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We analyze the ground-state entanglement entropy of the extended Bose-Hubbard model with infinite-
range interactions. This model describes the low-energy dynamics of ultracold bosons tightly bound to an
optical lattice and dispersively coupled to a cavity mode. The competition between on-site repulsion and
global cavity-induced interactions leads to a rich phase diagram, which exhibits superfluid, supersolid, and
insulating (Mott and checkerboard) phases. We use a slave-boson treatment of harmonic quantum
fluctuations around the mean-field solution and calculate the entanglement entropy across the phase
transitions. At commensurate filling, the insulator-superfluid transition is signaled by a singularity in the
area-law scaling coefficient of the entanglement entropy, which is similar to the one reported for the
standard Bose-Hubbard model. Remarkably, at the continuous Z2 superfluid-to-supersolid transition we
find a critical logarithmic term, regardless of the filling. This behavior originates from the appearance of a
roton mode in the excitation and entanglement spectrum, becoming gapless at the critical point, and it is
characteristic of collective models.
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Introduction.—Entanglement measures play a special
role in the low-temperature physics of quantum many-
body systems, as they probe the existence and structure of
quantum correlations [1]. Different entanglement measures
have been discussed and applied to classify the emerging
states of quantum matter [1,2]. Among them, entanglement
entropy (EE) captures the presence of bipartite entangle-
ment in pure states: the scaling of the EE of a connected
subsystem with its size exhibits universal properties [3–5]
probing, e.g., the presence of conventional long-range order
[6], or of topological order [7,8]. Singularities in the scaling
behavior of the EE can mark in a universal way quantum
phase transitions separating ordered from disordered phases
[9–12].
In this Letter, we focus on the von Neumann EE, S, for a

spatial bipartitionA and B of an extended quantum system:

S ¼ −TrfρA log ρAg; ð1Þ

where ρA ¼ TrBfjΨ0ihΨ0jg is the density matrix obtained
by tracing out the degrees of freedom of subsystem B from
the ground state jΨ0i. Our purpose is to characterize the
scaling of S at continuous phase transitions resulting from
competing short- and global-range interactions.
In fact, the interaction range can give rise to very

different entanglement features. For short-range inter-
actions the dominant scaling term of the EE is the

so-called area-law term. This term grows with the size
of the boundary between A and B. For a lattice of d
dimensions and L lattice sites along each spatial dimension
the total number of lattice sites is N ¼ Ld, and the EE
scales as Ld−1 for a connected subsystem A [3]. This area-
law scaling can be taken as an indication that quantum
correlations between A and B involve primarily lattice sites
close to the boundary [13]; yet, for bosonic or spin systems
in d > 1 dimensions it persists even for ground states

(a) (b)

FIG. 1. The Bose-Hubbard model with competing short and
global interactions can be realized with atoms tightly bound by an
optical lattice that coherently scatters laser photons (Ω) into the
mode of a high-finesse cavity [26]. (a) The picture shows the
geometry of the A=B bipartition considered in this Letter.
(b) Illustration of competing processes of the Hamiltonian: the
nearest-neighbor tunneling (with amplitude t), the on site
repulsion (U0), and the global density-density interactions
(ULR), which are attractive here.
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exhibiting critical or long-range correlations associated
with the spontaneous breaking of a continuous symmetry
[14–16]. In fact, criticality may lead at most to a singularity
in the coefficient of the area-law scaling [11,13,17,18],
while long-range correlations lead to the appearance of a
universal subleading contribution to EE scaling. This
contribution scales with the number of Goldstone modes
NG as ðNG=2Þðd − 1Þ logL [6]. In contrast, for long-range
interactions that decay with the interparticle distance r as
1=rα with α < d, the geometric boundary between A and B
becomes unimportant [19–21]. For example, the area-law
scaling disappears in the Dicke [22] and the Lipkin-
Meshkov-Glick (LMG) model [23–25]. Here, the ground
state belongs to a symmetric subspace whose dimension
grows linearly with N, and the EE scales as logðNÞ at the
quantum critical point [9]. To our knowledge, the scaling
behavior of the EE is unexplored in the regime where short-
range and global interactions compete.
Extended Bose-Hubbard model.—In this Letter we

analyze the scaling of the EE in the two-dimensional
extended Bose-Hubbard model of cavity quantum electro-
dynamics [26–29]—see Fig. 1 for a sketch. The
Hamiltonian is the sum of the standard Bose-Hubbard
Hamiltonian ĤBH [30] and the cavity-mediated long-range
interaction potential Ĥcav, namely, Ĥ ¼ ĤBH þ Ĥcav, with

ĤBH ¼ −t
X

hr;r0i
b̂†r b̂r0 þ

X

r

�
U0

2
n̂rðn̂r − 1Þ − μn̂r

�
; ð2Þ

Ĥcav ¼ −
ULR

N

�X
r
ð−1Þrxþry n̂r

�
2

; ð3Þ

where the parameters t, U0, and ULR are real and positive;
b̂†r (b̂r) create (annihilate) a boson at the site r ¼ ðrx; ryÞ of
the square lattice; n̂r ¼ b̂†r b̂r is the density, and hr; r0i
indicates a pair of nearest neighbors. In the following we
assume periodic boundary conditions.
Theoretical studies of the phase diagram of the

Hamiltonian Ĥ [28,29,31–35] reproduce the experimental
results of Ref. [26] for a cavity wavelength which is twice
the periodicity of the optical lattice. This ground-state
phase diagram features a rich palette of phases: The
nearest-neighbor hopping with amplitude t favors the onset
of superfluidity (SF) while the on-site repulsion, with
amplitude U0, stabilizes a Mott insulator (MI) at commen-
surate filling. Global interactions, with amplitude ULR,
induce a density modulation which supports scattering of
photons into the cavity field. The density modulation can
result either in a charge density-wave (CDW) insulator, at
integer or half-integer filling, or a supersolid (SS) phase,
when it also exhibits superfluidity. Experimentally, the
condensate fraction is revealed by time-of-flight measure-
ments, while the onset of diagonal long-range order leads to
the emission of coherent light at the cavity output [26,36].

The phase diagram is theoretically determined in the
grand-canonical ensemble via the Gutzwiller mean-field
(MF) approach [35]. The ground state is written in the
spatially factorized form jΨ0;MFi ¼⊗r jψ r;0i with jψ r;0i ¼Pnmax

n¼0 f
ð0Þ
r;n jnir, where jnir are the single-site Fock states

and nmax is a cutoff, chosen to be nmax ¼ 6 throughout
this Letter, and leading to negligible truncation errors.
The single-particle state jψ r;0i is the ground state of the
effective single-site Hamiltonian ĤMF

r , and it is determi-
ned self-consistently. Here, ĤMF

r ¼ −ztφ̄rðb̂r þ b̂†r − φrÞ þ
ðU0=2Þn̂rðn̂r − 1Þ − μn̂r −ULRΘð−1Þrxþry n̂r þNULRΘ2=4
where z is the lattice coordination number (z ¼ 4) [35].
Superfluidity is signaled by a nonvanishing value of the
order parameter φ̄r ¼

P
r0 φr0=z, where φr ¼ hb̂ri and the

sum runs over the nearest neighbors r0 of r. The onset of a
density modulation is revealed by the order parameter
Θ ¼ 2hPrð−1Þrxþry n̂ri=N. The upper panels of Fig. 2
display the phase diagram as a function of the ratios
t=U0 and μ=U0, and the color scale gives the value of
the EE, whose determination is discussed below. The
subplots are evaluated for two values of the global potential
ULR, chosen (a) below and (b) above the threshold
Uth

LR ¼ U0=2, at which the MI phase becomes unstable.

FIG. 2. Color plot of the half-system EE S [Eq. (1)] [see the
partition in Fig. 1(a)] for (a)ULR=U0 ¼ 0.3 and (b)ULR=U0 ¼ 0.6
as functions of the tunneling t and the chemical potential μ in units
ofU0 for a L × L square lattice with L ¼ 40. The nonanalyticities
of S coincide with the phase transition lines predicted by mean-
field theory (not indicated here). The lower panels show S=L as a
function of t=U0 (c) at fixed density ρ forULR ¼ 0.3U0; and (d) at
fixed chemical potential μ=U0 for ULR ¼ 0.6U0. Here the system
the size is L ¼ 60.
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The nonanalyticities of the EE coincide with the mean-field
phase boundaries of Ref. [35].
The phase diagram features first-order phase transitions

and three main types of continuous quantum phase tran-
sitions [28,34,35]. The first type (type 1) is a commensurate
O(2) phase transition, separating either the MI from the SF
at fixed integer density ρ, or the CDW from the SS at fixed
integer density and at half filling. This transition occurs at
the tip of the corresponding (MI or CDW) lobe. The second
type (type 2) is a generic transition separating MI from SF
and CDW from SS at incommensurate densities. This
appears everywhere along the borders separating either
MI-SF or CDW-SS, except for the lobe tips. The third type
(type 3) is a continuous Z2 transition between the SS and
the SF phase. Some of these phase transitions change in fact
from continuous to first order as the t=U0 and μ=U0 ratios
are tuned across the phase diagram. This is the case at the
CDW-SS and SS-SF for small t=U0, and at the SS-SF
transition for μ=U0 ≳ 0.25 [see Fig. 2(b)]. We note that
phase transitions changing from continuous to discontinu-
ous as a function of the control fields (or the temperature)
have also been reported for spin systems with competing
short and long-range interactions [19,37].
Slave-boson approach.—We determine the entangle-

ment properties in this rich phase diagram by including
quantum correlations which are not captured by the MF
approximation. For this purpose we make use of a slave-
boson approach [11,38], which we outline below and
detail in the Supplemental Material [39]. Such an
approach consists of using the full basis fjψ r;αig of
eigenstates of HMF

r (α ¼ 0;…; nmax), and of defining
associated slave-boson operators γ̂r;α, γ̂

†
r;α. These operators

fulfill the hardcore constraint
P

α γ̂
†
r;αγ̂r;α ¼ 1 and are

used to rewrite the original bosonic operators b̂r ¼P
αβ

P
n

ffiffiffi
n

p
fðαÞr;n−1f

ðβÞ
r;n γ̂

†
r;αγ̂r;β in Ĥ. Within this formalism,

the MF approximation corresponds to the condensation
hypothesis of the ground-state slave bosons, γ̂r;0; γ̂

†
r;0 ¼ 1

and hγ̂†r;α>0γ̂r;α>0i ¼ 0. The next level of approximation is
to retain a finite population for the α > 0 bosons, and
truncate the full quartic Hamiltonian Ĥ to quadratic
order in the γ̂r;α>0, γ̂†r;α>0 operators, by assuming that

hγ̂†r;α>0γ̂r;α>0i ≪ 1 and γ̂r;0; γ̂
†
r;0 ≈ ð1 −P

α>0 γ̂
†
r;αγ̂r;αÞ1=2.

The resulting Hamiltonian then reads as Ĥ ≈
hΨ0;MFjĤjΨ0;MFi þ Ĥð2Þ where Ĥð2Þ is a quadratic form
in γ̂r;α>0, γ̂

†
r;α>0 operators [39]. A Bogolyubov diagonaliza-

tion of Ĥð2Þ reconstructs the quasiparticle spectrum ωk;p

(where p is a mode index, p ¼ 1;…; nmax), and it allows us
to calculate the covariance matrix for subsystem A,
CA¼½Cr;r0 �r;r0∈A, where Cr;r0 ¼hΨ0jðγ̂r;γ̂†r ÞTðγ̂†r0 ;γ̂r0 ÞjΨ0i
with γ̂r ¼ ðγ̂r;1; γ̂r;2;…Þ. For the remainder of this Letter,
A will be the L=2 × L rectangle obtained by cutting the
L × L square lattice along the y coordinate axis. The matrix

CA contains all the information on the Gaussian reduced
density matrix ρ̂A ¼ e−ĤA for subsystemA. Operator ĤA is
the so-called entanglement Hamiltonian, and it is a quad-
ratic form in the γ̂r;α>0, γ̂

†
r;α>0. By means of a Bogolyubov

transformation ĤA becomes diagonal,

ĤA ¼
X

ky;m

λky;md̂
†
ky;m

d̂ky;m; ð4Þ

where d̂ky;m, d̂
†
ky;m

are bosonic operators, λky;m represents

the so-called (one-particle) entanglement spectrum, and we
dropped a constant term. The entanglement spectrum is
labeled by the wave vector ky along the cut and by a further
mode index m associated with the motion perpendicular to
the cut. The EE S corresponds then to the entropy of a
gas of free bosons whose dispersion relation is the
entanglement spectrum: S ¼ P

ky;m sðnky;mÞ where sðxÞ ¼
ð1þ xÞ logð1þ xÞ − x log x and nky;m ¼ ½expðλky;mÞ − 1�−1
is the Bose distribution.
Entanglement phase diagram.—Figures 2(a) and 2(b)

display S in false colors throughout the phase diagrams.
Remarkably, the EE exhibits characteristic signatures at all
quantum phase transitions. In Fig. 2(c) we report repre-
sentative cuts at fixed density ρ ¼ 1=2 and ρ ¼ 1 for
ULR=U0 ¼ 0.3. These cuts show the existence of a sharp
cusp singularity at the O(2) MI-SF and CDW-SS transition
(type 1). This singularity is associated with the appearance
of a Higgs-like mode in the entanglement spectrum
becoming gapless at the transition, and reflecting the
softening of the Higgs mode in the quasiparticle spectrum
[43]. The vanishing of the gap of the Higgs-like mode gives
a singular contribution to the dominant, area-law scaling
term. This behavior was reported in Ref. [11] for the MI-SF
transition in the standard Bose-Hubbard model; and it also
characterizes the CDW-SS transition (see the Supplemental
Material [39]). For the continuous generic MI-SF and
CDW-SS transition (type 2), occurring away from the lobe
tips in Figs. 2(a) and 2(b), the EE singularity turns into a
rounded maximum, similarly to the behavior of the
standard Bose-Hubbard model [11]. In the extended
Bose-Hubbard model, therefore, the critical behavior of
entanglement at these phase transitions (type 1 and type 2)
is due to the competition between hopping and contact
short-range interactions. The singularity of entanglement
entropy for a transition of type 1 has been analyzed in
Ref. [11].
On the contrary, the long-range interactions play a

crucial role for the continuous Z2 SS-SF transition
(type 3) and its entanglement properties, as we argue
below. We generally observe a smaller cusplike singularity
of the EE at this transition. This is visible in the transition at
fixed chemical potential (μ ¼ 0) in Fig. 2(d) as well as in
the transition at constant density (ρ ¼ 1=2) in Fig. 2(c). In
fact, the cusp singularity marks the entire SS-SF boundary
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whenever the corresponding transition is continuous. This
cusp behavior can be well distinguished from the singu-
larity at the MI-SF and CDW-SS transitions and originates
from a singularity in the log correction of the EE, as we
shall explain later. The robustness of this singularity in the
EE makes the SS-SF transition stand out with respect to the
MI-SF and the CDW-SS transitions of the same model, and
it represents our most important finding. Finally, when the
transitions are first order, the EE becomes discontinuous.
This is visible in Fig. 2(d) for the CDW-SS and the SS-SF
transition at the constant value of the chemical potential
μ ¼ 0.4U0.
Entanglement singularity from the roton mode.—To

understand the origin of the cusp singularity at the
SS-SF transition, it is useful to analyze the behavior of
the excitation spectrum at the SS-SF transition. The
spectrum exhibits a vanishing gap throughout the SF and
SS phase, coming from the Goldstone mode related to the
breaking of the U(1) symmetry. Moreover, it is charac-
terized by the critical softening of the roton frequency ωrot
at wave vector krot ¼ ðπ; πÞ [28], which is the precursor of
diagonal long-range order. The roton gap is displayed in
Fig. 3(a) as a function of t=U0. After closing at the SS-SF
transition it reopens in the SS phase: this is a consequence
of elementary excitations of a Z2 crystal having a finite,
nonvanishing gap just like in the CDW phase. The
spectrum has a characteristic dispersionless and gapped
structure in the vicinity of the critical roton mode at krot,
reflecting the fact that the Fourier spectrum of the global
interaction potential is a δ function at this wave vector.
Correspondingly, in the entanglement spectrum [Fig. 3(b)],
a (boundary) rotonlike mode becomes gapless only at the
SS-SF transition, and only for the frequency λrot. This
means that the EE acquires the critical roton contribution
Srot ¼ sðnrotÞ ≈ − log λrot as λrot → 0.

The scaling of the critical roton contribution with system
size L depends then on how the roton entanglement
frequency λrot vanishes upon increasing L. This shall be
handled with particular care. In fact, diagonalization of the
quadratic Hamiltonian Ĥð2Þ leads to the unphysical result
that the frequency ωrot vanishes for any finite system size
at the SS-SF transition (and so does the frequency λrot of
the entanglement spectrum). This is a common problem for
the treatment of harmonic quantum fluctuations around a
symmetry-breaking mean-field solution. In order to have
meaningful finite-size results, we implement a regulariza-
tion scheme by applying a size-dependent field. This field
couples to the order parameter and introduces a finite gap
both in the excitation as well as in the entanglement
spectrum [40,44]. For the Z2 critical point with infinite-
range interactions, we add a term −hðLÞPrð−1Þrnr with
hðLÞ ∼ L−κ. This choice is such that the gap introduced in
the “zero-modes” mimics the scaling of the excitation
gap at the transition ωrot ∼ L−z, with z the dynamical critical
exponent. The size-dependent field hðLÞ also introduces a
finite-size scaling for the entanglement frequency λrot ∼ L−ζ.
The determination of the scaling exponent κ reproducing the
correct z exponent goes beyond the scope of our Letter. Yet,
even though different power-law scalings of the applied
field lead to different scalings λrot ∼ L−ζðκÞ for the roton
mode, all choices result in a singular logarithmic correction
to the area law of the form Srot ≃ ζ logL.
Scaling of the EE.—We perform a scaling analysis of the

half-system EE using the fitting function

S ¼ ALþ B logLþ C: ð5Þ
Figure 4 clearly shows that the spike in the EE at the
transition is due to a spike in the fitted B coefficient.
This spike appears on top of the value B ≈ NGðd − 1Þ=2 ¼
1=2 related to the contribution of the Goldstone mode, and is

(a) (b)

FIG. 3. (a) The roton-mode frequencies λrot ¼ λπ;m̄ (m̄ being the
index of the rotonlike mode) and ωrot in the entanglement and
physical spectrum (respectively) as a function of 4t=U0 across
the SS-SF phase transition. Both frequencies vanish at the
SS-SF transition. (b) Entanglement spectrum for 4t ¼ 0.55U0,
ULR ¼ 0.6U0, μ ¼ −0.05U0, and L ¼ 60 as functions of ky. The
roton mode in the entanglement spectrum is highlighted by the
red cross.

(a) (b)

FIG. 4. The half-system EE as a function of the tunneling rate t
in units of U0 across the transition from SS-SF, for ULR ¼ 0.6U0

and constant μ ¼ −0.05U0. (b) Scaling of the S=L values at the
maximum (“o” symbols), for 4t=U0 ¼ 0.56 (“x” symbols), and
for 4t=U0 ¼ 0.53 (“þ” symbols) for different L. The coefficients
A and B are obtained by fitting Eq. (5) to S vs L and are given in
the table. For all the data in this figure the scaling exponent of the
regularizing field hðLÞ has been chosen as κ ¼ 4.
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consistent with the singular logarithmic contribution to the
EE coming from the rotonmode. This is revealed by plotting
S=L vsL: the curves at the critical point or away from it tend
to a similar A value—the area-law scaling term—but are
offset sharply by the spike in the subleading termB logL=L.
It is interesting to frame this result in the broader context of
quantum phase transitions in models with global interactions
[9]. In the Supplemental Material [39] we show that a slave-
boson treatment of the LMG model recovers exactly the
logN scaling behavior of the EE at the critical point. We
relate this behavior quantitatively to the appearance of an
isolated vanishing mode λmin in an otherwise nearly dis-
persionless entanglement spectrum.
Conclusions.—We have shown that the EE sheds light on

the role of the interaction range at the quantum phase
transitions of the extended Bose-Hubbard model of cavity
quantum electrodynamics (CQED). The continuous phase
transitions separating the insulating from the superfluid
phases exhibit a singularity in the coefficient of the area-
law scaling of the EE, as in the short-range Bose-Hubbard
model. Remarkably, at the continuous Z2 superfluid-super-
solid transition, the EE’s behavior is accompanied by a
critical logarithmic scaling term of the EE, originating from
the singular vanishing of the roton gap. The behavior of
a vanishing gap in a dispersionless roton mode is similar
to the one reported at the quantum phase transition of
collective spin models and is determined by the global-range
potential. This analysis can be extended to characterize
quantum phase transitions of driven-dissipative CQED
models [45–47]. The perspective of studying cavity-induced
correlations in quantum gas microscopes [48] opens the
possibility of measuring EE via the replica [49] or the
random-measurement approach [50], and it suggests that
our predictions could be accessible to future experiments.
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