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One of the hallmarks of topological systems is the robust quantization of particle transport. It
is the origin of the integer-valued quantum Hall conductivity and a potential tool for quantum
information technology. Recent experiments on topological pumps constructed by using arrays of
photonic waveguides and described by the Andre-Aubry-Harper (AAH) model, have demonstrated
both integer and fractional transport of lattice solitons. In these systems, a background medium
mediates interactions between photons via a Kerr nonlinearity and leads to the formation of self-
bound multi-photon states. Upon increasing the interaction strength a sequence of transitions was
observed from a phase with integer transport in a pump cycle through different phases of fractional
transport to a phase with no transport. We here present a quantum description of topological
pumps of self-bound many-particle states in terms of an effective Hamiltonian of their center-of-
mass (COM) motion, which allows to classify topological phases in terms of generalized symmetries.
We identify a topological invariant, an effective single-particle Chern number, which fully governs
the soliton transport. Increasing the interaction strength in the AAH model leads to a successive
merging of COM bands, which is the origin of the observed sequence of topological phase transitions
and also the potential breakdown of topological quantization for some interaction strength.

I. INTRODUCTION

Topological quantum systems have been intensively
studied since the discovery of the quantum Hall effect
[1]. One of the simplest examples for such systems is
a Thouless pump [2], which displays a quantized parti-
cle transport in an insulating bulk state of a 1D lattice
upon cyclic adiabatic changes of system parameters. The
transport is governed by an integer topological invari-
ant, equivalent to a Chern number. The quantization of
transport not only applies to a fully filled fermion band,
it is also observable in the center-of-mass motion of a sin-
gle particle equally distributed over all momentum states
(see e.g. [3] for a detailed overview.) A major problem
in the single particle case is the fast dispersion of the
wavefunction. A possible solution for this has been uti-
lized in [4–6] using bound many-particle objects: lattice
solitons. They show quantized transport in a topological
pump while being almost nondispersive due to their large
mass. The notion solitons is used here colloquially as the
self-bound many-particle states may not fulfill all prop-
erties of true solitons [7–9]. In the experiments of [6],
laser pulses have been injected into spatially modulated
waveguide arrays simulating a time-dependent Aubry-
André-Harper (AAH) Hamiltonian with a Kerr nonlin-
earity mediating interactions [10–12]. Increasing the light
intensity, solitons form, for which integer transport in a
full pump cycle was observed. Above a certain power
threshold, all transport is halted. In subsequent work
[13], an interaction controlled transition between phases
with integer and fractional transport was demonstrated
(see Fig.1).

FIG. 1: (a) and (b) 1D Aubry-André-Harper model with
modulated hopping rates J1(t)...J5(t) and on-site interac-
tions U . (c) Motion of center of mass of a soliton ∆X in
a pump cylce. Upon increasing the interaction strength
there are multiple transitions between phases of integer,
fractional and eventually absent transport, in some cases
intersected by a small interval of non-quantized transport
(grey area).

These observations triggered an extended body of the-
oretical work [14–17] based on the discrete nonlinear
Schrödinger equation (DNLSE) [18]. While the DNLSE
accurately reproduces the observed shift in the COM,
the underlying mean-field description fails to provide an
explanation for the quantized transport and of the ori-
gin of the topological phase transitions. Using pertur-
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bation theory it has been argued in [14, 19] that the
transport is governed by the Chern number of the single-
particle band from which the soliton bifurcates. How-
ever, already weak interactions destroy a uniform occu-
pation of Bloch states, necessary for the one-to-one re-
lation between particle transport and Chern-number of
single-particle bands. Furthermore, as shown in Sec. II B,
there is a gradually growing admixture of higher single-
particle bands when the interaction is increased, and the
perturbative arguments fails entirely in the fractional
case. Finally, cases of anomalous nonlinear Thouless
pumping were found [20], and in [21] it was predicted
that multi-component solitons can show fractional trans-
port, despite the fact that the single-particle bands are
all topologically trivial. This shows that the topological
transport of solitons cannot be traced back to topological
properties of the underlying single-particle Hamiltonian.
Most recently a fermionic model with repulsive interac-
tions has been investigated [22] where fractional trans-
port emerges from coupling of single-particle bands by
repulsive interactions of fermions. We here unravel the
origin of the quantized soliton transport and provide an
explanation for the observed phase transitions by devel-
oping a fully quantum description of topological soliton
pumps. To be specific, we consider the AAH model as
generic example; the approach applies, however, to all
systems with self-bound many-particle states. We show
that the topological contribution to their transport can
be described in terms of an effective single-particle Chern
number, provided the soliton band is gapped from all ex-
tended (not self-bound) many-body states. Introducing
an effective single-particle Hamiltonian for solitons we
show that in the AAH model for increasing interaction
strength different soliton bands merge at some parame-
ter values of the pump cycle. At this point, the trans-
port is governed by a Wilson loop, giving rise to dif-
ferent phases with fractionally quantized average trans-
port. Increasing the interaction further eventually mixes
all soliton bands, and since the total Wilson loop of all
soliton COM bands must vanish, the topological trans-
port breaks down [6, 23]. Finally, we show that in some
intermediate interaction regimes the energetically high-
est of a set of crossing soliton bands may be degenerate
with extended states. In such a case the transport is no
longer (fractionally) quantized and may take arbitrary
values, explaining the fluctuating transport numerically
predicted in [15]. Since the effective Hamiltonian of soli-
tons is a single-particle Hamiltonian, its symmetries un-
der time-reversal, charge-conjugation and chiral transfor-
mation provide a full classification of possible topological
phases according to Ref. [24, 25].

II. MODEL AND MEAN-FIELD APPROACH

A. Aubry-André-Harper-model

We consider a generic lattice model with attractive on-
site interactions. Specifically, we investigate the bosonic
tight-binding Hamiltonian

H(t) = H0(t) +Hint (1)

= −
∑
l

[(
Jl(t)â

†
l âl+1 + h.c.

)
+ ϵl(t)â

†
l âl +

U

2
n̂l(n̂l − 1)

]
where H0 describes the single-particle dynamics in the
lattice and is periodic in time with period T , i.e. H0(t) =
H0(t+T ). The corresponding hopping amplitudes Jl and
on-site energies ϵl have a spatial period p, which defines
the unit cell size. Hint describes an (attractive) on-site
interaction of strength U > 0, which will be parameter-
ized as U = U0/N with N being the total number of
particles. In order to understand the emergence of topo-
logical phase transitions observed in [6, 13] we consider
specifically the 1D Aubry-André-Harper model [10, 11]
with hopping amplitudes

Jl(t) = J
(
1 + δ cos

(
Ωt+

2πlk

p

))
, (2)

with 0 < δ < 1, see Fig. 1. p, which we take as a prime
number, whereas k controls the phase shift between the
hopping amplitudes. All on-site potentials ϵl in Eq. (1)
are chosen to be 0.
With periodic boundary conditions, the Hamiltonian is

translational invariant, i.e. T̂HT̂−1 = H, where T̂ is the
translation operator by one unit cell, i.e. T̂ âlT̂

−1 = âl+p.
As a consequence, the lattice momentum K of the center
of mass (COM) is a conserved quantity.
Attractive interactions U lead to localized soliton

states. These are states with a distribution of occu-
pation numbers that decay with increasing distance to
the center of mass with a localization length ξ, i.e.
⟨n̂l+dn̂l⟩ ∼ exp{−|d|/ξ} for d ≫ 1. We call them sta-
ble if they have an energy gap to all extended states with
the same K. On the quantum level, a minimum value
Uc is required for a soliton to form, which tends to zero
as N → ∞ [26]. In a complex band structure multiple
soliton solutions can exist, which for some parameter val-
ues may become degenerate. Furthermore, stable excited
soliton solutions may not exist at all times, as they can
become degenerate with extended states in some parts
of the pump cycle. In this case we call these solitons
partially stable.

B. Mean-field approach: Discrete nonlinear
Schrödinger equation

In mean-field approximation the dynamics of solitons
in a 1D lattice are described by the discrete nonlin-
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ear Schrödinger equation. This equation can be ob-
tained from a Gutzwiller coherent-state ansatz [27] for
the many-body quantum state

|ψ⟩ =
∏
l

|ϕl⟩, where âl|ϕl⟩ = ϕl|ϕl⟩.

For the AAH Hamiltonian, Eq. (1), it reads

i
∂

∂t
ϕl = −Jlϕl+1 − Jl−1ϕl−1 − ϵlϕl − U |ϕl|2ϕl. (3)

Numerical simulations of Eq. (3) have provided a good
description of soliton energies and the observed soliton
transport in parameter regimes where the soliton is sta-
ble. The semiclassical description, however, fails to ex-
plain the topological nature of the transport and the ori-
gin of topological phase transitions. In [14, 19] it was
argued that for weak interactions the solitons can be rep-
resented in terms of the most localized Wannier states of
only one single-particle Bloch band. The authors state
that under this assumption the topological transport is
described by the Chern number of the Bloch band the
soliton bifurcates from.

In Fig. 2 we have plotted the integrated overlap of a
soliton obtained from a self-consistent solution of Eq. (3)
with the single particle Bloch wavefunctions for two low-
est bands for the AAH model with phase offset k = 2 and
unit cell size p = 5 as a function of interaction strength.
The vertical spread of data points reflects different times
in the pump cycle. One recognizes that while in the per-
turbative limit of very small absolute values of interac-
tion strengths there is indeed a very large overlap with
the lowest Bloch band, contributions from higher bands
continuously grow with nonlinearity. In the regime of
fractional transport, following the above argument, one
would expect equal contributions from the lowest and the
first excited band, which is clearly not the case. More-
over, if one calculates the overlap with the Bloch states
in a momentum resolved way, one finds an inhomoge-
neous contribution from different lattice momenta, see
[6]. Therefore, the resulting topological invariant is not
just the average of the single-particle Chern-numbers.

FIG. 2: Overlap of eigensolution of the DNLSE with
single-particle Bloch bands for different interaction
strength. Data points for the same interaction strength
correspond to different times in the pumping cycle.

III. CENTER-OF-MASS TRANSPORT AND
MANY-BODY CHERN NUMBER

Since the semi-classical approaches to describe the
transport of lattice solitons were shown to be incom-
plete, we will here derive a quantum mechanical descrip-
tion.Specifically we are interested in the transport of the
COM of a soliton when H0(t) is adiabatically varied over
a period T , where the translational invariance is not
changed. The instantaneous eigenstates of H(t) can be
classified in terms of the conserved COM momentum K
and a band index µ, and will be denoted as |Eµ(K)⟩ with
energy Eµ(K).

The time evolution of the center of mass position

of the N particles, X̂ =
∑N

j=1 x̂j/N , is governed

by the N -particle velocity operator ∂tX̂ = V̂ =
−i[X̂,H] = −i[X̂,H0], which can be conveniently ex-
pressed in terms of a momentum-shifted Hamiltonian

H(q) = e−iqX̂ H eiqX̂ . I.e. V̂ = V̂ (q)|q=0 with V̂ (q) =

e−iqX̂ V̂ eiqX̂ = ∂H(q)/∂q.

d

dt
⟨X̂⟩ =

〈
V̂ (q)

〉
q=0

=

〈
∂H(q)

∂q

〉
q=0

. (4)

In the following we discuss the topological contributions
to d⟨X̂⟩/dt for degenerate and non-degenerate bands sep-
arately.

A. Non-degenerated soliton bands

Let us first consider a non-degenerate soliton band,
i.e. for a given COM momentum K there is only one
eigenstate for each energy value in the whole pump cy-
cle. In order to calculate the transport of a soliton from
a single non-degenerate band, one can follow the well-
known arguments for the transport of a single particle
[2, 28]. To account for the topological transport starting
in an instantaneous eigenstate |E0(K, t)⟩ at time t, one
has to take into account non-adiabatic corrections. As
the modulation of the Hamiltonian does not affect the
translational invariance, non-adiabatic transitions only
couple to states with the same COM momentum. Non-
degenerate time-dependent perturbation theory yields

|Ψ(K, t)⟩ = |E0(K)⟩+ i
∑
α̸=0

|Eα(K)⟩ ⟨Eα(K)|∂tE0(K)⟩
Eα(K)− E0(K)

(5)
where we have suppressed the dependence on time for
notational simplicity. We note that |∂tE0(K)⟩ is orthog-
onal to |E0(K)⟩ and that the second term in the above
expression is small. Calculating the average velocity in
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this states gives in lowest order of perturbation theory

⟨V̂ (q = 0, t)⟩ = ∂E0(K)

∂K
+

+i
∑
α̸=0

(
⟨E0|∂qH(q)|q=0|Eα⟩⟨Eα|∂tE0⟩

Eα − E0
− c.c.

)

=
∂E0(K)

∂K
+ i

(〈
∂E0

∂t

∣∣∣∣∂E0

∂K

〉
− c.c.

)
. (6)

For the second step we used

0= ∂q⟨E0|H(q)|Eα⟩ (7)

= ⟨E0|∂qH(q)|Eα⟩+ E0⟨E0|∂qEα⟩+ Eα⟨∂qE0|Eα⟩

as well as

0 = ∂q⟨E0|Eα⟩ = ⟨E0|∂qEα⟩+ ⟨∂qE0|Eα⟩. (8)

The first term in expression Eq. (6) describes the dy-
namical contribution to the transport. If we consider an
initial state that has equal probability in all COM mo-
menta K in the Brillouin zone {−π, π}, the dynamical
contribution vanishes. Then, the shift of the center of
mass of the soliton in one period T is given by the sec-
ond term integrated over all COM momenta K

∆⟨X̂⟩ = i

∫ T

0

dt

∫ π

−π

dK

2π

(〈
∂E0

∂t

∣∣∣∣∂E0

∂K

〉
− c.c.

)
= C.

(9)
This is the effective single-particle Chern number of the
soliton Bloch band. Note that we did not make any as-
sumption about the many-body wavefunction other than
its gapfulness. In particular, no assumption about its
behavior in the relative coordinates of the particles was
made. However, the assumption of gapfulness of the N -
particle state with fixed COM momentum K requires in
general that the N particles are bound to each other.

B. Degenerated soliton bands

In the degenerate case, i.e. if there are crossings of m
bands at some points in time, we need to apply degen-
erate time-dependent perturbation theory to an m com-

ponent vector |Ψ(K)⟩ =
(
|Ψ0(K)⟩, . . . , |Ψm−1(K)

)⊤
and

can express the time-evolved state as [29]

|Ψ(K, t)⟩ = T exp

{
−i
∫ t

0

dτAK(τ)

}
|Ψ(K, 0)⟩ (10)

+non-adiabatic terms,

where

AK(τ) = E0 −i⟨E0|∂tE1⟩ −i⟨E0|∂tE2⟩ ...
−i⟨E1|∂tE0⟩ E1 −i⟨E1|∂tE2⟩ ...
−i⟨E2|∂tE0⟩ −i⟨E2|∂tE1⟩ E2 ...

... ... ... ...

(11)

is the Wilczek-Zee non-Abelian Berry phase, and non-
adiabatic terms denotes the perturbative contributions
due to non-adiabatic couplings to other, energetically
separated states similar to the non-degenerate case. We
note that since ⟨El|∂tEm⟩ =

(
⟨El|∂tH|Em⟩

)
/(Em − El)

(compare Eq. (7) and (8)), the eigenstates of the matrix
AK coincide with the bare states |E0⟩ . . . |Em⟩ far away
from the crossing point in the adiabatic limit. At the
crossing point the off-diagonal elements however diverge
in general, which leads to a mixing.

Suppose the cyclic change of the Hamiltonian starts
at a point where there is no degeneracy between COM
bands and the system is prepared in one band, say
|E0(K)⟩. Then, in the presence of isolated crossing points
with other bands |Eα(K)⟩, a single cycle t = 0 → t = T
will in general not return the initial state to itself, but
multiple cycles are needed. Therefore, the topological
transport is only integer quantized after multiple cycles,
giving rise to a fractional average transport per cycle. In
this case where there are crossings of soliton bands at
some point in time, say of |E0(K, t)⟩ and |E1(K, t)⟩, the
Chern number must be generalized to a Wilson loop

Cn =
1

2π

∫ T

0

dt ∂tIm log det P(t) (12)

where P(t) = T exp
{
−i
∫
BZ
dKBt(K)

}
, and

Bt =

(
E0 −i⟨E0|∂KE1⟩

−i⟨E1|∂KE0⟩ E1

)
(13)

is the Wilczek-Zee non-Abelian Berry phase [29] for fixed
time, here for n = 2 crossing bands. Cn is an integer and
the average topological transport per cycle in the n bands
is given by Cn/n.
The COM transport of a soliton is then fractional, pro-

vided it returns to its original band only after n periods.
We will show that this is the case for the Aubry-André-
Harper model of Ref. [13].

IV. CHERN NUMBER AND WILSON LOOP OF
SOLITONS IN THE AAH MODEL

While the soliton band structure can be well approx-
imated by a self-consistent solution of the DNLSE, the
many-body eigenstates and the Chern number, Eq. (9),
or the Wilson loop, Eq. (12), must be obtained from
solving the many-body Schrödinger equation, which con-
stitutes a substantial challenge for more than a few par-
ticles. To tackle this problem we introduce the following
basis of states with a fixed K [30, 31]

|Ψα(K)⟩ =
L−1∑
m=0

(
eiK T̂

)m |Φα(0;K)⟩. (14)

Here we assume a lattice with L unit cells, each contain-
ing p sites, and periodic boundary conditions. The states

|Φα(0;K)⟩ =
∑
{nl}

′
cα
[
{nl};K

] ∣∣{nl}〉
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describe the distribution of particles nl =
{n−pL/2+1 . . . npL/2} around the lattice site l = 0 (conve-
niently chosen close to the center of mass of all particles),
with coefficients cα[{nl},K] = cα[n−pL/2+1 . . . npL/2;K]

and
∣∣{nl}〉 being a number state. We assume for

simplicity that L is even.
∑′

{nl} denotes summation

over all nl’s for which
∑

l nl = N . Translation by a unit

cell gives T̂ |Φα(0,K)⟩ = |Φα(p,K)⟩. (Note that in order
to guarantee orthonormality, states |n− pL

2 +1, .., n pL
2
⟩

must not be eigenstates of T̂ .) Now we can make use of
the fact that for large attractive interactions the solitons
have a small localization length ξ. Thus we can restrict
ourselves to special cases: (i) two-site solitons where
the basis states have at most two (neighboring) sites
populated (i.e. n0, n1 = N − n0 ̸= N in general) and
(ii) three-site solitons where three adjacent lattice sites
might be populated (i.e. n0, n1, n2 = N − (n0 +n1) ̸= N
in general). In the basis of COM-momenta K the
many-body Hamiltonian (Eq. (1)) is block diagonal,
i.e. the COM-momenta are decoupled. For the two-site
solitons the block dimension is p · N , for the three-site
soliton it is p · N(N + 1)/2, which allows us to perform
numerical simulations for tens to hundreds of particles.
Due to the limitation to two-site or three-site solitons,
some of the higher energy solutions are not true eigen-
solutions, but are enforced by the boundary conditions.
These states can be detected, however, by comparing
two and three-site solutions and are not relevant in the
low-energy regime, discussed here.

FIG. 3: Instantaneous soliton energies for 10 particles for
attractive interaction U = 0.1 with phase-offset k = 1 in
(a) and with phase-offset k = 2 in (c), and unit-cell size
p = 5. The corresponding COM-movements in a pump
cycle of the red and blue marked energies are shown in (b)
and (d). The solutions are obtained with the three-site
soliton ansatz.

In Fig. 3 we have plotted the energies of the soliton
bands for the AAH model, Eq. (1), and the COM trans-
port, for N = 10 particles with unit cell size p = 5 and
U = 0.1 for phase offsets k = 1 and k = 2. In the first

case (Fig. 3 a, b) there is a single lowest-energy soliton
band with many-body Chern number, Eq. (9), C = 1
and integer transport. In the second case (Fig. 3 c, d)
two bands cross with a non-trivial Wilson loop, Eq. (12),
C2 = 1 giving rise to fractional transport of 1/2.

V. TOPOLOGICAL PHASE TRANSITIONS

In the following we provide an explanation for the tran-
sitions between phases with integer, fractional and van-
ishing transport observed in the experiments. The COM
dynamics of bound N -particle objects (solitons) can be
described by an effective single-particle Hamiltonian with
eigenstates |Eµ(K)⟩:

Heff =
∑
µ

∑
K

Eµ(K) |Eµ(K)⟩⟨Eµ(K)|. (15)

Since such a model misses out the continuum of extended
states, it is only adequate for stable soliton bands. Defin-
ing annihilation and creation operators for solitons cen-

tered at lattice site l as d̂l and d̂
†
l , respectively, the effec-

tive soliton Hamiltonian would read in coordinate space

Heff(t) = −
∑
l

[(
Jl,eff(t) d̂

†
l d̂l+1 + h.c.

)
+ ϵl,eff(t) d̂

†
l d̂l

]
.

(16)
where the Jl,eff are the effective hopping rates of the
soliton and the ϵl,eff effective local energies. (Note
that we here have assumed only nearest neighbor hop-
ping.) All topological properties, including the topo-
logical classification according to the Altland-Zirnbauer
scheme [24, 25], as well as all phase transitions of soli-
tons are determined by this effective Hamilton. We will
explicitly construct Heff for N = 3 particles in the strong
interaction limit in Sec. VII. Here we will first discuss
some of its general properties.
In the Aubry-Andre-Harper model, Eq. (1), any small

attraction U0 is sufficient to form a bound state (lattice
soliton) with an energy band below the continuum of ex-
tended N -particle states, if N is large. Increasing the at-
tractive interaction, the energy of these bands is lowered
and the bands deform. Moreover, excited soliton bands
can emerge. If the soliton bands have a non-trival Chern
number or Wilson loop, (fractional) quantized topologi-
cal transport can be observed [6, 13].
The experiments in [6, 13] and DNLSE simulations

showed that for very large but still finite values of the
interaction, the topological transport stops altogether.
This can be understood as follows: In the large U limit
the localization length of all soliton solutions is reduced
to a single lattice site. Thus the contribution of the lo-
cal interaction to the energy, UN(N − 1)/2, is the same
for all soliton bands and the total number of stable soli-
ton bands in this limit is equal to the number of single-
particle bands. Using a perturbative ansatz one can show
that moreover the contribution of the kinetic energy can
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be disregarded as it scales as ∼ J( J
U )N−1 (see Appendix

and Ref. [32]). Thus the effective soliton Hamiltonian be-
comes approximately diagonal and is entirely determined
by local energies ϵl,eff, which for the AAH model result
from virtual hopping processes of a single particle from
the soliton site l to an empty neighboring site (and back)
and are in second-order perturabtion theory proportional
to ϵl ∼ (J2

l (t)+J
2
l+1(t))/U . As a consequence, all soliton

bands cross at different points of the pump cycle and the
topological transport is given by the total Wilson loop of
all COM bands, which is always zero for general reasons.

The two limiting cases show that as U is increased, ini-
tially separated soliton bands must approach each other
and eventually merge. As shown in Fig. 4, obtained from
exact diagonalization (ED) simulations of a small system
(30 lattices sites), they do so by forming Dirac-like cones
which touch at a critical interaction Uc. In this case
the Chern numbers of the lowest two soliton bands are
no longer adequate topological invariants, but one has
to consider the Wilson loop. The topological transport
can then become fractional, provided the soliton solu-
tions which started at t = 0 in energetically well sepa-
rated bands flip bands at the Dirac-like points. We now
show that this is indeed the case:

FIG. 4: Merging of soliton energies obtained from exact
diagonalization with increasing interaction strength U for
N = 3 particles and p = 5, k = 2. The number of unit
cells is L = 6. A soliton originally prepared at t = 0
in one of the two bands will remain in this band if the
changes are adiabatic and the soliton bands do not touch
(Figs. a) and b)). Once the bands touch in Dirac-like
cones, the solution switches bands at every crossing (red
curve in Fig. c). The width of the lines reflects the width
of the soliton bands in K space.

When the two soliton bands touch, the adiabatic evolu-
tion is governed by a U(2) transformation [29] (compare
Eq. (10) in Sec. III B)

|Ψ(K, t)⟩ = T exp

{
−i
∫ t

0

dτAK(K, τ)

}
|Ψ(K, 0)⟩.(17)

Close to the crossing points, which we assume to take
place at t = t0, the non-Abelian Berry phase AK takes
on the form

AK =

(
a|τ | ib

τ

− ib
τ −a|τ |

)
, (18)

with τ = t − t0. Here, we assumed that apart from
a common energy offset E0 = −E1 = a |τ |, and thus
⟨E0|∂tH|E1⟩/(E1 −E0) ≈ b/τ . Due to the diverging off-
diagonal elements, the eigensolutions no longer follow the
original bands but cross from one band to the other (see
color code in Fig. 4 c). Since p is a prime number, there
is an odd number of crossing points in one period in the
AAH model. Thus, two periods are required for a soliton
to return to the band it started from. The shift in the
COM position is then integer quantized only after two
periods and the average transport per cycle is fraction-
ally quantized.

VI. FAILURE OF TRANSPORT
QUANTIZATION

Based on solutions of the mean-field DNLSE it was
shown in Ref. [15] for the example of the Rice-Mele model
[33–35] with local attractive interactions that the transi-
tion between quantized topological pumping of a soliton
to zero pumping upon increasing the interaction strength
may go through an intermediate regime of non-quantized
transport. This transient failure of transport quantiza-
tion, where ⟨∆X̂⟩ strongly fluctuates, was attributed in
[15] to a ”self-crossing” of solutions of the semiclassical
DNLSE. This phenomenon can be easily understood in
the full quantum picture. For intermediate interactions,
the excited soliton band is in some parts of the pump
cycle degenerate with the continuum of extended states
and thus unstable. If this band merges with the lower
soliton band, the time evolution is no longer adiabatic
and the transport is not quantized until the interaction
is large enough such that also the excited band becomes
fully gapped. In Fig. 5 we show the soliton bands in the
Rice-Mele model with different values of the attractive
onsite interaction U obtained from exact diagonalization
simulations of a N = 4 soliton. Although only marginally
visible due to finite size effects, Fig. 5b indicates the exis-
tence of a parameter range where the lowest soliton band
merges with an unstable excited band leading to a fluc-
tuating, non-quantized transport.
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FIG. 5: Breakdown of transport quantization in the Rice-
Mele model for intermediate values of onsite interactions.
Shown are lowest energies for N = 4 bosons. a) U = 2.0:
lowest soliton (quadron) band is gapped with Chern num-

ber C = 1 (⟨∆X̂⟩ = 1). b) U = 3.0: lowest two bands
merge but (except for finite-size effects) overlap with ex-
tended states (unstable quadron) where the transport is
not quantized. c) U = 4.0 lowest two quadron bands

merge with vanishing Wilson loop (⟨∆X̂⟩ = 0).

VII. EFFECTIVE HAMILTONIAN: TRIPLON
MODEL

We can explicitly construct the effective soliton Hamil-
tonian in the strongly interacting limit where the non-
interacting part of the Hamiltonian, Eq. (1), can be
treated as a small perturbation and the solitons become
maximally localized (i.e. with a localization length ξ
smaller than the lattice spacing).

In this limit, the binding energy U
2N(N−1) is equal for

all soliton solutions and will be disregarded. Transport of
the composite object occurs through collective hopping of
particles, arising inNth order perturbation theory, which
has a very small effective amplitude of ∼ JN/UN−1 [32].
At the same time, virtual hopping processes of particles
from the soliton site to a neighboring site and back give
rise to local energy shifts with an amplitude proportional
to ∼ J2/U . As shown in detail in the Appendix, this
results in the effective energies and hopping amplitudes

ϵl,eff =
3

2

J2
l−1 + J2

l

U
, Jl,eff =

3

2

J3
l

U2
(19)

for the triplon model (i.e. N = 3). (For effective Bloch
Hamiltonians of bound doublons and their topological

features see also [36–38]).

Heff(t) = −
∑
l

[
(Jl,eff(t) d̂

†
l d̂l+1 + h.c.) + ϵl,eff(t) d̂

†
l d̂l

]
.

(20)

FIG. 6: Instantaneous soliton energies of the effective
triplon model, Eq. (19), for attractive interaction U = 5
in (a), and U = 20 in (b), phase-offset k = 2 and unit-
cell size p = 5. The insert shows the winding of W =
Im log detP(t), Eq. (12), determining the Wilson loop.

In Fig. 6 we have shown the soliton energies of the effec-
tive triplon model for two different interaction strengths
for the AAH model along with the integrand of the
Wilson-loop in Eq. (12) Wm = Im log detP(t), where m
is the number of crossing bands. One clearly sees that for
increased interaction strength the bands merge. Eventu-
ally, all 5 bands cross and there is no winding of W5,
i.e. the total Wilson loop vanishes. Thus, despite the
fact that the soliton mass is still finite, the topological
transport vanishes exactly.

VIII. SUMMARY AND OUTLOOK

We developed a full quantum description of topolog-
ical pumps of self-bound N -particle states, i.e. lattice
solitons. The quantum description allowed us to iden-
tify and to explicitly calculate a topological invariant,
i.e. an effective single-particle Chern-number or Wilson-
loop explaining the emergence of integer and fractional
transport in the full range of interaction strength, where
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perturbative arguments [14, 19] fail. Transitions between
phases of differently quantized topological transport ob-
served in experiments [6, 13] as well as the possibility
of parameter regimes without quantized transport were
explained by coalescence of soliton bands and possible
degeneracies with extended states. The concept can eas-
ily be extended to multi-component solitons [20, 21, 39],
were, among other things, fractional transport was pre-
dicted despite the fact that all single-particle bands are
topologically trivial. In the latter case interactions not
only lead to the modification of topological properties,
such as the transition from integer to fractional phases,
but to the emergence of topology.
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APPENDIX

To derive an effective model for strongly localized com-
posite particles, let us first look at the binding energy of
such a maximally localized soliton in the AAH model
(1) (i.e. a localization length ξ smaller than the lattice
spacing) which has a binding energy given by

Eint,N =
U

2
N(N − 1) (21)

whereas states with N − 1 localized particles have an
energy

Eint,N−1 =
U

2
(N − 1)(N − 2). (22)

The energy difference |Eint,N − Eint,N−1| is U(N − 1).
So if U is sufficiently larger than the bose-enhanced hop-
ping

√
NJ , the energetically lowest states are localized

solitons.
To derive an effective description of the maximally lo-

calized solitons, as proposed in Eq. (16), we have to iden-
tify the relevant processes, treating the particle hopping
as perturbation. These processes have to be resonant
between the degenerate groundstates of the interaction
Hamiltonian Hint [32]: For the effective potential, it is
the virtual hopping of a single-particle occuring in sec-
ond order perturbation theory

∼ â†l âl+1â
†
l+1âl|Ψ⟩.

On the other hand, the effective hopping of the complete
composite particle emerges only in Nth order perturba-
tion theory

∼ (â†l+1âl)
N |Ψ⟩.

The amplitude for the virtual hopping scales as ∼ 1/U ,
while the effective hopping goes with ∼ 1/UN−1.
The minimal particle number: Triplons – In the fol-

lowing we will explicitly calculate an effective Hamil-
tonian for the minimal possible particle number: the
triplon. For a composite object consisting of only two
particles, both processes (virtual and effective hopping)
would have the same scaling 1/U and therefore the inter-
action has no qualitative influence on the system proper-
ties.
The effective potential is calculated directly within

second order perturbation theory of the Hamiltonian and
is given as

ϵl,eff =
3

2

J2
l−1 + J2

l

U
. (23)

Calculating the effective triplon hopping in perturbation
theory is possible but already requires good bookkeeping
since it is a third order process.
Therefore, we will take a look at the local basis of two

sites for three particles:

|30⟩, |21⟩, |12⟩, |03⟩.

The local Hamiltonian for these states can be written in
matrix form:

−3U −
√
3Jl 0 0

−
√
3Jl −U −2Jl 0

0 −2Jl −U −
√
3Jl

0 0 −
√
3Jl −3U

 .

Here we assume - without loss of generality - the left
site is located at position l in our system. Diagonalizing
this 4x4-matrix yields four eigenstates. The two low-
energy eigenstates are (for sufficient large values of the
interaction strength U):

|ψ±⟩ ∝ |30⟩ ± |03⟩.

The corresponding eigenenergies are:

E± ∝ ∓t− 2U −
√
4t2 ∓ 2tU + U2.

In the effective Hamiltonian (compare Eq. (16)) the
eigenenergies of |ψ±⟩ can be shown to be

Eeff,±= ∓Jl,eff + const

Eeff,+ − Eeff,−= −2Jl,eff

Given these two relations we can Taylor expand the en-
ergy difference E+ − E− for small values of the hopping
amplitude and extract the effective hopping:

Jl,eff = −E+ − E−

2
=

3

2

J3
l

U2
+O

(
J5
l

U4

)
. (24)

With both the virtual and the effective hopping Eqs. (23)
and (24) we can calculate an effective single-particle
Hamiltonian Eq. (16) reflecting the same physics as the
full model in the strong interacting limit.
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