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We study how time-dependent energy fluctuations impact the dynamical quantum phase transi-
tions (DQPTs) following a noisy ramped quench of the transverse magnetic field in a quantum Ising
chain. By numerically solving the stochastic Schrödinger equation of the mode-decoupled fermionic
Hamiltonian of the problem, we identify two generic scenarios: Depending on the amplitude of the
noise and the rate of the ramp, the expected periodic sequence of noiseless DQPTs may either be
uniformly shifted in time or else replaced by a disarray of closely spaced DQPTs. Guided by an exact
noise master equation, we trace the phenomenon to the interplay between noise-induced excitations
which accumulate during the quench and the near-adiabatic dynamics of the massive modes of the
system. Our analysis generalizes to any 1D fermionic two-band model subject to a noisy quench.

Dynamical quantum phase transitions (DQPTs) have
become one of the focal points in the study of quantum
matter out of equilibrium [1, 2], spurred by the prospect
of performing high-precision tests using quantum simula-
tors [3, 4]. DQPTs appear at critical times at which the
overlaps between initial and time-evolved states vanish.
As a result, the rate function which plays the role of a
dynamical free energy density [5] becomes nonanalytic in
the thermodynamic limit. With time replacing the usual
notion of a control parameter, DQPTs are different from
ordinary phase transitions, requiring new ideas and con-
cepts for their understanding. Progress has come thick
and fast, with an expanding literature on theory [5–33],
modeling, and experimentation [34–47].

Most research so far, theoretical as well as experi-
mental, has considered DQPTs triggered by a quantum
quench where an isolated system is forced out of equilib-
rium by a change of its Hamiltonian. The quench may be
modeled as sudden, or more realistically, as having a fi-
nite duration with a Hamiltonian parameter being swept
from an initial to a final value, also known as a “ramp”.
While the quench is usually assumed to be governed by
a well-defined Hamiltonian, its realization in an exper-
iment is always imperfect. As a result, when energy is
transferred into or out of an otherwise isolated system via
a quench in the laboratory, there will inevitably be time-
dependent fluctuations (“noise”) in this transfer. Exam-
ples include noise-induced heating caused by amplitude
fluctuations of the lasers forming an optical lattice [48]
and fluctuations in the effective magnetic field applied to
a system of trapped ions [49]. This raises the important
issue about the robustness of DQPTs following a noisy
quench. Do the DQPTs survive? If so, what is the effect
from noise on the dynamical critical behavior?

We address these questions in the setting of the trans-
verse field Ising (TFI) chain, arguably the simplest
benchmark model for this purpose. The model has served

as a paradigm for exploring quantum phase transitions
in and out of equilibrium, and is also the first [5] and
best studied model exhibiting DQPTs. The availabil-
ity of platforms for well-controlled experimental probes
of DQPTs in TFI-like chains [34–36, 43, 44] is yet an-
other reason why we choose it for our study. Quantita-
tive reliable results for the simple TFI chain, amenable to
experimental tests, should prepare the ground for a com-
prehensive theory of DQPTs following a noisy quench.

Representing the noise by a dynamical stochastic vari-
able added to the TFI Hamiltonian, we numerically study
the stochastic Schrödinger equation of mode-decoupled
fermionic that governs the dynamics of a single quench.
In addition, we construct and solve an exact master equa-
tion for the quench dynamics averaged over the noise dis-
tribution. This allows us to highlight the interplay be-
tween the near-adiabatic quench dynamics of the gapped
modes of the system and the accumulation of noise-
induced excitations. As suggested by our analysis, the
competition between adiabaticity and noise-induced ex-
citations underlies the sometimes surprising outcome of
a noisy quench. While a small ratio between noise ampli-
tude and rate of energy transfer at most results in a shift
of the expected periodic sequence of noiseless DQPTs,
a larger ratio may have a dramatic effect: The periodic
sequence can now get scrambled, resulting in a disarray
of closely spaced DQPTs.

To set the stage, we write down the Hamiltonian of
the Ising chain with periodic boundary conditions and
subject to a noiseless transverse magnetic field h0(t),

H0(t) = −J
N∑

n=1

σx
nσ

x
n+1 − h0(t)

N∑
n=1

σz
n. (1)

When the field is time-independent, h0(t) = h, and with
J set to unity, the ground state is ferromagnetic for |h| <
1, otherwise paramagnetic, with the phases separated by
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equilibrium quantum critical points at h = ±1 [50]. Here,
and in what follows, ℏ = 1.
The Hamiltonian H0(t) in Eq. (1) can be mapped onto

a model of spinless fermions with operators cn, c
†
n us-

ing a Jordan-Wigner transformation [51]. Performing
a Fourier transformation, cn = (eiπ/4/

√
N)

∑
k e

iknck
(with the phase factor eiπ/4 added for convenience),
H0(t) gets expressed as a sum over decoupled mode
Hamiltonians H0,k(t),

H0(t) =
∑
k

C†
kH0,k(t)Ck, k =

(2m− 1)π

N
, (2)

with m = 1, 2, . . . , N/2. Here N and the fermion par-

ity exp(iπ
∑N

n=1 a
†
nan) are taken to be even [52]. C†

k =

(c†k c−k) are Nambu spinors, and

H0,k(t) = h0,k(t)σ
z +∆kσ

x (3)

with h0,k(t) = 2(h0(t)− cos(k)) and ∆k = 2 sin(k) when
J = 1. The instantaneous eigenstates and eigenvalues of
H0,k(t) are given by

|χ±
k (t)⟩ = α±

k (t)|α⟩+ β±
k (t)|β⟩, (4)

ε±k (t) = ±εk(t) = ±
√
h20,k(t) + ∆2

k, (5)

where |α⟩ = (1 0)T , |β⟩ = (0 1)T , and α±
k (t) = (h0,k(t)∓

εk(t))/N
±
k (t), β±

k (t)=∆k/N
±
k (t), with N±

k (t) normaliza-
tion constants. Note that for large N , the gap between
the two levels vanishes in the limit k → π (k → 0) when
reaching the critical points h0(t)=−1 (h0(t)=+1). Also
note that the Pauli matrices in Eq. (3) are not to be
mixed up with the spin operators in Eq. (1).

As a preliminary, let us briefly review DQPTs in case
of a noiseless ramp with sweep velocity v, h0(t) = hf+vt,
from an initial value hi at time t = ti < 0 to a final value
hf at t = tf = 0. The Hamiltonian in Eq. (3) for each
mode has the form H0,k(t) =

1
2vτkσz +∆kσx, so transi-

tion rates can be calculated by the Landau-Zener formula
[53, 54]. Here τk = 2h0,k(t)/v defines a mode-dependent
time, which changes sign when an avoided level crossing
occurs [55, 56]. As expected from the adiabatic theorem
[57], a quasiparticle mode with wave number k remains in
its instantaneous eigenstate in the limit v∆k/2ε

3
k(t) → 0

[58] (with 2εk(t) the gap of the mode at time t; cf. Eq.
(5)), hence {|χ±(τk)⟩} span the adiabatic basis, with
{|α⟩, |β⟩} the diabatic basis.

Starting with hi ≪ −1 in the ground state of the para-
magnetic phase, all modes initially reside in the lower
level |χ−

k (ti)⟩. After a ramp across the critical field
h = −1 to some final value hf = 1/2 in the ferromag-
netic phase, the probability to find mode k in the upper
level |χ+

k (tf )⟩ will depend on the value of k, and we de-
note this probability by pk. Modes close to k = 0 show
no sign change of τk, so they mostly remain in the lower
level pk < 1/2, while modes close to the gap-closing limit

k = π will be excited to the upper level with probability
pk > 1/2 [5, 15]. Given these two cases, continuity of
the spectrum as a function of k in the thermodynamic
limit implies that there exists a “critical mode” k∗ with
equal probabilities pk∗ = 1/2 for occupation of the lower
and upper levels after the ramp corresponding to a max-
imally mixed state. This is the mode that triggers the
appearance of DQPTs at critical times [1],

tnc = (2n+ 1)
π

2εk∗,f
, n = 0, 1, ... (6)

with εk∗,f = εk∗(tf ) the energy in Eq. (5). Note that
the ramp occurs at negative times, t < tf = 0, while the
DQPTs take place at positive times.
The probability function pk depends nontrivially on

the full quench dynamics. This raises the question
whether critical modes can be destroyed or maybe even
created if the quench is noisy.
To approach the problem we add noise to the magnetic

field, writing h(t) = h0(t)+η(t), with η(t) a random vari-
able. We assume the noise distribution to be Gaussian
with vanishing mean, ⟨η(t)⟩ = 0, and canonical Ornstein-
Uhlenbeck two-point correlations [59]

⟨η(t)η(t′)⟩ = ξ2

2τn
e−|t−t′|/τn . (7)

Here τn is the noise correlation time and ξ the noise am-
plitude for fixed τn. The frequently employed white-noise
limit is obtained by letting τn → 0.
As before, the probabilities pk for nonadiabatic tran-

sitions will change continuously with k in the thermo-
dynamic limit, but it is a priori unclear if the special
value pk = 1/2 occurs at all, or maybe even for several
k-values. The inequality pk,max > 1/2 close to k = π is
ensured by the Kibble-Zurek mechanism (KZM), which
predicts a breakdown of adiabaticity when approaching
gap closing [60, 61]. On the other hand, noise will in
general facilitate additional transitions, so it is uncertain
if modes with pk,min < 1/2 remain, which is the required
condition for DQPTs [1]. While there are closed expres-
sions for finite-time transition probabilities in the adia-
batic basis with no noise [58], there are no known such
results when noise is present. Could it be that noise may
increase the probability for nonadiabatic transitions, cor-
rupting the inequality pk,min < 1/2? Or maybe instead
drive oscillations of the pk function across 1/2, causing
additional DQPTs?

To find out, we numerically solve the stochastic
Schrödinger equations (SSEs) [62–64]

(H0,k(t) + η(t)H1) |ψk(t)⟩ = i
∂

∂t
|ψk(t)⟩ (8)

for the allowed values of k (cf. Eq. (2)) and for single
realizations for single realizations of the noise function
η(t) in the quench interval t∈ [ti, 0], with H1 = 2σz (cf.
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FIG. 1. (Color online) Probabilities for finding a mode with momentum k in the upper level after a ramp across the single
quantum critical point hc = −1 (hi = −50, hf = 1/2) for system size N = 1000 and different noise amplitudes ξ, sweep
velocities v, and noise correlation times τn: (a) ξ = 0.01, v = 0.1, τn = 0.01; (b) ξ = 0.01, v = 0.01, τn = 0.01; (c) ξ = 0.1,
v = 0.1, τn = 0.01; (d) ξ = 1, v = 0.1, τn = 0.01; (e) ξ = 0.1, v = 10, τn = 0.01; (f) ξ = 1, v = 10, τn = 0.01. The probabilities
pk for single noise realizations are displayed in red, with the ensemble averages ⟨pk⟩ in blue. For comparison, the probabilities
pk for noiseless cases (ξ = 0) are shown in black.

Eq. (3) with h0,k(t) → h0,k(t) + η(t)). Having obtained
the solution |ψk(t)⟩ = uk(t)|χ+

k (t)⟩+ vk(t)|χ−
k (t)⟩ to Eq.

(8) at t= tf =0, one reads off pk = |uk(0)|2. For details,
see sec. B in the Supplemental Material.

In addition we construct an exact noise master equa-
tion (ME) [65–68] for the averaged density matrix ρk(t) =
⟨ρη,k(t)⟩, with ρη,k(t) the density matrix of the Hamilto-
nian in Eq. (8). Explicitly,

ρ̇k(t) = −i[H0,k(t), ρk(t)] (9)

− ξ2

2τn

[
H1,

∫ t

ti

e−|t−s|/τn [H1, ρk(s)]ds
]
.

By translating Eq. (9) into two coupled differential equa-
tions, the mean transition probabilities are obtained nu-
merically as ensemble averages ⟨pk⟩ over the noise dis-
tribution {η}. The averaged probabilities reveal features
not easily seen from a single quench, and, moreover, al-
lows us to validate the soundness of the SSE numerics.
For details, see sec. C in the Supplemental Material.

Let us analyze the results predicted by Eqs. (8) and (9)
for a quench across the equilibrium critical point h = −1,
from hi = −50 to hf = 1/2. The effect of noise is bound
to increase with the amplitude ξ, but will also depend on
the correlation time τn as well as the sweep velocity v.
For transparency we focus on a few representative cases,
displayed in panels (a)-(f) of Fig. 1.

(a) −We take off from a noiseless quench that supports
an extended adiabatic regime, i.e., with modes satisfying
pk ≈ 0. As discussed above, when a quench is noiseless
there appears only a single critical momentum k∗ (sat-
isfying pk∗ =1/2). Panel (a) shows that adding noise in
the velocity-weighted low-amplitude limit ξ/v ≪ 1 does
not perturb k∗. Hence, in this limit the corresponding
DQPTs are robust against noise.

(b) − Increasing ξ/v by lowering the sweep velocity v
as compared to (a), one enters a crossover region with
ξ/v ∼ O(1). In this region the impact of noise depends
on its non-weighted amplitude ξ. Panel (b) shows that
the noiseless critical momentum remains unperturbed
for a sufficiently small ξ (here with the same value as
in (a)). Thus, the corresponding DQPTs stay robust
against noise.

(c) − Boosting the amplitude ξ in the crossover re-
gion ξ/v ∼ O(1) (here by a factor of 10 compared to
(b)) causes the pk-function for a single noise realization
to cross the value 1/2 for several k-values. The conver-
gence of pk to a continuous function of k in the thermo-
dynamic limit N → ∞ is now extremely slow, reflecting
that the large-amplitude noise variability morphs into
a finite-N pk-function with occasional large jumps be-
tween neighboring modes. Going to larger values of N
will eventually smoothen the graph, implying a set of
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FIG. 2. (Color online) The dynamical free energy g(t) of
the model for the noisy quench corresponding to Fig. 1(c).
The vertical dotted lines mark the times for the finite-size
(N = 1000) precursors of DQPTs.

randomly distributed critical momenta {k∗i } in the ther-
modynamic limit where pk becomes continuous. By in-
serting {k∗i } into Eq. (14) one obtains an aperiodic se-
quence of densely spaced DQPTs. Fig. 2 shows how such
DQPTs are signaled by cusps in the dynamical free en-
ergy g(t) = (1/N) ln |G(t)|, being finite-size precursors of
the nonanalyticities in the thermodynamic limit. Here
G(t) is the Loschmidt amplitude for the time-evolved
postquench state; cf. sec. A in the Supplemental Ma-
terial.

As seen in both panel (b) and (c), the blue graphs for
the ensemble averaged transition probabilities ⟨pk⟩ are
concave away from the gap closing region at k=π. This
suggests an intriguing interplay between noise-induced
excitations and the dynamics of the gapped modes driven
by the slow noiseless ramp: Deep in the adiabatic regime
where the averaged instantaneous gap is large (with the
average taken over the duration of the quench), noise
has a negligible effect. For intermediate-sized gaps, noise
excitations become effective but then level off as one ap-
proaches the neighborhood of k=π. Here the KZM takes
over, dominating the non-adiabatic dynamics and mak-
ing the presence of noise largely irrelevant.

(d) − Increasing ξ/v further, entering the velocity-
weighted large-amplitude regime ξ/v≫ 1 (still with the
noiseless quench supporting an adiabatic regime), the
number of critical momenta in the thermodynamic limit
proliferate. Similar to the case displayed in panel (c),
this is spelled out by the finite-size plot of pk in panel
(d) which exhibits repeated jumps of pk across the value
1/2. As an aside, let us remark that the number of crit-
ical momenta increase also when the correlation time τn
decreases: A smaller τn implies a larger noise variabil-

ity ξ/τn which gets inherited by the pk-function in the
guise of a larger transition variability. Referring to the
correlation time τn, we also note that noise effects are
conditioned by the inequality τn < 1/v, with 1/v the
ramp time.
The most striking feature in panel (d) is the plateau

formation of the blue curve. Here the average transition
probabilities ⟨pk⟩ are numerically found to be locked to
the value 0.5000 ± 0.00001, signaling the emergence of
a maximally mixed state for the corresponding modes.
One may understand this by noting that an Ornstein-
Uhlenbeck process is stationary and therefore ergodic in
the mean [59]. It follows that the long-time average of
the noisy density matrix converges to that of its ensemble
average. Given this, the formation of a plateau suggests
that an asymptotically slow noisy quench will effectively
heat the system to infinite temperature, unraveling an ef-
fective reduced density matrix that is maximally mixed.
It is here interesting to recall earlier work in a different
context [69], suggesting that an infinite-time ramp sub-
ject to white noise may lead to a maximally mixed state.
Let us add that the width of a plateau increases with
decreasing τn as well as with decreasing v.
(e) − Let us finally consider a noiseless quench

where, differently from the cases (a)-(d), the assump-
tion v∆k/2ε

3
k(t) ≪ 1 is violated for most of the modes,

implying that their dynamics is nonadiabatic. The nona-
diabaticity is here driven by a larger value of the sweep
velocity v, also giving less time for noise to become effec-
tive. As expected, and similar to the case in (a) where
ξ/v ≪ 1, panel (e) confirms that the presence of noise
also now has a negligible effect when ξ/v is sufficiently
small.
(f) − In contrast, when ξ/v is above some threshold

value, however still with ξ/v ≪ 1, the noise may cause a
noticeable shift of the single noiseless critical momentum,
as displayed in panel (f). This results in a uniform shift of
the sequence of noiseless periodic DQPTs; cf. Eq. (14).
It is important to note that all DQPT scenarios in pan-

els (a)-(f) of Fig. 1 are fully determined by the pk func-
tion. It follows that any 1D fermionic two-band model
subject to a noisy ramp with a behavior of the pk func-
tion analogous to that of the TFI chain will show similar
postquench dynamics. Let us also mention that the av-
eraged pk curves in Figs. 1(a)-(f) obtained from the ME,
Eq. (9), are well reproduced by averaging over a finite
sample of solutions to the SSEs in Eq. (8), each SSE
with a distinct noise realization η(t); see sec. C in the
Supplemental Material. This serves as a stringent check
on our numerical approach.
Summing up, we have shown how the patterns of

DQPTs following a noisy ramped quench of the mag-
netic field in the TFI chain depend on the rate of the
ramp (“sweep velocity”) and the amplitude of noise fluc-
tuations. Two distinct classes of scenarios can be iden-
tified: (i) noise having a negligible or weak effect, at
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most shifting the expected sequence of noiseless DQPTs;
and (ii) noise causing an aperiodic, closely spaced, set
of DQPTs. While we have here exhibited (i) and (ii)
with quench protocols where one of the TFI equilibrium
quantum critical points is crossed, we expect the two sce-
narios to be generic. Specifically, we have checked this for
a ramped quench across both TFI equilibrium quantum
critical points [70].

With the rapid advances in realizing analog quan-
tum simulators, experimental tests of our predictions
may soon be within reach. Ramped magnetic quenches
in the presence of amplitude-controlled noise have al-
ready been achieved with trapped ions simulating the
transverse-field XY chain [71]. The other backbone for
an experimental exploration − detection and characteri-
zation of DQPTs − is also in place, as demonstrated on
a variety of platforms for TFI-type chains: trapped ions

[34, 35, 44], Rydberg atoms [36], and NV centers [43].
These breakthroughs, together with recent advances in
quantum-circuit computations on NISQ devices [72, 73],
hold promise for further explorations of DQPTs follow-
ing a noisy quench, expressly for the transverse field Ising
chain studied in this Letter.
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SUPPLEMENTAL MATERIAL

In the Supplemental Material we elaborate on some technical aspects of the analysis presented in the main text
and also provide some background material.

A. Noiseless ramp across a single equilibrium quantum critical point of the quantum Ising chain

As a backdrop to our study of dynamical quantum phase transitions (DQPTs) following a noisy ramped quench in
the quantum Ising chain, we here review the basics of the simpler case when the ramp is noiseless.

Consider the single-particle fermionic Hamiltonian H0,k(t) which governs the modes with wave number k of the
Jordan-Wigner-transformed quantum Ising chain, Eq. (3) of the main text. During a ramped quench in the time
interval [ti, tf ], the transverse magnetic field h0(t) is swept from an initial value h0(ti) = hi to a final value h0(tf ) = hf
such that h0(t) = hf + vt, with v > 0 the linear rate of energy transfer (“sweep velocity”) during the quench. Here
ti < 0 and tf = 0, the latter time serving as reference time for the postquench dynamics; cf. Fig. 3 (a). (For future
reference we have added noise fluctuations in the figure, depicted in grey color superposed on the red-colored linear
ramp.) Rewriting H0,k(t) on the form of a Landau-Zener model [53, 54], one obtains H0,k(t) =

1
2vτkσz +∆kσx, with

τk = 4(h0(t)− cos(k))/v a mode-dependent time variable, and with ∆k = 2 sin(k).

As a case study let us look at a ramp that crosses the equilibrium quantum critical point hc = −1, from the para-
to the ferromagnetic phase of the model, choosing h0(ti)=hi≪−1 and h0(tf )=hf =1/2. To conform to the standard
Landau-Zener formalism [53, 54], we imagine that the ramp starts in the infinite past, τk,i =−∞. For all practical
purposes, this is a viable approximation when h0(ti)≪−1. In this limit H0,k(ti) effectively becomes diagonal and
hence all modes initially reside in their lower level states |χ−

k (τk,i)⟩≈|α⟩; cf. Fig. 3 (b) and Eq. (4) in the main text.
Differently, at the end of the ramp, t = tf , the k:th mode |ψk(τk,f )⟩ is in a superposition of the upper and lower level
states, |ψk(τk,f )⟩ = uk(τk,f )|χ+

k (τk,f )⟩+vk(τk,f )|χ
−
k (τk,f )⟩, with |uk|2+ |vk|2 = 1. Here |uk(τk,f )|2 is the nonadiabatic

transition rate, i.e., the probability that the k:th mode is found in the upper level at the end of the ramp. A comment
on notation: We write pk = |uk(τk,f )|2 and qk = |vk(τk,f )|2 for the transition probabilities in the adiabatic basis, to
be contrasted to Pk and Qk for the transition probabilities in the more frequently used diabatic basis [54]. In the
asymptotic limit τk,f → ∞, one has that pk → Qk, where Qk denotes the probability for the k:th mode to be found
in the same diabatic state in which it was initialized; cf. Fig. 3 (b) and the paragraph after Eq. (5) in the main text.

Zooming in on the mode k = π, we note that the gap between lower and upper levels closes when the ramp crosses
hc = −1 at τk=π = 0. The generic breakdown of adiabaticity at criticality [60, 61] makes us expect that pk ≈ 1 for
modes in the neighborhood of k = π. In contrast, modes close to k = 0 retain a finite gap throughout the ramp
and the adiabatic theorem [57] then predicts that pk ≈ 0 provided that the sweep velocity v is sufficiently small.
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One expects that the k ≈ 0 dynamics remains predominantly adiabatic also for larger values of v, i.e., pk < 1/2,
provided that the condition h0(tf ) = 1/2 stays put (since otherwise the k ≈ 0 modes may experience a breakdown of
adiabaticity if getting too close to the other equilibrium quantum critical point at h=1 where their gaps approach
zero). As seen from the black curves in Fig. 1 in the main text, the above-mentioned expectations are corroborated
by a numerical solution of the noise master equation for the averaged density matrix of the Hamiltonian H0,k(t), cf.
Eq. (8) in the main text and subsection B of this Supplemental Material. It follows that the upper and lower bounds
of pk bracket 1/2, implying that by continuity in the thermodynamic limit there is certain to be a mode, call it k∗,
such that pk∗ = 1/2. Such a mode will trigger a DQPT.

The key importance of a critical mode k∗ was noted already in the seminal work by Heyl et al. [5]. These authors
realized that its existence is generically a sufficient condition for the appearance of DQPTs in systems with effective
descriptions in terms of a two-band fermionic model. In short, they showed that in the thermodynamic limit the
maximally mixed state coded by pk = 1/2 implies that the Fisher zeros (i.e., the zeros of the partition function
analytically continued to the complex plane) coalesce to a family of lines n = 0, 1, 2, ... which − for a quench across an
equilibrium critical point − are guaranteed to cut the time axis at t∗n, n = 0, 1, 2, .... This produces the nonanalyticities
that define the DQPTs at times t∗n. The special role of a mode with pk = 1/2 had also been discussed earlier by
Kolodrubetz et al. [74], also for the quantum Ising chain, but in a slightly different context.

h

t

hi

hf

ti

tf

0

(a)

⎟ 〉α

⎟ 〉β⎟ 〉α
⎟ 〉χ

⎟ 〉β

-

⎟ 〉χ+

2Δ

τ

ε
k

k

k

k

k0

(b)

FIG. 3. (Color online) (a) Illustration of a linear ramped quench (red color), with noise fluctuations superposed (grey color).
Here h(t) is the magnetic field, hi and hη its initial and final values, and ti and tf = 0 the corresponding times. (b) Schematics
of the instantaneous energies in the diabatic and adiabatic basis as a function of the effective mode-dependent time τk for
the Hamiltonian, Eq. (3), in the main text. The diabatic energies are depicted by red dashed lines, with the adiabatic ones
depicted by blue lines, and with 2∆k the gap between energy levels at τk = 0.

A straightforward way to calculate the critical times t∗n for a ramped quench takes off from the time evolution of the
states |ψk(τk,f )⟩ after the ramp. Bringing back the time variable t, and using that t= tf =0 serves as reference time for
the postquench dynamics, we introduce the notation |φk(0)⟩ ≡ |ψk(τk,f )⟩, and write uk(τk,f )≡uk(t=0)=uk(0) and

vk(τk,f )≡ vk(t=0)= vk(0). Further, we abbreviate the postquench Hamiltonian H0,k(0) as H
(f)
0,k . We are primarily

interested in the Loschmidt amplitudes Gk(t) for the —colorred quasiparticle modes,

Gk(t) = ⟨φk(0)| exp(−iH(f)
0,k t)|φk(0)⟩ (10)

= |uk(0)|2 exp(−iε+k,f t) + |vk(0)|2 exp(−iϵ−k,f t),

with ε±k,f = ε±k (0) defined in Eq. (5) in the main text. A DQPT is signaled by the vanishing of the Loschmidt
amplitude

G(t) =
∏
k

Gk(t) (11)

for the full system, causing a nonanalyticity in the rate function [5]

g(t) = − lim
N→∞

N−1 ln |G(t)|2, (12)

with N the number of sites on the chain. The rate function g(t) plays the role of a dynamical free energy density,
with time t standing in for a control parameter. Substituting

∏
k Gk(t) for G(t) in Eq. (12), using |vk|2 = 1 − |uk|2
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and converting the product over k into a sum, represented by an integral in the thermodynamic limit, one obtains

g(t) =
−1

2π

∫ π

0

log
(
1 + 4(|uk(0)|2 − 1)|uk(0)|2 sin2(

ε+k,f − ε−k,f
2

)t
)
dk. (13)

Using that ε±k,f = ±εk,f , the argument of the logarithm is seen to vanish with g(t) becoming nonanalytic when t = t∗n,
where

t∗n =
π

εk∗,f

(
n+

1

2

)
, n = 0, 1, 2, ... (14)

These are the critical times for the DQPTs, with k∗ the mode that satisfies pk∗ = |uk∗(0)|2 = |vk∗(0)|2 = 1/2, the
existence of which was established above.

The examination of the condition for DQPTs following a noiseless ramp as reviewed here serves as a template when
addressing the more intricate problem when noise is present during a ramp. This analysis is carried out in the main
text.

B. Transition probabilities in the presence of single noise realizations:
Stochastic Schrödinger equation

In the theory of stochastic differential equations (SDEs), the Ornstein-Uhlenbeck (OU) process [59], i.e., colored
Gaussian noise η(t) with zero mean ⟨η(t)⟩ = 0 and with (auto)correlation function

⟨η(t)η(t′)⟩ = ξ2

2τn
e−|t−t′|/τn , (15)

can be generated from Gaussian white noise with zero mean ⟨ζ(t)⟩ = 0 and correlation ⟨ζ(t)ζ(t′)⟩ = ξ2δ(t−t′) through
the SDE

τnη̇(t) = −η(t) + ζ(t). (16)

Here τn is the noise correlation time and ξ the noise amplitude for fixed τn.
In this work we have used the Mathematica built-in software OrnsteinUhlenbeckProcess to produce the OU noise.

To obtain single realizations of the continuous OU noise function η(t) we interpolate the discrete points in the OU
process with time step dt = 0.01. With this, the transition probabilities pk (cf. Sec. A) in the presence of OU noise
can be found by numerically solving the stochastic Schrödinger equations (SSEs) for a chain with N sites,

i
d

dt
|ψk(t)⟩ = Hk(t)|ψ(t)⟩ =

(
H0,k(t) + η(t)H1

)
|ψk(t)⟩, k =

(2m− 1)π

N
, (17)

with m = 1, 2, ..., N/2. Here H0,k(t) is defined in Eq. (3) of the main text and H1 = 2σz.
Our approach implies that the random noise variation is taken to be bounded at time intervals set by dt, reflecting

that the physical system responds to noise with a finite time resolution.
For other numerical methods to solve SDEs with colored noise, see [75–79].

C. Ensemble-averaged transition probabilities: Exact noise master equation

The solution of Eq. (17) yields the transition probabilities pk given a single realization of the OU noise function
η(t). To obtain the mean transition probabilities − useful for uncovering features not easily seen from a single quench
with a single noise realization− one forms the ensemble averages ⟨pk⟩ over the full noise distribution {η}. In the
following we outline the procedure how to go about this task.

For transparency and ease of notation, we begin by considering a general time-dependent Hamiltonian,

H(t) = H0(t) + η(t)H1(t), (18)

where H0(t) is noise-free while H1(t) is “noisy” with η(t) a real function for a given realization of the noise. This
expression for H(t), of the same structure as in Eq. (17), well captures linear corrections from a weak stochastic
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variation. As noted in Ref. [68], the resulting formalism can readily be adapted to apply also beyond the linear
regime.

As in Sec. B we consider colored Gaussian noise η(t) with mean ⟨η(t)⟩ = 0. The prototype form, OU noise [59]
employed in the main text, is a stationary stochastic process with (auto)correlation function defined in (15).

With this setup we now derive a noise master equation for the averaged density matrix ρ(t) of H(t) [65, 68]. One
starts by writing down the von Neumann equation

ρ̇η(t) = −i[H(t), ρη(t)], (19)

where

ρη(t) = U†
η(t, ti)ρη(ti)Uη(t, ti) (20)

is the density matrix for a specific realization of the noise function η(t). As follows from Eq. (19), the time-evolution

from the noise-free initial condition ρη(ti) at time ti is carried through by Uη(t, ti) = T exp(−i
∫ t

ti
H(t′) dt′), with T

the time-ordering operator. Introducing ρ(t) = ⟨ρη(t)⟩ as the ensemble average over many noise realizations (all with
a common noise-free initial condition), the averaged von Neumann equation (19) takes the form

ρ̇(t) = −i[H0(t), ρ(t)]− i[H1(t), ⟨η(t)ρη(t)⟩]. (21)

Applying a theorem by Novikov [80] one has that

⟨η(t)ρη(t)⟩ = ⟨η(t)⟩⟨ρη(t)⟩+
∫ t

ti

ds⟨η(t)η(s)⟩⟨δρη
δη

⟩, (22)

with functional derivative

δρη
δη

=
∂ρ̇η
∂η

− d

dt

∂ρ̇η
∂η̇

. (23)

Combining Eq. (23) with (18) and (19) gives

δρη
δη

= −i[H1(t), η(t)]. (24)

The master equation follows by inserting Eq. (22) into (21), using Eqs. (15) and (24),

ρ̇(t) = −i[H0(t), ρ(t)]−
ξ2

2τn

[
H1(t),

∫ t

ti

e−|t−s|/τn [H1(t), ρ(s)]ds
]
. (25)

The first term on the right-hand side accounts for the unitary time evolution generated by the prescheduled noiseless
Hamiltonian H0(t) and the second term induces the dynamics from OU noise with Hamiltonian H1(t).

The 1D Jordan-Wigner transformed quantum Ising Hamiltonian H(t) with a noisy magnetic field studied in the
main text is expressed as a sum over decoupled mode Hamiltonians Hk(t) = H0,k(t) + η(t)H1, with H0,k(t) given
in Eq. (3) and with H1 = 2σz. It follows that the density matrix ρη(t) has a direct product structure [81], i.e.,
ρη(t) = ⊗kρk,η(t) with the 2 × 2 density matrix ρk,η(t) satisfying ρ̇k,η(t) = −i[H0,k(t), ρk,η(t)] for a single common
realization of the noise function η. ρk,η(t) is here conveniently written in a rotating basis spanned by the instantaneous
eigenstates |χ±

k (t)⟩ of Hk(t) (cf. Eq. (4) in the main text with η(t) added to h0(t)). The noise master equation for
the ensemble-averaged density matrix ρk(t) = ⟨ρk,η(t)⟩ takes the form

ρ̇k(t) = −i[H0,k(t), ρk(t)]−
ξ2

2τn

[
H1,

∫ t

ti

e−(t−s)/τn [H1, ρk(s)]ds
]
. (26)

To solve for ρk(t), we consider the integral in the same equation as a new operator,

Γk(t) ≡
∫ t

ti

e−(t−s)/τn [H1, ρk(s)]ds. (27)
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FIG. 4. (Color online) Comparison of the average pk over 100 single realizations (red) and the ensemble average (blue) ⟨pk⟩ for
system size N = 200 corresponding to the values of ξ, v, and τn as in (a) Fig. 1(c); (b) Fig. 1(d) and (c) Fig. 1(f) in the main
text. The probabilities for the noiseless cases (ξ = 0) are displayed in black.

Eq. (26) then takes the form

ρ̇k(t) = −i[H(0)
k (t), ρk(t)]−

ξ2

2τn
[H1,Γk(t)]. (28)

By using the Leibniz integral rule, one obtains for the derivative of Γk(t) with respect to time:

Γ̇k(t) = −Γk(t)/τn + [H1, ρk(t)]. (29)

The elements of the ensemble-averaged density matrix ρk(t) can now be obtained by numerically solving the coupled
differential equations (28) and (29) with initial conditions

ρk(ti) =

(
1 0
0 0

)
and Γk(ti) =

(
0 0
0 0

)
. (30)

In the chosen basis, the first initial condition states that the system is initialized in the ground state, i.e., that all k-
modes occupy the lower level |χ−

k (t)⟩ at t= ti. The second condition simply expresses that the initial state is noiseless.
With this, the ensemble-averaged nonadiabatic transition probability ⟨pk⟩ for a mode k is obtained as ⟨pk⟩ = ρk,22(0),
i.e., the ensemble-averaged probability that the k:th mode occupies the upper level |χ+

k (0)⟩ at the end of the quench,
t= tf = 0. Here recall that the choice of time reference serves as a reminder that tf = 0 is the initial time for the
postquench dynamics.

Having obtained the mean transition probability ⟨pk⟩ for a mode k from the master equation (26), we can use it to
assess the validity of the solution to the SSE, Eq. (17), for the same mode k: As illustrated in Fig. 4, the ensemble
average ⟨pk⟩ is clearly well reproduced by averaging over a finite sample of solutions − each solution corresponding
to a distinct single OU noise realization − to the corresponding SSE.
For detailed expositions of the approach to exact noise master equations, including formal properties of the time-

evolved averaged density matrix, we refer the reader to Refs. [65–68].
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