ δN0ξ
−3 � n0. (B16)

Integrating only up to 1/ξ in k-space and using the scal-

ing Vk ∼
√
k and ωk ∼ k with the correct prefactors,

valid for k . 1/ξ, we obtain the estimate

|gIB|ξ−3 � 7.5c/ξ. (B17)

This condition is similar to the one derived in [25],
|gIB|ξ−3 � 4c/ξ.

b. Phonon-induced tunneling

Phonon-induced tunneling is described by

ĤJ−ph =
∑
i>j

ĉ†i ĉj

∫
d3k eikxaj

(
â†k + â−k

)
V

(i−j)
k + h.c.,

(B18)
where the corresponding scattering amplitudes read

V
(n)
k = Vk

∫
d3r w∗(r − naex)eik·rw(r)∫

d3r eik·r|w(r)|2
(B19)

for integer n = ...,−1, 0, 1, ... .
We may neglect such phonon-induced tunnelings, if the

scattering amplitude V
(0)
k dominates over all those in-

volving tunneling, V
(n)
k with n 6= 0. Their ratio is given

by matrix elements of eik·r with respect to the Wannier
functions and we obtain the condition

|V (n)
k |
|Vk|

=
|〈wn|eik·r|w0〉|
|〈w0|eik·r|w0〉|

!
� 1, (B20)

when phonon-induced tunneling can be discarded. In the
tight-binding limit, this is usually fulfilled when Wannier
functions are well localized.

Appendix C: Static MF polarons

In this appendix we derive the MF self-consistency
equation (33) from the main text. To this end we have
to calculate the variational energy,

H [αk](q) =
∏
k

〈αk|Ĥq|αk〉. (C1)

The main obstacle is the treatment of the non-linear term
∼ cos â†â in the Hamiltonian Ĥq (24), for which we find

∏
k

〈αk| cos

(
aq − a

∫
d3k′ k′xn̂k′

)
|αk〉

= e−C[ακ] cos (aq − S[ακ]) . (C2)
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The functionals C[ακ] and S[ακ] appearing in this ex-
pression were defined in the main text, see Eqs.(31), (32).

To proof the result (C2), let us first focus on a single

mode and replace
∫
d3k′ k′xâ

†
k′ âk′ by kâ†â for simplicity.

Next we write the cosine in terms of exponentials, for
which it is then sufficient to show that

〈α| exp
[
iakâ†â

]
|α〉 = exp

[
−|α|2

(
1− eiak

)]
. (C3)

This is most easily achieved by expanding coherent states
|α〉 in the Fock basis |n〉,

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉, (C4)

from which we can read off the relation,

〈α|eiakâ
†â|α〉 = e−|α|

2
∞∑
n=0

eiakn|α|2n

n!

= exp
[
−|α|2

(
1− eiak

)]
. (C5)

This result can easily be generalized to the multimode
case with

∫
d3k kxn̂k appearing in the argument of the

cosine, when use is made of the commutativity of phonon
modes at different momenta.

Using the result Eq.(C2) we end up with the variational
Hamiltonian

H [ακ, α
∗
κ] = −2Je−C[ακ] cos (aq − S[ακ])

+

∫
d3k

[
ωk|αk|2 + Vk (αk + α∗k)

]
. (C6)

The MF self consistency equations can now easily be ob-
tained by demanding vanishing functional derivatives,

δH [αk, α
∗
k]

δαk
=
δH [αk, α

∗
k]

δα∗k

!
= 0, (C7)

which readily yields Eq.(33) from the main text,

αMF
k = − Vk

Ωk[αMF
κ ]

. (C8)

Plugging this result into the definitions of C[ακ] and
S[ακ] yields the coupled set of self-consistency equations
(35),(36) for CMF and SMF.

Appendix D: Time dependent variational principle

To derive the equations of motion for the time-
dependent variational phonon state Eq.(46), we apply
Dirac’s variational principle (see e.g. [88]). It states that,

given a possibly time-dependent Hamiltonian Ĥ(t), the
dynamics of a quantum state |ψ(t)〉 (which can alterna-
tively be described by the Schrödinger equation) can be
obtained from the variational principle

δ

∫
dt 〈ψ(t)|i∂t − Ĥ(t)|ψ(t)〉 = 0. (D1)

We reformulate this in terms of a Lagrangian action L =
〈ψ(t)|i∂t − Ĥ(t)|ψ(t)〉 and obtain

δ

∫
dt L = 0. (D2)

When using a variational ansatz |ψ(t)〉 = |ψ[xj(t)]〉
defined by a general set of time-dependent variational
parameters xj(t), we obtain their dynamics from the
Euler-Lagrange equations of the classical Lagrangian
L[xj , ẋj , t].

We note that there is a global phase degree of freedom:
when |ψ(t)〉 is a solution of (D1), then so is e−iχ(t)|ψ(t)〉
because the Lagrangian changes as L → L + ∂tχ(t). To
determine the dynamics of χ(t) we note that for the exact
solution |ψex(t′)〉 of the Schrödinger equation it holds

∫ t

0

L(t′) = 0, (D3)

for all times t, i.e. L = 0. This equation can then be
used to determine the dynamics of the overall phase for
variational states.

Now we can construct the Lagrangian L for the vari-
ational coherent phonon state, Eq.(46) in the main text.
Using the following identity for coherent states |α〉

〈α|∂t|α〉 =
1

2
(α̇α∗ − α̇∗α) , (D4)

we obtain

L[αk, α
∗
k, α̇k, α̇

∗
k, t] = ∂tχq −H [αk, α

∗
k]

− i

2

∫
d3k (α̇∗kαk − α̇kα∗k) (D5)

where the Hamiltonian H is given by (C6). Using
Eq.(D5) the Euler-Lagrange equations yield the equa-
tions of motion (47) from the main text,

i∂tαk(t) = Ωk[ακ(t)] αk(t) + Vk. (D6)

Moreover, as described above, Eq.(D3) yields equations
of motion for the global phases Eq.(48) given in the main
text,

∂tχq =
i

2

∫
d3k (α̇∗kαk − α̇kα∗k) + H [αk, α

∗
k]. (D7)

Using the equations of motion (D6) for αk, this simplifies
somewhat and we obtain
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∂tχq = 2Je−C[αk(t)]
[
S[αk(t)] sin (aq − ωBt− S[αk(t)])−(1 + C[αk(t)]) cos (aq − ωBt− S[αk(t)])

]
+Re

∫
d3k Vkαk.

(D8)

Appendix E: Impurity density

In this appendix we derive Eq.(52) from the main text,
which allows us to calculate the impurity density from the
time-dependent overlaps Aq2,q1(t). For the definition of
the latter, let us recall that we work in the polaron frame
throughout, where the quantum state is of the form

|Ψ(t)〉 =
∑
q∈BZ

fq ĉ
†
q|0〉c ⊗ |Ψq(t)〉a. (E1)

Here |0〉c denotes the impurity vacuum and |Ψq(t)〉a is
a pure phonon wavefunction. The corresponding time-

dependent overlaps are defined as

Aq2,q1(t) = a〈Ψq2(t)|Ψq1(t)〉a, (E2)

see also Eq.(53).
In order to calculate the impurity density in the lab

frame, nj = 〈ĉ†j ĉj〉, we have to transform the operator

ĉ†j ĉj to the polaron frame first. Keeping in mind that
we moreover applied the time-dependent unitary trans-
formation ÛB(t) Eq.(16), we thus arrive at

nj = 〈ĉ†j ĉj〉lab = 〈Ψ(t)|Û†LLPÛ
†
B(t)ĉ†j ĉjÛB(t)ÛLLP|Ψ(t)〉.

(E3)
We proceed by writing the impurity operators ĉj in their
Fourier components, see Eq.(18), and plug Eq.(E1) into
the last expression,

nj(t) =
a

L

∑
q1,q2∈BZ

e−i(q1−q2)aj
∑

q3,q4∈BZ

f∗q3fq4 a〈Ψq3(t)|c〈0| ĉq3Û
†
LLPÛ

†
B(t) ĉ†q2 ĉq1 ÛB(t)ÛLLP |0〉c|Ψq4(t)〉a. (E4)

To simplify this expression, we note that

Û†B(t)ĉ†q2ÛB(t) = ĉ†q2+ωBt (E5)

and analogously for ĉq1 . Thus, by relabeling indices
q1,2 → q1,2 + ωBt in Eq.(E4), we can completely elim-

inate ÛB(t) from the equations above.
To deal with the Lee-Low-Pines transformation, let us

introduce an eigen-basis consisting of states |P 〉 where
the total phonon momentum is diagonal,∫

d3k kxâ
†
kâk|P 〉 = P |P 〉. (E6)

Of course, for each value of P there is a large number
of states denoted by |P 〉 with this property (E6). Im-
portantly, the Lee-Low-Pines transformation Eq.(19) can
now easily be evaluated in this new basis, where

〈P |ÛLLP|P ′〉 = eiX̂P δP,P ′ (E7)

and for simplicity we used a discrete set of phonon modes.
We can make use of this result by formally introducing a
unity in this basis, ∑

P

|P 〉〈P | = 1̂, (E8)

allowing us to write

Û†LLPĉ
†
q2 ĉq1ÛLLP =

∑
P,P ′

|P 〉〈P |Û†LLPĉ
†
q2 ĉq1ÛLLP|P ′〉〈P ′|

=
∑
P

|P 〉〈P |e−iPX̂ ĉ†q2 ĉq1e
iPX̂ . (E9)

Next, using e−iPX̂ ĉq1e
iPX̂ = ĉq1+P , we obtain

Û†LLPĉ
†
q2 ĉq1ÛLLP =

∑
P

|P 〉〈P |ĉ†q2+P ĉq1+P . (E10)

Using this identity after introducing unities (E8) in
Eq.(E4), we find after relabeling summation indices
q1,2 → q1,2 + P that

nj(t) =
a

L

∑
q1,q2∈BZ

e−i(q1−q2)aj
∑

q3,q4∈BZ

f∗q3fq4

× c〈0|ĉq3 ĉ†q2 ĉq1 ĉ
†
q4 |0〉c a〈Ψq3(t)|Ψq4(t)〉a. (E11)

After simplification of the impurity operators we obtain
the desired result,

nj(t) =
a

L

∑
q1,q2∈BZ

e−i(q1−q2)ajf∗q2fq1Aq2,q1(t). (E12)
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Appendix F: Adiabatic wavepacket dynamics

In this appendix we present the detailed calculation
leading to the expression for the adiabatic impurity den-
sity (57) given in the main text. To this end we first cal-
culate the time-dependent overlaps from Eqs.(54), (55),

Aq2,q1(t) = 〈Ψq2(t)|Ψq1(t)〉 = Aq2,q1Dq2,q1 , (F1)

and use Eq.(52) together with a suitable initial impurity
wavefunction ψin

j .

We start from an impurity wavepacket in the band
minimum of the bare impurity, and assume its width (in
real space) LI � a by far exceeds the lattice spacing a.
In this case the width in (quasi-) momentum space is
δq ≈ 2π/LI � 2π/a. Moreover we can treat aj → x as a
continuous variable and write

ψin(x) = (2π)−1/4L
−1/2
I exp

(
− x2

4L2
I

)
, (F2)

where the following normalization was chosen,∫ ∞
−∞

dx |ψin(x)|2 = 1. (F3)

By Fourier-transforming the initial impurity wavefunc-
tion we obtain the amplitudes

fq =
1√
2π

∫ ∞
−∞

dx eiqxψin(x), (F4)

such that the impurity density (52) becomes

n(x, t) =

∫ ∞
−∞

dq2dq1

2π
ei(q2−q1)xf∗q2fq1Aq2,q1(t). (F5)

Since the width δq � 2π/a of the wavepacket is
much smaller than the size of the BZ, we approximated∫

BZ
dq ≈

∫∞
−∞ dq in this step.

Using the adiabatic wavefunction (49), the phases of
Aq2,q1(t) read

Aq2,q1(t) = exp

[
i

∫ t

0

dt′ HMF(q2(t′))−HMF(q1(t′))

]
,

(F6)
and the amplitude is given by

Dq2,q1(t) = exp

[
−1

2

∫
d3k

{
αMF
k (q2(t))− αMF

k (q1(t))
}2
]
.

(F7)
Due to the small width δq of the polaron wavepacket in
quasimomentum space we can expand the expressions in
the exponents in powers of the difference q2(t)− q1(t) =
q2−q1. Note that logAq2,q1 (logDq2,q1) is antisymmetric
(symmetric) under exchange of q2 and q1. To second

order in |q2 − q1| we obtain

Aq2,q1(t) = exp

[
i (q2 − q1)

∫ t

0

dt′ ∂qHMF(q1(t′))

]
,

(F8)

Dq2,q1(t) = exp

[
−1

2
(q2 − q1)

2
∫
d3k

(
∂qα

MF
k (q1(t))

)2]
.

(F9)

Since only q1 ≈ q2 ≈ 0 contributes substantially in f∗q2fq1
we further approximate

∂qHMF(q1(t′)) ≈ ∂qHMF(−Ft′) (F10)

and analogously in ∂qα
MF
k . Thus we obtain

Aq2,q1(t) = exp

[
−i (q2 − q1)X(t)− 1

2
(q2 − q1)

2
Γ2(t)

]
,

(F11)
with Γ2(t) defined in Eq.(59) in the main text and

X(t) = X(0)−
∫ t

0

dt′ ∂qHMF|q=−Ft′ . (F12)

Evaluating this integral exactly yields the expression for
X(t) given in the main text, Eq.(58).

Using the last expression for Aq2,q1 (F11) to perform
momentum integrals dq1dq2 in (F5) finally yields the adi-
abatic impurity density

n(x, t) = e
− (x−X(t))2

2(L2
I
+Γ2(t)) [2π (L2

I + Γ2(t)
)]−1/2

(F13)

as we claimed in the main text.

Appendix G: Alternative derivation of polaron
current in weak-coupling and small-hopping limit

In this appendix we give an alternative derivation of
the analytical current-force relation Eq.(64) introduced
in the main text. The following treatment is somewhat
simpler conceptually, however it is only valid in the limit
of small force F and weak interactions geff → 0. For
simplicity we restrict our discussion to d = 3 dimensions,
but all arguments can easily generalized to arbitrary d.

The idea is to start from the Hamiltonian in Eq.(10)
in the lab frame, i.e. before applying the Lee-Low-Pines
transformation. Then we can consider the limit geff → 0,
where to first approximation the impurity can be treated
as being independent of the phonons. If we moreover as-
sume that the particle is sufficiently heavy, i.e. J is small,
we may neglect fluctuations of the impurity position and
approximate the latter by its mean,

x(t) ≈ 〈x(t)〉 =
2J

ωB
cos (ωBt) . (G1)

To describe the interactions of the impurity with
phonons, we now plug the last equation into Eq.(10) and
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obtain

Ĥ(t) ≈
∫
d3k

{
ωkâ

†
kâk + eikx〈x(t)〉

(
â†k + â−k

)
Vk

}
.

(G2)

Then we can expand the exponential in orders of the
hopping, eikx〈x(t)〉 ≈ 1 + ikx

2J
ωB

cos (ωBt) + O(J2), and
treat the resulting oscillatory term using Fermi’s golden
rule. As a result we obtain, using vd = aγph as described
in the main text,

vd =
8π2a

3

J2

F 2

k4V 2
k

(∂kωk)
. (G3)

Now as in the main text, we can perform a series ex-
pansion of the resulting expression (G3) in the driving

force F . In the weak driving limit we obtain

vd =
a6

c43π
√

2
g2

effJ
2ξ2F 3 +O(F 4). (G4)

Notably, this is exactly the same expression as Eq.(67)
from our calculation in the main text, except that J ap-
pears instead of J∗0 .

In the strong driving limit, in contrast, we obtain a
different power-law than in the main text Eq.(68),

vd =
21/4

3π
c−1/2a5/2ξ−3/2g2

effJ
2F−1/2 +O(F−3/2), (G5)

where we used the impurity continuum limit again, i.e.
`ho → 0. The reason why we do not reproduce the result
from the (more involved) calculation in the main text is
that expanding the exponential below Eq.(G2) contains
a small k approximation as well.
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and M. Köhl, Nature 485, 619 (2012).
[12] C. Kohstall, M. Zaccanti, M. Jag, A. Trenkwalder,

P. Massignan, G. M. Bruun, F. Schreck, and R. Grimm,
Nature 485, 615 (2012).

[13] Y. Zhang, W. Ong, I. Arakelyan, and J. E. Thomas,
Physical Review Letters 108, 235302 (2012).

[14] P. Massignan, M. Zaccanti, and G. M. Bruun, Reports
On Progress In Physics 77, 034401 (2014).

[15] N. Prokof’ev and B. Svistunov, Phys. Rev. B 77, 020408
(2008).

[16] M. Punk, P. T. Dumitrescu, and W. Zwerger, Phys. Rev.
A 80, 053605 (2009).

[17] R. Schmidt and T. Enss, Phys. Rev. A 83, 063620 (2011).
[18] P. Massignan, Eur. Phys. Lett. 98, 10012 (2012).
[19] A. Novikov and M. Ovchinnikov, J. Phys. A 42, 135301

(2009).
[20] F. M. Cucchietti and E. Timmermans, Physical Review

Letters 96, 210401 (2006).
[21] K. Sacha and E. Timmermans, Phys. Rev. A 73, 063604

(2006).

[22] R. M. Kalas and D. Blume, Phys. Rev. A 73, 043608
(2006).

[23] M. Bruderer, A. Klein, S. R. Clark, and D. Jaksch, New
Journal of Physics 10, 033015 (2008).

[24] M. Bruderer, W. Bao, and D. Jaksch, Epl 82, 30004
(2008).

[25] M. Bruderer, A. Klein, S. R. Clark, and D. Jaksch, Phys-
ical Review A 76, 011605 (2007).

[26] A. Privitera and W. Hofstetter, Physical Review A 82,
063614 (2010).

[27] W. Casteels, J. Tempere, and J. T. Devreese, Physical
Review A 83, 033631 (2011).

[28] W. Casteels, J. Tempere, and J. T. Devreese, Physical
Review A 86, 043614 (2012).

[29] W. Casteels, T. Van Cauteren, J. Tempere, and J. T.
Devreese, Laser Physics 21, 1480 (2011).

[30] J. Tempere, W. Casteels, M. K. Oberthaler, S. Knoop,
E. Timmermans, and J. T. Devreese, Physical Review
B 80, 184504 (2009).

[31] A. A. Blinova, M. G. Boshier, and E. Timmermans,
Phys. Rev. A 88, 053610 (2013).

[32] S. P. Rath and R. Schmidt, Physical Review A 88, 053632
(2013).

[33] A. Shashi, F. Grusdt, D. A. Abanin, and E. Demler,
Phys. Rev. A 89, 053617 (2014).

[34] J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio,
F. Minardi, A. Kantian, and T. Giamarchi, Physical
Review A 85, 023623 (2012).

[35] S. Schmid, A. Härter, and J. H. Denschlag, Phys. Rev.
Lett. 105, 133202 (2010).

[36] N. Spethmann, F. Kindermann, S. John, C. Weber,
D. Meschede, and A. Widera, Physical Review Letters
109, 235301 (2012).

[37] T. Fukuhara, A. Kantian, M. Endres, M. Cheneau,
P. Schauss, S. Hild, D. Bellem, U. Schollwoeck, T. Gia-
marchi, C. Gross, I. Bloch, and S. Kuhr, Nature Physics
9, 235 (2013).

[38] R. Scelle, T. Rentrop, A. Trautmann, T. Schuster, and
M. K. Oberthaler, Physical Review Letters 111, 070401

http://dx.doi.org/10.1103/PhysRevB.23.1796
http://dx.doi.org/10.1103/PhysRevB.23.1796
http://dx.doi.org/10.1088/0034-4885/72/6/066501
http://dx.doi.org/10.1088/0034-4885/72/6/066501
http://dx.doi.org/10.1103/PhysRevA.31.1059
http://dx.doi.org/10.1103/PhysRevA.31.1059
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/ 10.1103/PhysRevLett.102.230402
http://dx.doi.org/ 10.1038/nature11151
http://dx.doi.org/ 10.1038/nature11065
http://dx.doi.org/ 10.1103/PhysRevLett.108.235302
http://dx.doi.org/10.1088/0034-4885/77/3/034401
http://dx.doi.org/10.1088/0034-4885/77/3/034401
http://stacks.iop.org/1751-8121/42/i=13/a=135301?key=crossref.624dbcb26216bf1053c18e2222d5e6e8 papers2://publication/doi/10.1088/1751-8113/42/13/135301
http://stacks.iop.org/1751-8121/42/i=13/a=135301?key=crossref.624dbcb26216bf1053c18e2222d5e6e8 papers2://publication/doi/10.1088/1751-8113/42/13/135301
http://dx.doi.org/10.1103/PhysRevLett.96.210401
http://dx.doi.org/10.1103/PhysRevLett.96.210401
http://dx.doi.org/10.1088/1367-2630/10/3/033015
http://dx.doi.org/10.1088/1367-2630/10/3/033015
http://dx.doi.org/10.1209/0295-5075/82/30004
http://dx.doi.org/10.1209/0295-5075/82/30004
http://dx.doi.org/10.1103/PhysRevA.76.011605
http://dx.doi.org/10.1103/PhysRevA.76.011605
http://dx.doi.org/10.1103/PhysRevA.82.063614
http://dx.doi.org/10.1103/PhysRevA.82.063614
http://dx.doi.org/10.1103/PhysRevA.83.033631
http://dx.doi.org/10.1103/PhysRevA.83.033631
http://dx.doi.org/10.1103/PhysRevA.86.043614
http://dx.doi.org/10.1103/PhysRevA.86.043614
http://dx.doi.org/10.1134/S1054660X11150035
http://dx.doi.org/ 10.1103/PhysRevB.80.184504
http://dx.doi.org/ 10.1103/PhysRevB.80.184504
http://dx.doi.org/10.1103/PhysRevA.88.053632
http://dx.doi.org/10.1103/PhysRevA.88.053632
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/ 10.1103/PhysRevLett.109.235301
http://dx.doi.org/ 10.1103/PhysRevLett.109.235301
http://dx.doi.org/ 10.1038/NPHYS2561
http://dx.doi.org/ 10.1038/NPHYS2561
http://dx.doi.org/10.1103/PhysRevLett.111.070401


25

(2013).
[39] M. Greiner, O. Mandel, T. W. Hänsch, and I. Bloch,
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