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We present a simple and effective method to create highly entangled spin states on a faster
timescale than that of the commonly employed one-axis twisting (OAT) model. We demonstrate
that by periodically driving the Dicke Hamiltonian at a resonance frequency, the system effectively
becomes a two-axis countertwisting Hamiltonian which is known to quickly create Heisenberg limit
scaled entangled states. For these states we show that simple quadrature measurements can saturate
the ultimate precision limit for parameter estimation determined by the quantum Cramér-Rao
bound. An example experimental realization of the periodically driven scheme is discussed with
the potential to quickly generate momentum entanglement in a recently described experimental
vertical cavity system. We analyze effects of collective dissipation in this vertical cavity system and
find that our squeezing protocol can be more robust than the previous realization of OAT.

Introduction.— For centuries, advancements in preci-
sion measurements have continuously propelled the scien-
tific community’s understanding of the fundamental na-
ture of reality. This inspired both the quantum revolu-
tion and Einstein’s theories of relativity, with the fron-
tier of each still advancing through the use of increas-
ingly precise experiments [1–5]. Current state-of-the-art
precision measurements can detect a change of mirror
distance of 10−3 of the proton’s width in gravitational
wave detectors [5–7] and have led to the development
of atomic clocks with a fractional frequency uncertainty
of 10−21 [8], among many other groundbreaking achieve-
ments [9–17].

Most precision metrology experiments still operate at
or above the standard quantum limit (SQL), which is the
fundamental sensitivity threshold that arises from shot
noise in measurements of uncorrelated quantum states.
This limit on product states can be overcome through
the use of entangled quantum states, and if this can
be consistently utilized, it would revolutionize precision
measurements with the potential to discover new physics.
Although there have been proof of principle experimen-
tal demonstrations of quantum entanglement, applica-
tions for a true sensing purpose have so far been lim-
ited [18–22]. For example, spin squeezing offers a promis-
ing platform to perform atomic clock experiments beyond
the SQL, but often require a long squeezing time during
which quantum correlations may be destroyed by deco-
herence.

In this Letter, we propose an experimentally relevant
scheme to realize spin squeezing in a short propagation
time. We show that driving the Dicke model [23–28]
at a parametric resonance leads to an effective two-axis
countertwisting (TACT) Hamiltonian which can reach
Heisenberg limited scaling in a shorter timescale than
the commonly employed one-axis twisting (OAT) Hamil-
tonian. While the TACT Hamiltonian has been studied
theoretically [29–42], it has so far been elusive to achieve

experimentally. We demonstrate how TACT may be re-
alized in a current, state-of-the-art vertical cavity ex-
periment [43–46] by periodically modulating an injected
field that drives the cavity. We discuss how to make
optimal use of the system’s entanglement for phase es-
timation using a recent advance that uncovers a state’s
full metrological potential by diagonalizing the quantum
Fisher information matrix (QFIM) [47]. We then per-
form a Bayesian phase reconstruction sequence where, re-
markably, we find that simple quadrature measurements
saturate the quantum Cramér-Rao bound (QCRB) [48].
Periodically Driven Dicke Model.— We consider N

atoms that are collectively coupled through a cavity field.
The atoms have ground state |↓⟩ and excited state |↑⟩,
and we define the collective raising and lowering oper-
ators Ĵ+ =

∑
j |↑⟩j ⟨↓|j = Ĵ†

−. This system has an

underlying SU(2) symmetry with basis operators Ĵx =
(Ĵ++ Ĵ−)/2, Ĵy = i(Ĵ−− Ĵ+)/2, and Ĵz = [Ĵ+, Ĵ−]/2, as
well as the quadratic Casimir operator Ĵ2 = Ĵ2

x+Ĵ
2
y+Ĵ

2
z .

After eliminating the cavity in the dispersive regime, we
consider dynamics governed by the time-dependant Dicke
Hamiltonian [49]

Ĥ = ℏ∆Ĵz + ℏχ cos(ωt)Ĵ2
x , (1)

where ∆ is a detuning and χ scales the cavity-mediated
nonlinearity. This Hamiltonian can model, for example,
Raman transitions between hyperfine states using two
time-dependent transverse fields [26, 27]. For now, we
ignore cavity decay based on large cavity detuning, such
that the dynamics are governed by the Schrödinger equa-
tion ∂tρ̂ = −i[Ĥ, ρ̂]/ℏ with density matrix ρ̂. We discuss
the effects of non-negligible dissipation in the next sec-
tion.
The nonlinearity in Eq. (1) creates an entangled state

which can be used to sense a physical parameter with
a quantum advantage. To find the parameter Φ that
the generated state is most sensitive to, one finds the
maximum quantum Fisher information (QFI), λmax, by
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FIG. 1. (a) Schematic of the pair production process Ĵ2
+ that

the PDD model drives (along with Ĵ2
−) to generate interpar-

ticle entanglement (dashed line). Here, S is the the symme-
terizer which sums over all permutations of i and j [52]. (b)
The collective Bloch sphere for ρ̂BW in the rotating frame of
Eq. (4). The color represents the state’s overlap with the co-

herent spin state |θ, ϕ⟩ = exp
[
−iϕĴz

]
exp

[
−iθĴy

]
|↓⟩⊗N at

each point. The arrows indicate the direction of twisting
about each axis.

calculating the largest eigenvalue of the quantum Fisher
information matrix (QFIM) [47],

FO⃗ = λmaxO⃗, (2)

where the elements of the QFIM are given by [50]

Fµν =

dim[ρ̂]−1∑

i,j=0;ϱi+ϱj ̸=0

2Re
[
⟨ϱi|

[
Ĵµ, ρ̂

]
|ϱj⟩ ⟨ϱj |

[
ρ̂, Ĵν

]
|ϱi⟩

]

ϱi + ϱj
,

(3)
with µ, ν ∈ {x, y, z} and the spectral decomposition

ρ̂ =
∑
i ϱi |ϱi⟩⟨ϱi|. The eigenvector O⃗ associated with

this maximum eigenvalue corresponds to the generator

Ĝ that encodes the optimal parameter [47], exp
[
−iĜΦ

]
.

The QFI for unentangled states can reach the SQL,
λmax = N , while entangled states can reach the Heisen-
berg limit (HL), λmax = N2, which is the fundamental
limit on sensing set by the Heisenberg uncertainty prin-
ciple [51].

Although we will use Eq. (1) for our numerical simu-
lations, one can gain a better intuition of the dynamics
by transforming into a rotating frame. We move into an

interaction picture ˜̂ρ = Û†ρ̂Û with Û = exp
[
−i∆Ĵz

]
, so

that Eq. (1) becomes

˜̂
H =

ℏχ
4

cos(ωt)
[
e2i∆tĴ2

+ + 2
(
Ĵ+Ĵ− − Ĵz

)
+ e−2i∆tĴ2

−
]
.

(4)
In the majority of previous work, one assumes a constant
nonlinear interaction rate ω = 0. Then, in the limit
|∆| ≫ N |χ|, one makes the rotating-wave approximation
(RWA) [53] to drop the fast-oscillating Ĵ2

± terms. We now
explore an opposite regime in which the system is instead
driven on the special resonance ω = 2∆. Equation (4)
after the RWA becomes

ĤPDD ≈ ℏχ
8

(
Ĵ2
+ + Ĵ2

−
)
, (5)

FIG. 2. (a) The three eigenvalues of the QFIM F for N = 100.
The state evolves under Eq. (1) with ∆ = 100N |χ|. The gray
plus and asterisk indicate when the system reaches ρ̂BW and
ρ̂peak, respectively. Also shown is the largest eigenvalue of the
QFIM for OAT with the same parameters (dashed black line).
(b) The largest QFIM eigenvalue for ρ̂peak. Also shown is the
plateau value of N(N + 1)/2 for OAT. (c) Sensitivity, given
by the standard deviation σ of the posterior distribution, for
the optimal parameter Φ after applying Bayes theorem. We
display results for the states ρ̂BW and ρ̂peak, and the dashed
lines represent the QCRB for the respective state. The top
and bottom dotted lines represent the SQL and HL, respec-
tively. (d) Comparing the time of maximum QFI for PDD
tpeak (orange plus) with the time OAT reaches its plateau tpl
(dotted red line) for a constant N |χ|. We also show the curve
fit of the PDD simulations given by Eq. (7) (dashed blue line).

which is seen by expanding cos(ωt) = (exp[iωt] +
exp[−iωt])/2. We label this as the periodically driven
Dicke (PDD) model and note that it is reminiscent of
two-axis countertwisting (TACT) [29], which was found
to reach HL scaling on an exponential timescale [31,
35] through the pair production and twisting processes
shown in Fig. 1. Beginning in the collective ground state
ρ̂0 = |↓⟩⟨↓|⊗N , we examine the sensitivity of the PDD
model using the maximum QFI from Eq. (2). We display
the dynamics of the QFIM eigenvalues in Fig. 2(a) for
the case of N = 100. Here, one can see the exponential
scaling of the maximum QFI on short timescales. In the
rotating frame of Eq. (4), we find that the optimal gener-
ator corresponding to λmax is given by Ĝ = (Ĵx+Ĵy)/

√
2.

This can be understood by interpreting Eq. (5) as an
analog to the photonic Kerr nonlinearity [54] which can
be formalized if one performs the Holstein-Primakoff ap-
proximation assuming low atomic excitations [55, 56].

During the initial squeezing, the state can be rotated
to have a high overlap with the Berry-Wiseman (BW)
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phase state [57] which we label as ρ̂BW and display in
Fig. 1(b). This state maximizes the information gained
about an unknown phase after a single measurement [58]
and has a full 2π dynamic range (see Supplemental Mate-
rial (SM) [59]). The fidelity with the phase state reaches
unity [35], which occurs at t ≈ 5.57/(N |χ|) for N = 100.
As the system continues to squeeze, it reaches the state
ρ̂peak which maximizes the QFI in time. Here, the sys-
tem is HL scaled with λmax ∼ 0.65N2, and we discuss
interesting properties of this state in the SM [59]. In the
large N limit, we find that the maximum QFI asymp-
totes to λmax ∼ 0.64N2, as shown in Fig. 2(b). One can
then rotate ρ̂peak to make a specific operator the optimal
generator in order to exploit the largest amount of intra-
particle entanglement for a specific sensing purpose [47].
For example, in atomic clock systems, one would perform
a π/2 pulse about (Ĵx− Ĵy)/

√
2 in the rotating frame to

make Ĵz the optimal generator.

While the PDD model can clearly reach a high QFI on
an exponentially short timescale, the QCRB is not guar-
anteed to be achievable with experimentally accessible
measurements. This is because the QFI implicitly opti-
mizes over all measurement bases [50]. Remarkably, the
system saturates the QCRB with simple population mea-
surements by performing a Bayesian reconstruction pro-
tocol. To demonstrate this, we first rotate the state by a
π/2 pulse with the optimal generator Ĝ such that its anti-
squeezed axis is parallel with the equator of the Bloch
sphere. We encode the parameter Φ using Ĝ and im-
plement Bayes theorem P (Φ|m) = P (m|Φ)P (Φ)/P (m),
where P (Φ|m) is a conditional probability for the out-
come m of a Ĵz measurement. We begin the process with
a flat prior P (m|Φ) = const., which we then consistently
update using the posterior distribution P (Φ|m) [60].

Figure 2(c) displays the sensitivity of the posterior dis-
tribution for the states ρ̂BW and ρ̂peak after the rotation
to the Bloch sphere’s equator. We also show the SQL
and HL as the upper and lower dotted lines, and remark-
ably, the sensitivity of ρ̂peak nearly reaches the HL. After
M measurements, the respective QCRBs are given by
1/

√
Mλmax(t), which we plot as dashed lines. In both

cases, the standard deviation σ of the posterior distri-
bution P (Φ|m) saturates this bound when M ≳ 100,
showing that simple quadrature measurements are opti-
mal for the generated states. We can calculate the decibel
gain over the SQL, G = 10 log10(

√
λmax/N), and obtain

G = 5.7 dB and G = 9.1 dB of squeezing for ρ̂BW and
ρ̂peak, respectively. For ρ̂peak in the large N limit, we
expect the gain to scale as G ≈ 5 log10(N)− 1.

As a means for comparison, we now consider ω = 0
in Eq. (1) and eliminate the fast-oscillating Ĵ2

± terms
via the RWA. This gives the one-axis twisting (OAT)
Hamiltonian [29],

ĤOAT ≈ −ℏχ
2
Ĵ2
z , (6)

as exploited in Refs. [44, 45]. Here, we have used the
relation Ĵ+Ĵ− = Ĵ2 − Ĵ2

z + Ĵz and ignored a constant
energy shift of N(N/2 + 1)/2 from the Ĵ2 term since we
remain in the collective subspace {|j = N/2,m⟩ , −j ≤
m ≤ j}.
When the state begins in an eigenvector of Ĵx,

ρ̂0 = [(|↑⟩ + |↓⟩)(⟨↑| + ⟨↓|)/2]⊗N , the OAT Hamilto-
nian reaches λmax = N(N + 1)/2 on a timescale of
tpl ∼ 4/(

√
N |χ|) [47, 48, 61]. We show this initial be-

havior of the maximum QFI for OAT as a dashed black
line in Fig. 2(a). The QFI then remains at this value
for a long plateau before eventually growing again at
tpl,f ∼ π/|χ|−4/(

√
N |χ|) [47, 48, 61]. For typical param-

eters, this is often too long of a timescale since decoher-
ence will significantly reduce the squeezing performance.
We compare the typical timescales for HL scaling of PDD
and OAT in Fig. 2(d). We find that the PDD model in-
deed scales on a much faster timescale, an observation
which becomes more pronounced if one considers larger
atom numbers. Fitting the scaling of the PDD model,
we find that the time that QFI is maximized is given by

tpeak ≈ [ln
(
N2

)
+ 4]/(N |χ|), (7)

which approximately matches the analysis of Ref. [31]
with the Wineland squeezing parameter. Therefore, the
PDD model is a full order of magnitude faster than OAT
when one scales up to N = 104 while reaching a higher
QFI, as shown in Figs. 2(b) and 2(d). Moreover, the
states created by OAT do not, in general, saturate the
QCRB using simple quadrature measurements when en-
coding the optimal parameter Φ.
Example Experimental Realization.— Having estab-

lished that the PDD model can outperform OAT on short
timescales, we now turn to a prototypical experimental
realization of this scheme. For this, we consider momen-
tum squeezing in a recent vertical cavity (VC) experi-
ment [43–46], shown schematically in Fig. 3(a). Details
of the theoretical analysis of this setup are given in the
SM [59], and we describe the general features below. A
packet of N 87Rb atoms fall through an optical mode of
a VC under the influence of gravity g⃗ = −gε⃗z with unit
vector ε⃗z along the vertical axis. The cavity decays at
an intensity decay rate κ, while an injected field pumps
the VC at a rate η. The atoms undergo Bragg tran-
sitions on the D2 cycling transition |F = 2,mF = 2⟩ ↔
|F ′ = 3,mF ′ = 3⟩ when the detuning between the cavity
mode and atomic transition frequency is large. In this
regime, the excited state |F ′ = 3,mF ′ = 3⟩ can be adia-
batically eliminated [45, 59] such that we can focus solely
on the external degrees of freedom of the atoms.

The atoms are prepared with high overlap with the
momentum ground state |0ℏk⟩. By letting the atomic
packet fall for a sufficient time τ before turning on the
injected field, the momentum states |0ℏk⟩ and |2ℏk⟩
become nearly degenerate in the co-falling reference
frame [45]. This allows one to drive Bragg transitions
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FIG. 3. (a) A schematic of the vertical cavity experiment
of Refs. [43, 44]. (b) The largest eigenvalue of the QFIM
for the VC setup with different decay rates. The simulations
evolve under Eq. (12) with the full Hamiltonian of Eq. (8).
We choose the parameters N = 100, |∆c| = 10.5|ωg|, |U0| =
5.1|ωg| × 10−3, and |β0| = 6.8 when κ/|∆′

c| ≪ 1, such that
|∆′

c| = 9.9|ωg|. We display the experimental parameters that
lead to these rates in the SM [59]. The colored lines represent
the PDD model (ω = 2ωg). Meanwhile, the black lines are
the results of OAT (ω = 0) for κ/|∆′

c| = 10−5 (solid black
line) and κ/|∆′

c| = 10−2 (dashed black line).

between |0ℏk⟩ ↔ |2ℏk⟩ while being energetically far from
coupling to the |−2ℏk⟩ and |4ℏk⟩ states, truncating the
momentum space to a collective two-level system (see
SM [59]). We therefore define the collective momentum

operators Ĵ+ =
∑
j |2ℏk⟩⟨0ℏk|j = Ĵ†

−.
We then displace the cavity field to account for the

injected field from the external driving laser [59]. When
the injected field is far detuned from the dressed cavity
frequency, this displaced cavity field can be adiabatically
eliminated with the result [59, 62]

ĤVC = ℏωgĴz − ℏχ(t)Ĵ2
x , (8)

where we have defined the injected light field and the
nonlinear interaction rate [59]

β(t) ≈ − η(t)

∆′
c − iκ

2

, χ(t) =
∆′
cU

2
0 |β|2

(∆′
c)

2 + κ2

4

. (9)

Here, ωg = 4ωr − 2kgτ with recoil frequency ωr, U0 is
the light-momentum coupling strength [45, 59], and we
have defined the dressed pump-cavity detuning ∆′

c that
includes the Stark shift from the atoms ∆′

c = ∆c−NU0.
We present a table outlining the various approximations
that we assume to be valid to derive Eq. (8) in the
SM [59], as well as relevant experimental parameters that
satisfy these conditions.

We now wish to reverse engineer the driving profile η(t)
such that Eq. (8) simplifies to the PDD Hamiltonian from
Eq. (1). For this, we require β(t) = β0

√
cos(ωt) and so

we set η ∝
√

cos(ωt) which amounts to varying the am-
plitude and phase of the driving laser. However, since

χ ∝ |β|2, this does not yet have the needed harmonics
to parameterically drive TACT in Eq. (8). Therefore,
we also oscillate the cavity detuning such that ∆′

c(t) =
∆′
c(0) sgn[cos(ωt)]. This promotes |cos(ωt)| → cos(ωt)

whereupon one sets ω = 2ωg. The oscillation of ∆′
c can

be accomplished with a time-dependent pump frequency
or with time-dependent laser powers when one adds a
second pump laser with shifted frequency. With this os-
cillation, Eq. (8) reduces to the PDD model of Eq. (1),

ĤVC = ℏωgĴz − ℏχ0 cos(ωt)Ĵ
2
x , (10)

where χ0 = U2
0 |β0|2∆′

c(0)/([∆
′
c(0)]

2 + κ2/4).
Since the cavity decays, we also obtain an effective

jump operator

L̂ =

√
κU2

0 |β0|2|cos(ωt)|
(∆′

c)
2 + κ2

4

Ĵx, (11)

from the adiabatic elimination of the cavity (see SM [59]).
We can now evolve the system’s density matrix ρ̂ under
the Born-Markov master equation

∂ρ̂

∂t
= − i

ℏ

[
ĤVC(t), ρ̂

]
+ D̂[L̂(t)]ρ̂, (12)

where the Lindbladian superoperator is given by D̂[Ô]ρ̂ =
Ôρ̂Ô† − (Ô†Ôρ̂+ ρ̂Ô†Ô)/2. In Fig. 3(b), we display the
results for the maximum QFI, given by Eq. (2), for a
density matrix evolved under Eq. (12) with different dis-
sipation rates. For comparison, we also display results
for OAT (ω = 0) with κ/|∆′

c| = 10−5 (solid black line)
and κ/|∆′

c| = 10−2 (dashed black line). Notably, we find
that even with a three orders of magnitude larger dissi-
pation rate, the PDD model (ω = 2ωg) outperforms OAT
on short timescales, which can be seen by comparing the
dotted brown line to the solid black line.
To put our results into an experimental context, we

adopt the setup of Refs. [44, 45] in which the atoms are
allowed to fall for τ = 20ms before the pump is turned
on. This corresponds to |ωg| ∼ 2π × 0.5MHz such that
|ω| ∼ 2π× 1MHz. Therefore, Fig. 3(b) shows an appre-
ciable advantage of the PDD model compared to OAT
after O(100µs). Furthermore, using the parameters of
Fig. 3(b) with small dissipation rates κ/|∆′

c| ≪ 1, we find
Nχ0 ≈ 0.012|ωg| and so Eq. (7) gives tpeak ∼ 355µs while
the OAT plateau time is tpl ∼ 1.1ms. On the timescale
of tpeak, an effective dephasing effect occurs from the in-
creased energy difference between the momentum states
as time progresses, which is accounted for in Ref. [44] by
a spin echo sequence [53]. Furthermore, this dephasing is
a single particle effect and so increasing N can grow the
collective squeezing rate without increasing the effective
dephasing rate. We also confirm that the QCRB is satu-
rated from the simple quadrature measurements consid-
ered in the previous section, which can be implemented in
the experiment by performing fluorescent measurements
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after a Mach–Zehnder interferometry sequence [43]. For
the case of κ ≈ |∆′

c|/87, which corresponds to the cavity
decay of Ref. [44], we find that the PDD model reaches
a maximum of G = 7.5 dB during the initial squeezing.

Conclusion and outlook.— Similar to parameteric driv-
ing of nonlinear optical interactions to create non-
classical states of light [63], in this Letter, we propose
an analogous procedure to create non-classical states of
matter through parametric driving. While we have fo-
cused on long-range interparticle interactions mediated
through a dispersive cavity mode, our periodic driving
methodology should be more broadly applicable to any
system with controllable nonlinearities, such as trapped
ions with phonon-mediated interactions [64–68], Bose-
Einstein condensates with short- and long-range inter-
actions [69–71], and solid state materials with spin-spin
interactions [72–74]. Our periodic driving scheme is dis-
tinct from previous modulation proposals [32, 37] as it
is implemented by simple parameter modulation of clas-
sical driving fields, thereby allowing direct modulation
of nonlinear Hamiltonian terms. Unlike previous works
on bosonic-mediated quantum amplification [75–77], the
protocol presented here does not require squeezed bosonic
modes and instead amplifies nonlinearities in the under-
lying matter to create non-classical, squeezed states. We
have demonstrated that our proposed method can poten-
tially be implemented in a current, state-of-the-art VC
experiment [43, 44], which would be the first experimen-
tal realization of TACT. The system achieves HL scaling
in reasonable timescales and has a simple optimal mea-
surement basis, and therefore is a promising platform to
create matterwave sensors with a true quantum advan-
tage. Furthermore, it has been shown [34, 35] that TACT
creates the Berry-Wiseman phase state, as well as high
overlap with other theoretically studied states [51, 78–
80]. Therefore, our proposal offers a promising platform
to study previous theoretical work in quantum optics [80]
and quantum information science [57, 58] in a control-
lable experimental spin system.
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I. STATES CREATED BY THE PERIODICALLY
DRIVEN DICKE MODEL

In this section, we comment on some of the properties
of two states that the periodically driven Dicke (PDD)
model creates. We focus on the states examined in Fig. 2
of the Main Text, namely, the Berry-Wiseman (BW)
phase state ρ̂BW and the state with the peak QFI ρ̂peak.

A. Berry-Wiseman Phase State

We begin by discussing the BW phase state, whose Q-
function is show in Fig 1(b) of the Main Text. The Holevo
variance for an ensemble of pseudospin-1/2 particles is
defined as [1, 2]

V (φ)ψ ≡ |⟨e−iφ⟩ψ|2 − 1, (S1)

where

⟨e−iφ⟩ψ ≡
∫ 2π

0

Pψ(φ)e
−iφdφ,

Pψ(φ) ≡ ⟨ψ| e−iφĴz |ψ⟩ .
(S2)

This variance is useful because states with complete
phase uncertainty (e.g., any |ψ⟩ = |j = N/2,m⟩) will

have infinite Holevo variance, whereas the typical phase
variance [2], ∆φ2 = ⟨φ2⟩ψ − ⟨φ⟩2ψ, has a maximum un-

certainty of ∆φ = 2π. It has been shown [2, 3] that the
state which minimizes the Holveo variance is the BW
phase state,

|ψBW⟩ = 1√
N
2 + 1

N
2∑

m=−N
2

sin

[
π(N2 +m+ 1)

N + 2

] ∣∣∣∣
N

2
,m

〉
,

(S3)
such that ρ̂BW = |ψBW⟩⟨ψBW|. This state has V (φ)BW =
π2/N2 and is notably an eigenstate of the Susskind cosine
operator [4],

ĉos(φ) ≡ 1

2

N/2∑

m=−N/2

(∣∣∣∣
N

2
,m+ 1

〉〈
N

2
,m

∣∣∣∣+H.c.

)
.

(S4)
The BW phase state is of particular interest for phase

estimation because its dynamic range is a full 2π, mean-

ing ⟨ψBW| e−iφĴz |ψBW⟩ = 1 only if φ = n2π for integer
n. Simultaneously, it has a quantum Fisher information
(QFI) reaching Heisenberg limit (HL) scaling at

FBW ≈
(
1

3
− 2

π2

)
N2 ≈ 0.13N2. (S5)

These conditions guarantee that, with no a priori knowl-
edge of φ, the BW phase state is the optimal state to
gain information in a single measurement [5], making
it a useful state for a multitude of sensing applications.
For example, creating a BW phase state in matterwave
interferometry would guarantee that each measurement
gives the highest resolution estimation of an acceleration,
which would be a powerful tool for time-varying gravita-
tional fields such as those that an orbiting satellite expe-
riences.

B. State with Peak QFI

We now discuss the state with the maximum QFI dur-
ing the initial squeezing under the PDD model, ρ̂peak.
We display the Q-function of this state in Fig. 1(a)
which shows that ρ̂peak has properties of a partial ring
state [6]. One would expect this structure to be highly

sensitive to rotations about Ĵz and a point on the Bloch
sphere’s equator in the direction of the anti-squeezed
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hĴ
z
i

hĴyi
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FIG. 1. The state with the maximum QFI ρ̂peak for N = 100.
(a) The Q-function calculated by finding the overlap with the
coherent spin state |θ, ϕ⟩ at every point on the Bloch sphere.
(b) The log of the Q-function to make the interference fringes
more pronounced.

axis. This explains why the two largest eigenvalues of
the QFIM in Fig. 2(a) of the Main Text correspond to

Ĝ = (Ĵx + Ĵy)/
√
2 and Ĝ2 = Ĵz in the rotating frame.

Moreover, by taking a log of the Q-function, which we
show in Fig. 1(b), one can see interference fringes form
around part of a longitude line of the Bloch sphere. This
is reminiscent of the interference fringes that are present
in the N00N state [3, 7] and may explain why the state

is more sensitive to rotations about Ĝ than Ĵz.

As the squeezing continues past ρ̂peak under the PDD
model with small dissipation, the large population pack-
ets begin to converge towards each other at the north
pole. However, the state’s QFI remains larger than the
SQL as interference fringes remain present with a small
amount of population still in a partial ring. The state
reaches a local minimum in QFI when the large pop-
ulation packets meet at the north pole, but then the
QFI climbs back to λmax > N2/2 as a ring-like struc-

ture reemerges. This ring-like state has Ĝ = Ĵz.

We can also briefly comment on the case of non-
negligible dissipation. Damping of the fringes shown
in Fig. 1(b) may explain why the optimal generator

switches from Ĝ to Ĵz in the double peak structure of
Fig. 3(b) of the Main Text when κ/|∆′

c| ≳ 10−2. Here,
the first peak corresponds to the initial squeezing with
Ĝ = (Ĵx+Ĵy)/

√
2, but now with a lower QFI that reaches

its maximum value more quickly. The optimal generator
then switches to Ĵz for the second peak as the QFI with
respect to Ĵz rotations falls off less quickly when increas-

ing κ.

II. MODEL FOR PERIODICALLY DRIVING A
VERTICAL CAVITY

This section is dedicated to deriving the effective model
for the vertical cavity (VC) experiment. We further dis-
cuss how the periodically driven Dicke model can be im-
plemented in this system. We consider the experimental
VC setup displayed schematically in Fig. 3(a) of the Main

FIG. 2. Schematic diagram of the frequency spectrum of a
single atom in the vertical cavity setup. The states are labeled
by their initial momentum value, i.e., |i, p0 −mgτ⟩ → |i, p0⟩.

Text. We also show an energy diagram of each atom
in the system after they have fallen for a certain time
τ in Fig. 2. The internal states |g⟩ ≡ |F = 2,mF = 2⟩
and |e⟩ ≡ |F ′ = 3,mF ′ = 3⟩ are separated by an opti-
cal frequency ωa and we assume a closed-cycling transi-
tion where |g⟩ can decay back to |e⟩ at a rate γ. The
atoms interact with a single mode of an optical cavity,
which has frequency ωc, at a single atom vacuum cou-
pling rate Λ. A coherent field is injected into the cavity
which drives the mode with a time-dependent rate |η(t)|
and frequency ωp(t). The modulation of the frequency

ωp(t) = ω
(0)
p +ω

(1)
p (t) is chosen to be around a frequency

ω
(0)
p with a fixed detuning to the atoms ∆a = ωa − ω

(0)
p

and the cavity ∆c = ωc − ω
(0)
p .
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A. Starting Point

Our theoretical analysis starts with the master equation for the density matrix ρ̂apc describing the atomic internal
and motional degrees of freedom, as well as the cavity degree of freedom. The master equation is given by

∂ρ̂apc
∂t

= − i

ℏ

[
Ĥapc, ρ̂apc

]
+ D̂

[√
κâ

]
ρ̂apc +

∑

j

D̂
[√
γσ̂−

j

]
ρ̂apc, (S6)

where the coherent dynamics are governed by the Hamiltonian

Ĥapc =
∑

j

[
(p̂j −mgτ)2

2m
+ ℏΛ cos(kx̂j)(â

†σ̂−
j + σ̂+

j â) + ℏ∆aσ̂
+
j σ̂

−
j

]
+ ℏ∆câ

†â+ ℏ
[
η(t)â† +H.c.

]
. (S7)

The first term in the Hamiltonian describes the kinetic energy with momentum operators p̂j of the atoms with
mass m after falling for a time τ under acceleration g. The second term corresponds to the atomic-cavity coupling,
where cos(kx) is the standing-wave mode function of the cavity evaluated at the atomic position operators x̂j with
wavenumber k. In addition, we have introduced the creation and annihilation operators â† and â for the cavity mode
and the internal excitation σ̂+

j = |e⟩j ⟨g|j and σ̂−
j = |g⟩j ⟨e|j , respectively. The third term in Eq. (S7) is the energy

of the excited state in the frame rotating with ω
(0)
p . The last two terms describe the energy of the photons and the

driving of the cavity mode where modulations of frequency ω
(1)
p (t) and amplitude |η(t)| are encoded in the complex

and time-dependent frequency η(t). In addition to the coherent effects, the master equation also includes cavity

photon losses with rate κ and spontaneous emission with rate γ. The Lindblad superoperator D̂ for these Markov
processes is defined as

D̂[Ô]ρ̂ = −1

2
[Ô†Ôρ̂+ ρ̂Ô†Ô − 2Ôρ̂Ô†]. (S8)

B. Elimination of the Electronic Excited State

We work in the regime where the detuning |∆a| is much larger than the spontaneous emission rate and any
characteristic frequency determining the dynamics of the cavity and the atomic external degrees of freedom. In this
regime, the atoms remain, to good approximation, in the electronic ground state and the dominant scattering process
is coherent scattering of laser photons. In addition, we assume that the fixed atom-laser detuning is much larger

than the dynamical variance of the frequency |∆a| ≫ ω
(1)
p , which implies that the small modifications in the laser

frequency have only a minor effect onto the coherent scattering rates. Using these approximations based on the
parameter regime of interest, we derive an effective master equation which governs the dynamics of the density matrix
ρ̂pc of atomic external degrees of freedom and the cavity. This master equation is given by

∂ρ̂pc
∂t

= − i

ℏ

[
Ĥpc, ρ̂

]
+ D̂

[√
κâ

]
ρ̂pc, (S9)

with the Hamiltonian [8]

Ĥpc =
∑

j

(p̂j −mgτ)2

2m
+ ℏ∆′

c


1− U0

∆′
c

∑

j

cos(2kx̂j)


 â†â+ ℏ

[
η(t)â† +H.c.

]
. (S10)

The second term in Eq. (S10) describes the modified frequency of cavity photons which is shifted due to the presence
of the atoms. Here, ∆′

c = ∆c −NU0 is the dressed cavity detuning with the ac Stark shift

U0 =
Λ2∆a/2

∆2
a + γ2/4

. (S11)

C. Displacement of the Cavity Field

Next, we displace the cavity field by the field which is injected by the external laser. This is formally done by
applying the displacement transformation

D̂1 = exp
[
â†β(t)− β∗(t)â

]
, (S12)
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onto the density matrix ˜̂ρpc = D̂†
1ρ̂pcD̂1. In this new displaced picture, we find

∂ ˜̂ρpc
∂t

= − i

ℏ

[
˜̂
H, ˜̂ρpc

]
+ D̂

[√
κâ

]
˜̂ρpc, (S13)

where the injected light field β follows the differential equation

∂β

∂t
= −i

(
∆′
c −

iκ

2

)
β − iη. (S14)

With a solution for this differential equation, we obtain the following displaced Hamiltonian:

˜̂
Hpc =

∑

j

[
(p̂j −mgτ)2

2m
− ℏU0 cos(2kx̂j)(â

†β + β∗â)− ℏU0|β|2 cos(2kx̂j)
]
+ ℏ∆′

c


1− ϵ

∑

j

cos(2kx̂j)


 â†â, (S15)

where ϵ = U0/∆
′
c. We remark that in this displaced picture, there is no external driving of the cavity. Instead, the

meaning of â is now the scattered field due to the presence of atoms which, in the original picture, needs to be added
to the injected field β.

D. Adiabatic Elimination of the Cavity Field

By assuming |∆′
c| is now the largest frequency in the effective system, we are able to adiabatically eliminate the

scattered cavity field. This requires that |∆′
c| is much larger than the Doppler-shift of the atoms and also that the

modulation of the drive is slow compared to 1/|∆′
c|. In this limit, we can derive an effective master equation for the

density matrix describing the atomic external degrees of freedom ρ̂p [9].
To eliminate the field, we assume that the scattered field is, to a good approximation, in vacuum. We can then

displace the field by

D̂2 = exp
[
â†α̂− α̂†â

]
, (S16)

such that the equation of motion for ρ̂, where we dropped the “p” index for brevity, is given by [9]

∂ρ̂

∂t
= − i

ℏ
[ĤVC, ρ̂] + D̂

[√
κα̂

]
ρ̂, (S17)

with the Hamiltonian

ĤVC =
∑

j

[
(p̂j −mgτ)2

2m
− ℏU0|β|2 cos(2kx̂j)

]
− ℏU0

2


βα̂† ∑

j

cos(2kx̂j) + H.c.


 . (S18)

We then solve for the effective field operator

∂α̂

∂t
= −i

[
(p̂j −mgτ)2

2m
, α̂

]
− i


∆′

c


1− ϵ

∑

j

cos(2kx̂j)


− iκ

2


 α̂+ iU0β

∑

j

cos(2kx̂j). (S19)

Here, we have assumed that U0|β|2 is much smaller than any momentum energy gaps (see Section II E for the relevant
gaps) such that it can be dropped from the commutator in Eq. (S19).

We are considering parameters such that N |ϵ|/2 ≪ 1 so that we can drop the non-linearity ∝ ϵ in Eq. (S19). By
further making the ansatz α̂(t) = a+(t)

∑
j exp[2ikx̂j ] + a−(t)

∑
j exp[−2ikx̂j ], we can find equations of motion for

the coefficients a±. In the parameter regime |∆′
c − iκ/2| ≫ ω, where ω is the characteristic modulation frequency of

β [see Eqs. (S26) and (S27)], we can integrate the differential equations for a±. Using the obtained results in α̂(t)
leads to the effective field operator

α̂(t) ≈ U0β

2

∑

j

[
1

∆′
c +∆p±2 − iκ

2

e2ikx̂j +
1

∆′
c −∆p±2 − iκ

2

e−2ikx̂j

]
, (S20)
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where ∆p±2 = (p± 2ℏk −mgτ)2/(2ℏm)− (p−mgτ)2/(2ℏm).
We now assume that we are restricted to low energy motional states, which we will formally justify in Sec. II E. For

these states, we can set ∆′
c ±∆p±2 ≈ ∆′

c such that the effective field operator becomes

α̂(t) ≈ U0β

∆′
c − iκ

2

∑

j

cos(2kx̂j). (S21)

This is valid if ∆′
c ≫ ∆p±2 and, for the situation considered here, amounts to ∆′

c ± ωg ≈ ∆′
c where ωg is given by

Eq. (S27) in Sec. II E.
Using Eq. (S21) in Eqs. (S17) and (S18), we find

∂ρ̂

∂t
≈ − i

ℏ
[ĤVC, ρ̂] + D̂


√Γc(t)

∑

j

cos(2kx̂j)


 ρ̂, (S22)

and the Hamiltonian

ĤVC ≈
∑

j

[
(p̂j −mgτ)2

2m
− ℏU0|β|2 cos(2kx̂j)

]
− ℏχ(t)

∑

i,j

cos(2kx̂i) cos(2kx̂j). (S23)

Here, we have defined the nonlinear interaction rate

χ(t) =
∆′
cU

2
0 |β|2

(∆′
c)

2 + κ2/4
, (S24)

and the dissipation rate

Γc(t) =
κU2

0 |β|2
(∆′

c)
2 + κ2/4

. (S25)

E. Reduction to Two Momentum States

In our protocol, the atoms are initialized with momentum p = 0, which means they have the kinetic energy
Nmg2τ2/2 after gravitational acceleration. The idea of the periodic driving with η is now to engineer an injected
light field β which drives a pair creation process by flipping two momentum state to p = 2ℏk. This requires that we
must drive with a frequency

ω = 2ωg, (S26)

where ωg denotes the energy to excite a single atom from p = 0ℏk to the momentum state p = 2ℏk,

ωg =
(2ℏk −mgτ)2 − (mgτ)2

2ℏm
= 4ωr − 2kgτ. (S27)

Here, we have introduced the recoil frequency ωr = ℏk2/(2m). Thus, an appropriate driving profile would realize

χ(t) ∝ cos(ωt). Using Eq. (S24), this can be realized with a driving resulting in |β(t)|2 ∝ |cos(ωt)| and ∆′
c ∝

sgn[cos(ωt)], as explained in the Main Text. The latter corresponds to switching the driving frequency of the laser
with respect to the cavity from red to blue detuned and back periodically in time.

We now want to restrict the dynamics of the atomic motional states to the momentum states |p = 0⟩ and |p = 2ℏk⟩.
This requires that we do not excite other momentum states, which can be justified using time-dependent perturbation
theory. The two most relevant momentum flips occur due to (a) the single-particle term proportional to cos(2kx̂j) in
Eq. (S23) which induces the momentum flip of a single atom p = ±2ℏk, and (b) the two-particle term proportional
to cos(2kx̂i) cos(2kx̂j) in Eq. (S23) which can also amplify a pair with p1 = ±2ℏk and p2 = −2ℏk. We examine the
requirements to avoid these two processes individually:

(a) The frequency gap for a single flip into the state p = ±2ℏk is ∆ω
(1)
± . It can be calculated as

∆ω
(1)
± =

(±2ℏk −mgτ)2 − (mgτ)2

2m
= 4ωr ∓ 2kgτ. (S28)
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The driving field |β|2 ∝ |cos(ωt)| has frequency components that are multiples of 2ω = 4ωg. To neglect single
momentum flips, we therefore require

∣∣∣∣∣
U0|β|2

|4ωg| − |4ωr ∓ 2kgτ |

∣∣∣∣∣ ≪ 1. (S29)

For large kgτ ≫ 2ωr, this is true when |U0||β|2 ≪ 6kgτ .

(b) We now determine the frequency gap ∆ω
(2)
± for the unwanted pair creation processes corresponding to creating

p1 = ±2ℏk and p2 = −2ℏk. The frequency gap is given by

∆ω
(2)
+ =

(2ℏk −mgτ)2 − (mgτ)2

2m
+

(−2ℏk −mgτ)2 − (mgτ)2

2m
= 8ωr,

∆ω
(2)
− = 2

(−2ℏk −mgτ)2 − (mgτ)2

2m
= 8ωr + 4kgτ.

(S30)

Since we assume χ(t) ∝ cos(ωt) with ω = 2ωg, these pair creation processes can be neglected if

∣∣∣∣∣∣
Nχ

|2ωg| −
∣∣∣∆ω(2)

+

∣∣∣

∣∣∣∣∣∣
≪ 1. (S31)

Again assuming kgτ ≫ 2ωr, this approximation is valid if Nχ≪ 16ωr. In this calculation, we have included a factor
of N because of the collective enhancement.

In the parameter regime where we can reduce the dynamics to atoms with momenta p = 0 and p = 2ℏk, we can
identify the momentum raising operator as an effective collective spin raising operator

∑

j

exp[2ikx̂j ] → Ĵ+ =
∑

j

|2ℏk⟩j ⟨0ℏk|j . (S32)

We also define Ĵ− = Ĵ†
+ as well as the SU(2) basis operators Ĵx = (Ĵ++Ĵ−)/2, Ĵy = i(Ĵ−−Ĵ+)/2, and Ĵz = [Ĵ+, Ĵ−]/2,

where we note
∑
j cos(2kx̂j) → Ĵx. With these definitions, we can rewrite the Hamiltonian in Eq. (S23) as the

periodically driven Dicke (PDD) model

ĤVC = ℏωgĴz − ℏχ(t)Ĵ2
x

= ℏωgĴz − ℏχ0 cos(t)Ĵ
2
x ,

(S33)

with χ0 = U2
0 |β0|2∆′

c(0)/([∆
′
c(0)]

2 + κ2/4). We also find a dissipative term with jump operator

L̂ =
√
Γc(t)Ĵx, (S34)

with Γc(t) ∝ |cos(ωt)|.

III. PROFILE OF THE INJECTED FIELD

We now comment on the driving profile of the injected
field into the VC setup that reproduces the behavior of
the periodically driven Dicke model. We begin with the
relationship between the injected field and standing field,
Eq. (S14). Formally integrating and making a coarse-

graining approximation, we find

β(t) = e−i(∆
′
c− iκ

2 )tβ(0)− i

∫ t

0

dse−i(∆
′
c− iκ

2 )sη(t− s)

≈ − η(t)

∆′
c − iκ

2

,

(S35)
where we have assumed that the temporal variation of η is
slow compared to the exponential kernel in the integral.
Within this limit, we can now reverse engineer η(t) by
simply inverting Eq. (S35).

In the case that the coarse-graining approximation
used in Eq. (S35) breaks down, one can instead plug
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β(t) = β0
√

cos(ωt) into Eq. (S14) with the result

η(t) = − iωβ0
2

√
sin(ωt) tan(ωt)−β0

(
∆′
c −

iκ

2

)√
cos(ωt).

(S36)
While the second term in this equation is the adia-
batic result of the driving profile, the first term exhibits
divergences which originate from the non-analyticities
of

√
tan(ωt). The first term contributes a factor of√

ω/∆′
c in the integral for β(t), Eq. (S35). In an in-

tegral over β(t), it will be suppressed by a factor of
(ω/∆′

c)
3/2 [10], and so the second term in Eq. (S36)

will be the dominate contribution. However, for ex-
perimental considerations, it might be advantageous to
use a profile with smooth intensity profile. In general,
it might be interesting to explore several other driving
profiles such as η(t) ∝ sgn[cos(ωt)] (square wave) and
η(t) ∝ 1 − 2 arccos[cos(ωt)]/π (triangle wave). We ex-
pect that these profiles can have similar performances
for squeezing although they might lead to shifted para-
metric resonances for ω [11] which can be derived us-
ing a Holstein-Primakoff approximation [12, 13] for early
times. For practical applications, it is also of interest to
optimize η(t) in order to achieve the maximum squeezing
in minimum time with given experimental constraints.
These considerations are left for future work.

IV. EXPERIMENTAL PARAMETERS

In this section, we present experimental parameters
that lead to the values of ωg, β0, U0, and ∆′

c used in
Fig. 3(b) of the Main Text. We use N = 100 throughout
this section. We then begin with the single-atom coupling
constant of the cavity used in Ref. [14], Λ = 2π×0.5MHz.
For this section, we also use the cavity loss rate from
Ref. [14], κ = 2π× 56 kHz. The cavity addresses the D2

cycling transition of 87Rb, which is a λ = 780 nm transi-
tion with a decay rate of γ = 2π × 6.066MHz [15]. We

assume the injected field leads to a cavity pump rate η0 =
2π × 33MHz and is detuned from the atomic resonance
by |∆a| = 2π× 50MHz. The cavity frequency is also far
detuned from the atomic resonance, while being detuned
from the pump’s frequency by |∆c| = 2π × 5.1MHz.
Since all frequencies are within O(100MHz) from one
another, we approximate the wavenumbers k to be con-
stant such that the recoil frequency from all photons in
the system is approximated as ωr = 2π× 3.77 kHz [15].
With all of these specified experimental parameters, we

obtain |U0| = 2π × 2.5 kHz, |∆′
c| = 2π × 4.85MHz, and

|β0| = 6.8. Furthermore, a drop time of τ = 20ms leads
to kgτ = 2π×0.25MHz such that ωg = −2π×0.488MHz.
This satisfies kgτ ≫ 2ωr, which was used in Eqs. (S29)
and (S31), by a factor of 33. We thus have all of the
needed quantities to simulate Eq. (S33). We can also
calculate the perturbation |ϵ| = 5.1 × 10−4, standing

field |U0||β0|2 = 2π × 0.115MHz, and effective non-
linear interaction rate |χ0| = 2π × 59.2Hz such that
N |χ0| = 2π × 5.92 kHz. We can now calculate ratios
to check each of the approximations used in deriving
Eq. (S33), which we present in Table. I. We find that
all our approximations are satisfied by at least a factor
of 10, while also satisfying |∆′

c| ≫ ωg used in Eq. (S21)
by a factor 10. We therefore expect our simulations of
Eq. (S33) to be a realistic model of the current vertical
cavity experiment of Ref. [14].

Approximation Inequality (A ≫ B) Ratio (A/B)

Excited state elimination |∆a| ≫
√
NΛ 10

Cavity elimination |∆′
c| ≫ N |χ0| 820

Cavity elimination |∆′
c| ≫ |U0||β0|2 42

Perturbation 1 ≫ N |ϵ|/2 39

Single momentum flips 6kgτ ≫ |U0||β0|2 13
Unwanted pair creation 16ωr ≫ N |χ0| 10

TABLE I. Table outlining the approximations assumed
throughout the derivation as well as their corresponding ra-
tios for our chosen experimental parameters.

[1] A. S. Holevo, in Quantum Probability and Applications to
the Quantum Theory of Irreversible Processes, edited by
L. Accardi, A. Frigerio, and V. Gorini (Springer Berlin
Heidelberg, Berlin, Heidelberg, 1984) pp. 153–172.

[2] D. W. Berry, Adaptive Phase Measurements, Ph.D. the-
sis, University of Queensland, Queensland (2001).

[3] J. Combes and H. M. Wiseman, Journal of Optics B:
Quantum and Semiclassical Optics 7, 14 (2004).

[4] L. Susskind and J. Glogower, Physics Physique Fizika 1,
49 (1964).

[5] D. W. Berry, B. L. Higgins, S. D. Bartlett, M. W.
Mitchell, G. J. Pryde, and H. M. Wiseman, Phys. Rev.
A 80, 052114 (2009).
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[7] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and

P. Treutlein, Rev. Mod. Phys. 90, 035005 (2018).
[8] J. D. Wilson, C. Luo, J. T. Reilly, H. Zhang, A. Chu,

A. M. Rey, M. J. Holland, and J. K. Thompson, Momen-
tum based entanglement in a vertical cavity (2023), (to
be published).
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