Zur Hauptnavigation / To main navigation

Zur Sekundärnavigation / To secondary navigation

Zum Inhalt dieser Seite / To the content of this page

Sekundärnavigation / Secondary navigation

Inhaltsbereich / Content

Speed and efficiency of femtosecond spin current injection into a nonmagnetic material

Phys. Rev. B 96, 100403(R) – Published 14 September 2017

Abstract

We investigate femtosecond spin injection from an optically excited Ni top layer into an Au bottom layer using time-resolved complex magneto-optical Kerr effect (C-MOKE) measurements. Employing the C-MOKE formalism, we are able to follow layer-resolved demagnetization in Ni and the simultaneous spin injection into the adjacent Au film, both occurring within 40fs. We confirm the ballistic to diffusive propagation of the spin transfer process with ab initio theory and superdiffusive transport calculations. In particular, our combined experimental-theoretical effort does allow us to quantify the so far elusive amount of spin injection, and therefore the spin injection efficiency at the interface.